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Abstract—We present an approach to estimate adjoint sensitivi- ~ As an example of the power grid operation, consider the
ties of economic metrics of relevance in the power grid withespect  following economic cost function:
to physical weather variables using numerical weather preittion
models. We demonstrate that this capability can significary U(t) = c(t) + M) w(w(t)), Q)

enhance planning and operations. We illustrate the method sing . . . .
a large-scale computational study where we compute sensities wherec(t) is the regional cost of the power grid at time

of the regional generation cost in the state of lllinois withrespect w(+) iS @ wind power function at different grid buses(t) is
to wind speed and temperature fields inside and outside theate. the wind speed field, andl(¢) are cost coefficients representing

power grid economic performance as a function of wind power
Index Terms—adjoint sensitivity analysis, numerical weather SUPPIy.
prediction, WRF, power grid planning, sensor siting. Using this economic cost function, we can calculate the
following sensitivity
oV (t)
(V) = W)’ (2)
whereW (t) are the 3-D weather spatial fields at timyavhich
include temperature, wind directions, solar radiatior s on.
Weather forecasts are essential in estimating electriciig can be seen, different weather variables such as terperat
demand and renewable power generatidh [2]. Weather can influence wind speed; hence, the sensitivity structiret
forecasts can be obtained by using data-based models (&Bvious. Computing sensitivity information is challengifnom
autoregressive (AR), artificial neural networks (ANN), Gau a computational point of view because of the complexity of
sian process (GP) models), physics-based numerical weatRg/P models.
prediction (NWP) models, or a combination of both. In pre- The paper is structured as follows. In Sectlbrve describe
vious work [’] we showed that NWP models are superior ihe basic capabilities of the NWP model WRF. In Sectibrwe
producing weather forecasts and uncertainty informatinoes provide a brief mathematical presentation of ASA. In Settio
they can capture complex physical spatio-temporal phenameV we discuss how to construct economic cost functions from
over wide geographical regions that cannot be captured &mplex optimization problems such as economic dispatch an
using data-based models in isolation. In addition, we psefo optimal power flow using optimization sensitivity capaidis.
computational strategies to make NWP models practical fpr SectionV we illustrate the developments using a large-scale
power grid planning and operations. study. The paper closes with conclusions and directions for
In this work, we demonstrate that NWP models can also prfature research.
vide valuable information about the effect of physical vireait
variables on power grid economic performance. In particula Il. NUMERICAL WEATHER PREDICTION
we present an adjoint sensitivity analysis (ASA) methodAAS In this section, we describe the procedures used to forecast
is used to determine the sensitivity of a model state or pateam @mbient conditions using the Weather Research and Forecast
(e.g., future 3D wind speed field) with respect to input staténd (WRF) model. The WRF model is a state-of-the-art
(e.g., current fields of ambient conditions). In the contekt numerical weather prediction system designed to serve for
wind power generation, we show how ASA can be used &th operational forecasting and atmospheric researchi- WR
determine simulation domain size and resolution, to identiiS the result of a multiagency and university effort to buald
power grid variables and locations that should be monitor&éghly parallelizable code that can run across scales ngngi
more closely, and to determine suitable locations for sendePom large-eddy to global simulations. WRF has a compre-
and wind farm placement. Furthermore, we discuss how adjoliensive description of the atmospheric physics that iredud
analysis can provide information to guide the developmént loud parameterization, land-surface models, atmospbezan
low-complexity, data-based AR/GP/ANN models. coupling, and broad radiation models. The terrain resmtutian
be as fine as 30 seconds of a degree (less thHam?).
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whereas only a small subset of the state space is availabBt#lowing [7], one can extend5) for all time indices

through measureme_nt at any given tin@. [In_ particular, we AU(zY) W (atN) daty 9t 9yto
use the North American Regional Reanalysis (NARR) data set — = e ri
) - ozto ot~y Qxtr-1 Oxto Pgto
that covers the North American continent (160W-20W,; 10N- ‘L " i
80N) with a resolution of 10 minutes of a degree, 29 pressure 8f o oM (zt-1), 6xt =&z ie{l...M}.
levels (1000-100 hPa, excluding the surface), every thoessh Oxtr— Ox Ox;°

from 1979 until present. For more details, please refe}o [ Alternatively, by transposing, the adjoint process eveltee
sensitivity in reverse order:
I1l. ADJOINT SENSITIVITY ANALYSIS

) ) o oW (z'~) r orti\7T orty \ 7 oV (z'r) r
Consider a numerical modélt that evolves an initial state = e .

T 9yt to tp_1 tr
x¢, to a given final timety (e.g., 24 hours ahead): O ] 3x. (% F O
If the following equations are satisfied]|
=M (tk_l,:vk_l,p) , 2% =x(to,p), k€ {l...N},

te \ T T
() Atk = ( O ) A = (%(a:t“)) Al = M A

) Qxtr—1 ox
wherep are model parameters. For instandd, may represent . T
the discretization operator of a partial differential etipra AN — (3‘1’(“7 N)) ke{l...N}
Sensitivity analysis reveals how a model solution is affdct Oty ’ ’
by small perturbations in the model variables and pararseteyne can show that the adjoint variables or influence funstion
[6]. We write the sensitivity of the solution with respect )+ [g] represent the gradients of the cost function with
to parameterp; as S;(t) = 6;—;:5) or scaled to be unitless, respect toTperturbations in the state at earlier timés =
Si(t) = % &5 [7]. Just as the model staté® is evolved (%ﬁ” =V, U(z'V). Note that we evolve the adjoint
through M, the sensitivityS; is evolved by the gradient (also
known as tangent linear) model

variable \** backwards in time, starting at the final time and
taking steps with thedjoint modelM* = (%—/‘;‘)T back to the
gk _ %(xt’ﬂ St 4 %(xtk’l ), 80 = dzto initial time. As we did in Equation4), we can also consider the
! ox ’ Opi e op; ’ scaled adjoint sensitivity, which can be physically interpreted
wheret; € [to,tny]. We are interested in the effect that th@fkthe percenta}ge change in the cost function when the lgriab
initial condition at locatior, p; = a:f" := x;(to), has at some a;* is changed:
targeted locations in the final system stat€y. Therefore, the

oV (2t~)  alk

o
sensitivity takes the form At = ozl W(aty)” 6)
ty ot ~
S; = Oz tN z; ) (4) Henceforth, we will use\ to denote adjoint variables in order
O xtN to distinguish them from the Lagrange multipliers introddc
and its evolution is described by in the next section. o _ _
. Large sensitivity values indicate areas of influence, that i
0 . B N
gk — OM (xtkfl)sk—l g0 — Bact locations where errors or perturbations in the currenedlg.,
K3 ) 2 ° . . . . age .
O dz;° due to limited sensors) will produce significant changesin t

This is useful if one is interested in the effect a small pirw  {arget sites and time as described through the cost fundifua

tion at a single source location would have on the futureestafS Significant because one can, for instance, assess ttut effe

at multiple locationsg'*. Alternatively, one could consider theuncertainty of a particular location on future weather field
inverse oradjoint procesg€] of observing some target state in  We illustrate the ASA method on a real test case and employ
the state space at future times and inferring what stateisein the WRF model {], described in Sedl, which will take the
initial conditions have a strong influence on that targetestaP'ace of M (see F] for implementation details). A simplified

[7]. We aim to find the regions in the initial state to whichVRF model has been run through a source-to-source program
target points at later times are most sensitive. Therefiie, called Transformation of Algorithm in FORTRAN (TAF) to
sensitivities are computed in terms of a cost function, that automatically produce both gradients/§ and adjoints of the

a function of the state at the final time, gradients {7) [9].
T (2™ (z'0)) € R ov - [ Al A4 ]T c RM IV. POWER GRID OPTIMIZATION
L Oxto gy’ 3173\04 ’ Adjoint sensitivity analysis provides a powerful frameWwor

where M is the dimension of the initial state vector. By usind® assess the effect of weather conditions and uncertaimty o

the chain rule, one obtains infrastructures such as the power grid or natural gas né&swvor
In this section, we discuss how to use adjoint analysis in
t t t t ’
aqj("i ~) = 8\1/(;f Y) 6:5:\’ = a\p(;f N)SZ?N i (5) conjunction with optimization sensitivity capabilities eval-
O’ Ozt~ dato Oty uate the effect of spatio-temporal weather patterns on tite g



economic performance over a given geographical regiors Thallows one to quantify the effect of parameter changes on the
information is vital in planning exercises such as transmisntire solution vector and not only on the cost function.sThi
sion/generation expansion and sensor placement sincéeveaapproach can be used to handle nonlinear cost functions to
drives electricity and natural gas markets (e.g., demames aompute the sensitivity functiodr(-) in (1). Some optimization
strongly correlated to ambient temperature) and sinceheeatsolvers provide sensitivity matrices. Examples include.ER,
patterns are becoming more relevant as the share of wind &ugrobi, and IPOPT1Z], [13].

solar generation is increasing. As an example of the above concepts, consider the following
Consider the optimization problem economic dispatch probleni {]:
min f(z,n (7a) o oar
un f(z,m) min Y "> ¢ G, (9a)
c(z,m) =w, (A). (7b) k=t jeg

wherez € R are the decision variableg, € #™,w € R¥ St.Gri1y =Grj+AGr;, keT,jeg (9b)
are parameters, andl € R™ are Lagrange multipliers. The Z Prij+ Z Gri= Z Dy.;
objective functionf : R" x R™ — R and constraint (i.)€L; ' i€g, ieD, '

functions ¢ : R™ x R — R™ are differentiable. The

following results can be easily extended to include ineityal B Z Wii, ke T,jeB (Akj)  (9¢)

constraints. The optimization problem can represent miffe W o
problems, such as economic dispatch, optimal power flow, and Prij = bij(0ki — Okj), k€T, (i,7) € L (9d)
transmission/generation expansion, which are pararaetem 0< G <G keT,jeG (9¢)
quant?t@es such as demands and renewable supphy)_(_'l’hese IAG;| <™ ke T,jeg (99)
quantities are in turn affected by weather conditions. The Pass| < P ke T, (i,4) € £ (90)
following are well-known results of optimization sensitj Ridl S Loy BET, L)€ 9
0] <07 keT,jeB (9h)
Theorem 1:Consider that a solution:, (7, wo), A«(170, wo) Gyj = given j € G. (90)

of problem {) satisfies the linear independence constraint

qualification [.J. Then, the multipliers\. (10, wo) are unique, 1he objective of this problem is to minimize the regional
and generation cost for given demand and renewable supplyslevel

. ) = ﬁ( ( ), 70) Here, G, £, and B are the sets of generators, lines, and
#\710,00) = 5, \#x 710, &0)5 1o )- nodes/buses (intersections of lines) in the geographécadn,
Consequently, up to first order, we have that respectivelyD; andW; are the sets of demand and renewable
supply nodes connected to bjigespectively. The time horizon
F(z"(mo,w),mo) = f(2*(no,wo),mo) + As(m0,w0)” (w —wo). is given by the sef := {¢,....¢ + T} starting at the time,

(8) whereT is the horizon length. Variables,, ; are the generator
supply levels for time instant and bus;j. Following a similar
notation, P, ; are the transmission line power flon, ; are
the voltage anglesy;,; are the renewable supply flows, and
Dy, ; are the demand levels that are fixgtametersConstraint
(99 is Kirchhoff’s law, which holds at each time and bus

which balances flow across the network. Tlagrange

We can use this linear function to estimate the effecon
the cost function as described in Equatid (Theoreml is a
basic result of practical significance since Lagrange ipligtis
are used to establish market prices (e.g., locational makgi
prices). Most optimization solvers provide informationoab

Lagrange multipliers since these are computed as part of o X _ ) _
multipliers of Kirchhoff’s law, obtained in the solution of

solution procedure. We also have the following result. J2 ) . ;
Theorem 2:Consider that a base solutionthe optimization problem, are the locational marginal @sic
2« (Mo, wo), Ax(no,wo) Of problem {) satisfies the linear (LMPs) Ay ; f_or each time instant an_d r_10de_. In Figutewe
independence constraint qualification and the strong sbcoffresent a typical LMP f|_eld for the III|n0|_s grid averaged ove
order conditions[1]. Then, the base solution is locally unique®" entire year of operation. Note t_ha_t prices are hgter(ngme .
and the following sensitivity matrices exist: across the network because of limited transmission capacit
(e.g., transmission congestion). Regions with extreméi h

%(Z (0, w0), o) %(Z (0> o), 770) or low (even negative) prices normally indicate insuffitien

on T o T transmission capacity towards that region (i.e., therestexi

%(z (10, w0, 70) %(z (170,0), 70) locational scarcity).

Buo N0 0051005 “ L #TI0, £0), 10 The price)\ ; indicates the sensitivity of the regional gen-
Furthermore, there exist nonempty neighborhoods aroued #fation cost to changes in demand or renewable supply levels
base solution in which the solution (17, w), A, (w, 7) is unique. at tlm_ek and no_dej. This information can be used with the

Following the same idea used in8)( we can use following scenarios,
the sensitivity matrices to compute first-order estimatés o « By focusing at the network nodes € B with existing
z«(n,w), A\ (w,n). Theorem?2 is a more general result that renewable supply, one can assess the effect of variations
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Fig. 1: Spatial field of locational marginal prices ($/MWh) 261 generators. Our data consists of detailed specificafian
under time-averaged conditions in lllinois grid. the network topology, ramp and generation limits, fuel spst
and transmission lines. We analyze the effect of the initial
conditions of wind speed on the regional generation cost. To

of renewable supply (e.g., wind) on the regional generatigfv so, we have extracted locational marginal prices from an
cost under existing conditions. In particular, adjointlanaeconomic dispatch formulation for the system reported.i).[
ysis permits one to assess the effect of the current stateThe key to using analysis methods from weather forecasts
of weather variables, such as wind speed, on the future conjunction with problems such as grid integration and
renewable power supply and demand and the regional cqganning is to find the appropriate link between the two
This assessment is important since most of the uncertaifitymeworks. On the one hand we have access to a numerical
in weather forecasts is associated with the uncertainty weather prediction model that deals with physical quaeiti
the current state. such as wind speed and temperature; on the other hand we have

« By considering the hypothetical case in which all networkn optimization problem that deals with economic metricg an
nodes;j € B can be used to supply wind power, one cadecisions. This study takes advantage of the relation tetwe
assess optimal locations for future renewable generatoyid speed and the regional energy cost. The intermediate
and the effect of renewable supply patterns on the regiorplantity between these two variables is wind power, which
generation cost. can be estimated directly from wind speed and the technical

« By examining the weather conditions around the gegpecifications of wind turbines.
graphical network, one can assess the effect of the preThe wind power function or curve represents the power
vailing weather conditions at a particular location (nadutput of a wind turbine as a function of wind speed. The power
necessarily inside the network) on the regional cost. Sincarve is characterized by a sigmoid profile, since the twrbin
weather fronts evolve slowly over large geographical refoes not produce any power when there is low wind, saturates
gions, grid operators can use this information in advanc&t. a certain value once the wind speed exceeds a certain
In addition, one can mitigate weather uncertainty by deareshold, and has a fast-growing activation area betwesset
ploying meteorological stations at locations of maximurnwo extremes. For our tests, we constructed the followinggro
sensitivity. Moreover, regions of high sensitivity to wleat curve starting from the hyperbolic tangent function, sdadad
can indicate transmission congestion and can thus pinpaghifted to mimic real-life behavior:
regions of high potential for transmission expansion.

If sensitivity matrices are available, the analysis can ke e w(w(®)) = 10(1 + tanh(0.7w(t) — 4)). (10)
tended to compute effects of particular variables of irgerieor The graph of this function is shown in Fi®2. One can
instance, one can assess the effect of variations of refewadso determine this power function from historical data and
supply directly on the locational marginal prices ;. This regression models. We estimate the sensitivity of the time-
information can be used to expand transmission capacitjpandiependent cost functiod, with respect to initial wind speed
deploy meteorological stations to homogenize the pricessac w(t) = vU? + V2, whereU andV are the W-E and S-N wind

the network. components, respectively. After defining0j, the sensitivity
variables §) are computed as
- ~ o~ ov
V. LARGE-SCALE NUMERICAL STUDY N N4 /\(t)—g (11)
In this section, we illustrate the adjoint sensitivity chjliies da ¥

2
using the lllinois power grid system. The system comprises . )t 1 \(z) (0.7 asech(4 — 0.7w(t))") a ’
1,900 buses, 2,538 transmission lines, 870 load nodes, and w(t) 1908 w(w(t))



wherek = N,...,1,a = {U,V}. . NN g P vy Zes Ll

The first term represents the base cost, the second term 3 i Ay N
the partial derivative of the cost function to either oneluf t & P SRR S e
wind components at a certain time, and the third term is use: o * E// iy S o

for scaling. The scaled version is useful because it allogis u *5 0, e = 05 a0 5 s 6 =
to compare sensitivities in model states with differenttani () wind, 6h (b) wind, 12h
of measure, for instance, wind speed and temperature. The ' '
constantl 908 corresponds to the number of locations used in
our study; for this experiment we used all the buses for whick
we had available data. The remaining constants are pariof tF§
power curve expression.

The computational part of the experiment that uses WRF

12000 12000

4000

Alttude [m
S
S
Alttude [meters]

is divided in two stages. The first stage performs a weathe i

forecast for the time period of interest, in our case 24 hdtirs 050 g %09 I

is possible to use shorter or longer forecast windows, uath (c) wind, 6h (d) wind, 12h
curacy of the results tends to degrade after simulating 2y3.d

This is due to the high nonlinearity of the processes gowegrni IR =i o

the atmosphere, which gives rise to a chaotic behavior, ds we *:
as due to uncertainties in initial conditions. The forecastel
is configured to save the values of the variables of interes
(wind speed components) at each point in time of interest T : i T
This process is called checkpointing, and in our experisent T e s 00w
it takes place at every hour. In the second stage, we use the (e) temperature, 6h (f) temperature, 12h
checkpointed values to compute the initial state of theiatjo
model (corresponding to the final time of the forecast) amd th
intermediate adjoint forcing variables, using formuld)( We
then run the adjoint model.
One simplifying assumption was made regarding the loca-
tions where the adjoint variables are initialized and fdrce
Since we are interested in wind power, one would usually le@ four scenarios. Two scenarios take place in June 2000, one
interested in studying sensitivities of the locations espond- on the 10th of the month and another on the 14th, both starting
ing to the wind farms that currently produce energy. Sine& 12:00 CST. The other two scenarios take place in October
current wind adoption levels are low, we used the locatio$00, the 18th and 20th respectively, from 06:00 CST. While
of the nodes. Consequently, this represents a planninggoenjune is associated with a high demand of electricity, Oatobe
in which we seek to assess the effect of wind power injectiogs characterized by lower demands. We present two scenarios
at different nodes. from each month in order to account for social factors such as
The adjoint model is initialized with potential perturltats energy demands during weekends (June 10) and business days
at the locations of interest and propagates them backwafdsne 14, October 18, October 20). This approach, along with
in time. After each one hour of simulation, another set dhe different meteorological conditions of each scendeaads
perturbations is forced into the adjoint model based on the different regional cost sensitivities.
computations performed during forecast, and the adjoirdeho In Fig. 3.a and3.b we show the evolution of the vertically
continues to propagate the updated field farther back in thkhe integrated sensitivities with respect to wind, 6 and 12 kour
the end of the adjoint model run, the adjoint variables iatiic in retrospect from the final forecast time. In other words,
areas to which the cost functional is sensitive. the sensitivity at the final timel() is propagated backwards
For our tests, a serial version of WRF and its adjoint wefe and 12 hours and gives a measure of the influence of
compiled without shared- or distributed-memory parahali the initial condition on the final target state 6 and 12 hours
capabilities. The compute server used for running the nsod@head. The larger the value, the more sensitive is the fimal-t
operates on an 8-core Intel Xeon CPU clocked at 2.66 Gtarget solution to the current state. The high sensitivétyions
with 32 GB of RAM. The space discretization of the simulatiofllustrated in this study indicate areas with high impacttoe
domain was set at 25 kilometers (approx. 15 miles) for eafitture wind speed conditions. The integrated vertical praff
grid point, while the time step was set at 150 seconds. Rgnniifie sensitivities at 6 hours and 12 hours in retrospect, @s se
the experiment took less than 1 hour using these paramet#i@n the south, are illustrated in Fi§.c and3.d, respectively.
We observed no clear benefits in the accuracy of our resuligis information can be interpreted in the following ways:
when reducing the time step size to 30 seconds. « From a numerical point of view, high-sensitivity regions
We employed WRF with real data and performed simulations indicate regions that need to be resolved accurately by

° Latitude N

° 35p1

Latitude N
8
NN\
N
N

Fig. 3: Regional cost sensitivity with respect to the wind
speed (a-d) and potential temperature (e-f), 6 and 12 hours
before the final time (June 11th, 2000 - 12:00)



the NWP models. In other words, resolution should biedicate locations in the temperature field that, if peréab
increased in these regions. (or forecast incorrectly), increase or decrease the cdss T

o From an uncertainty quantification point of view, highis important since it indicates that other physical vaeabl
sensitivity regions indicate locations where forecasvmsrr can affect wind speed and thus regional cost. Consequently,
have the largest impacts on the system. This informatieare should be taken to mitigate uncertainty and forecaseth
can be used to determine optimal locations for meteoreariables accurately.
logical stations to mitigate this uncertainty. The two scenarios from June (see Figsand 4) exhibit

» From a generation expansion point of view, regions of higtifferent dynamics, indicating a complex relationshipviestn
sensitivity indicate locations where wind farms shoul#veather variables and the grid conditions. A similar cosidn
be installed. In addition, these regions identify locasioncan be drawn for the sensitivities computed in October (see
for natural gas generators to provide necessary rampifRigs. 5 and6).
capacity. We note that adjoint sensitivity information can
augment traditional resource maps used for wind farm
planning since it is equally important to install wind 3 I
generators in regions with high wind speeds but also withz |:
low uncertainty in neighboring regions. °

« From a transmission expansion point of view, regions of = e
high sensitivity that match regions of high price indicate e .
nodes at which transmission congestion limits wind adop- () wind, 6h (b) wind, 12h

tion.

« From a operational point of view, regions of high sensi- * e
tivity indicate locations that will affect market clearing § Z;
tasks such as unit commitment and economic dispatclgm o
due to higher sensitivity to uncertainty. Thus, if sengijiv <
information can be provided in advance to the ISOs, they (4

can prepare to face high uncertainties of wind power ™ %% i i
\lji:;znon by allocating reserves or by committing peaking (c) wind, 6h (d) wind, 12h
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Fig. 4: Regional cost sensitivity with respect to wind spegd

The sensitivity to wind illustrated in Figs$-6 demonstrate and 12 hours before the final time (June 15, 2000 - 12:00)

that on different days, different meteorological sourcteca
the target area. This analysis points to the dynamic size of
the domain necessary for such a simulation to efficiently
achieve accurate forecasts. We highlight the variabilitthese
directions under different seasonal conditions. We oles#rat
the highest sensitivity is consistently observed in thetares
part of the state as indicated by the wind directions. In thaldi
we note that regions of high sensitivity are not necessarily *<: T
inside the network region of interest since wind fronts move - _
across large geograpr?ical regions. (@) wind, 6h (b) wind, 12h

We also note the variability in the vertical column, a o.0s oo
consequence of the fact that wind components are not twc bos oor
dimensional but three-dimensional fields. The cost fumctio § oos o
at our target sites is influenced in a different manner by thez «weo 0% £ oo
evolution of wind at different height layers. We notice tita¢ ~ *
highest sensitivity is observed in the first layers, coroesiing _“_ hor

to the 100-4000 meter range. From a forecasting point 0 Ses w0 s oo™ s 0
view, this .indicates thaft a high uncertaintylat _these heig_bh (c) wind, 6h (d) wind, 12h
translate into a large impact on cost. This is of significance
since few sensors exist to measure conditions at those teeighig- 5: Regional cost sensitivity with respect to wind spegd
From a generation point of view, the vertical sensitivitpfiles and 12 hours before the final time (October 19, 2000 - 06:00)
indicate that the highest wind power generation is expected
above 50 meters, as is the current practice.

In Fig. 3.e and3.f we show the sensitivities with respect to VI. CONCLUSIONS
the ambient temperature. This illustrates the effect ofptema- We have presented a framework for adjoint sensitivity of
ture fields on the cost function. Positive and negative \&luaumerical weather prediction models. We have found that
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Fig. 6: Regional cost sensitivity with respect to wind sped
and 12 hours before the final time (October 21, 2000 - 06:00)

adjoint analysis provides valuable information that cah iai
planning and operation tasks for the power grid. We discuss
how to use optimization sensitivity capabilities to map gibgl
weather variables to power grid economic metrics. Pasdicul
applications of the framework include wind farm and meteoro
logical sensor placement and generation/transmissioaresipn
planning. A numerical case study has been provided to ifitest
the developments.
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