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Abstract—We present an approach to estimate adjoint sensitivi-
ties of economic metrics of relevance in the power grid with respect
to physical weather variables using numerical weather prediction
models. We demonstrate that this capability can significantly
enhance planning and operations. We illustrate the method using
a large-scale computational study where we compute sensitivities
of the regional generation cost in the state of Illinois withrespect
to wind speed and temperature fields inside and outside the state.
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I. I NTRODUCTION

Weather forecasts are essential in estimating electricity
demand and renewable power generation [1], [2]. Weather
forecasts can be obtained by using data-based models (e.g.,
autoregressive (AR), artificial neural networks (ANN), Gaus-
sian process (GP) models), physics-based numerical weather
prediction (NWP) models, or a combination of both. In pre-
vious work [2] we showed that NWP models are superior in
producing weather forecasts and uncertainty information since
they can capture complex physical spatio-temporal phenomena
over wide geographical regions that cannot be captured by
using data-based models in isolation. In addition, we proposed
computational strategies to make NWP models practical for
power grid planning and operations.

In this work, we demonstrate that NWP models can also pro-
vide valuable information about the effect of physical weather
variables on power grid economic performance. In particular,
we present an adjoint sensitivity analysis (ASA) method. ASA
is used to determine the sensitivity of a model state or parameter
(e.g., future 3D wind speed field) with respect to input states
(e.g., current fields of ambient conditions). In the contextof
wind power generation, we show how ASA can be used to
determine simulation domain size and resolution, to identify
power grid variables and locations that should be monitored
more closely, and to determine suitable locations for sensor
and wind farm placement. Furthermore, we discuss how adjoint
analysis can provide information to guide the development of
low-complexity, data-based AR/GP/ANN models.
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As an example of the power grid operation, consider the
following economic cost function:

Ψ(t) = c(t) + λ(t)Tω(w(t)) , (1)

where c(t) is the regional cost of the power grid at timet,
ω(·) is a wind power function at different grid buses,w(t) is
the wind speed field, andλ(t) are cost coefficients representing
power grid economic performance as a function of wind power
supply.

Using this economic cost function, we can calculate the
following sensitivity:

S(Ψ) =
∂Ψ(t)

∂W(t)
, (2)

whereW(t) are the 3-D weather spatial fields at timet, which
include temperature, wind directions, solar radiation, and so on.
As can be seen, different weather variables such as temperature
can influence wind speed; hence, the sensitivity structure is not
obvious. Computing sensitivity information is challenging from
a computational point of view because of the complexity of
NWP models.

The paper is structured as follows. In SectionII we describe
the basic capabilities of the NWP model WRF. In SectionIII we
provide a brief mathematical presentation of ASA. In Section
IV we discuss how to construct economic cost functions from
complex optimization problems such as economic dispatch and
optimal power flow using optimization sensitivity capabilities.
In SectionV we illustrate the developments using a large-scale
study. The paper closes with conclusions and directions for
future research.

II. N UMERICAL WEATHER PREDICTION

In this section, we describe the procedures used to forecast
ambient conditions using the Weather Research and Forecast-
ing (WRF) model. The WRF model [3] is a state-of-the-art
numerical weather prediction system designed to serve for
both operational forecasting and atmospheric research. WRF
is the result of a multiagency and university effort to builda
highly parallelizable code that can run across scales ranging
from large-eddy to global simulations. WRF has a compre-
hensive description of the atmospheric physics that includes
cloud parameterization, land-surface models, atmosphere-ocean
coupling, and broad radiation models. The terrain resolution can
be as fine as 30 seconds of a degree (less than1 km2).

To initialize the NWP simulations, we use reanalyzed fields,
that is, simulated atmospheric states reconciled with observa-
tions (i.e., using data assimilation), because the entire atmo-
spheric state space is required by the model as initial conditions
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whereas only a small subset of the state space is available
through measurement at any given time [4]. In particular, we
use the North American Regional Reanalysis (NARR) data set
that covers the North American continent (160W-20W; 10N-
80N) with a resolution of 10 minutes of a degree, 29 pressure
levels (1000-100 hPa, excluding the surface), every three hours
from 1979 until present. For more details, please refer to [5].

III. A DJOINT SENSITIVITY ANALYSIS

Consider a numerical modelM that evolves an initial state
xt0 to a given final timetN (e.g., 24 hours ahead):

xk =M
(
tk−1, x

k−1, p
)
, x0 = xi(t0, p) , k ∈ {1 . . .N} ,

(3)

wherep are model parameters. For instance,M may represent
the discretization operator of a partial differential equation.
Sensitivity analysis reveals how a model solution is affected
by small perturbations in the model variables and parameters
[6]. We write the sensitivity of the solutionx with respect
to parameterpi as Si(t) = ∂x(t)

∂pi
or scaled to be unitless,

Si(t) = ∂x(t)
∂pi

pi

x(t) [7]. Just as the model statext0 is evolved
throughM, the sensitivitySi is evolved by the gradient (also
known as tangent linear) model

Sk
i =

∂M
∂x

(xtk−1 , p)Sk−1 +
∂M
∂pi

(xtk−1 , p) , S0
i =

∂xt0

∂pi
,

where tk ∈ [t0, tN ]. We are interested in the effect that the
initial condition at locationi, pi ≡ xt0

i := xi(t0), has at some
targeted locations in the final system state,xtN . Therefore, the
sensitivity takes the form

Si =
∂xtN

∂xt0
i

xt0
i

xtN
. (4)

and its evolution is described by

Sk
i =

∂M
∂x

(xtk−1 )Sk−1 , S0
i =

∂xt0

∂xt0
i

.

This is useful if one is interested in the effect a small perturba-
tion at a single source location would have on the future states
at multiple locations,xtk . Alternatively, one could consider the
inverse oradjoint process[8] of observing some target state in
the state space at future times and inferring what states in the
initial conditions have a strong influence on that target state
[7]. We aim to find the regions in the initial state to which
target points at later times are most sensitive. Therefore,the
sensitivities are computed in terms of a cost function, thatis,
a function of the state at the final time,

Ψ(xtN (xt0 )) ∈ R ,
∂Ψ

∂xt0
=

[
∂Ψ

∂xt0
1

· · · ∂Ψ

∂xt0
M

]T
∈ R

M ,

whereM is the dimension of the initial state vector. By using
the chain rule, one obtains

∂Ψ(xtN )

∂xt0
i

=
∂Ψ(xtN )

∂xtN

∂xtN

∂xt0
=

∂Ψ(xtN )

∂xtN
StN
i . (5)

Following [7], one can extend (5) for all time indices

∂Ψ(xtN )

∂xt0
i

=
∂Ψ(xtN )

∂xtN

∂xtN

∂xtF−1

· · · ∂x
t1

∂xt0

∂xt0

∂xt0
i

,

∂xtk

∂xtk−1

=
∂M
∂x

(xtk−1) ,
∂xt0

∂xt0
i

= δix
t0 ; i ∈ {1 . . .M} .

Alternatively, by transposing, the adjoint process evolves the
sensitivity in reverse order:
(
∂Ψ(xtN )

∂xt0

)T

=

(
∂xt1

∂xt0

)T

· · ·
(

∂xtN

∂xtF−1

)T (
∂Ψ(xtF )

∂xtF

)T

.

If the following equations are satisfied [7]:

λtk−1 =

(
∂xtk

∂xtk−1

)T

λtk =

(
∂M
∂x

(xtk−1)

)T

λtk = M∗
k−1λ

tk ,

λtN =

(
∂Ψ(xtN )

∂xtN

)T

, k ∈ {1 . . .N} ,

One can show that the adjoint variables or influence functions
λtk [8] represent the gradients of the cost function with
respect to perturbations in the state at earlier timesλtk =(

∂Ψ(xtN )
∂xtk

)T

= ∇xtkΨ(xtN ). Note that we evolve the adjoint

variableλtk backwards in time, starting at the final time and
taking steps with theadjoint modelM∗ =

(
∂M
∂x

)T
back to the

initial time. As we did in Equation (4), we can also consider the
scaled adjoint sensitivitŷλ, which can be physically interpreted
as the percentage change in the cost function when the variable
xtk
i is changed:

λ̂tk
i =

∂Ψ(xtN )

∂xtk
i

xtk
i

Ψ(xtN )
. (6)

Henceforth, we will usêλ to denote adjoint variables in order
to distinguish them from the Lagrange multipliers introduced
in the next section.

Large sensitivity values indicate areas of influence, that is,
locations where errors or perturbations in the current state (e.g.,
due to limited sensors) will produce significant changes in the
target sites and time as described through the cost function. This
is significant because one can, for instance, assess the effect of
uncertainty of a particular location on future weather fields.

We illustrate the ASA method on a real test case and employ
the WRF model [3], described in Sec.II , which will take the
place ofM (see [2] for implementation details). A simplified
WRF model has been run through a source-to-source program
called Transformation of Algorithm in FORTRAN (TAF) to
automatically produce both gradients (M ) and adjoints of the
gradients (M∗) [9].

IV. POWER GRID OPTIMIZATION

Adjoint sensitivity analysis provides a powerful framework
to assess the effect of weather conditions and uncertainty on
infrastructures such as the power grid or natural gas networks.
In this section, we discuss how to use adjoint analysis in
conjunction with optimization sensitivity capabilities to eval-
uate the effect of spatio-temporal weather patterns on the grid
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economic performance over a given geographical region. This
information is vital in planning exercises such as transmis-
sion/generation expansion and sensor placement since weather
drives electricity and natural gas markets (e.g., demands are
strongly correlated to ambient temperature) and since weather
patterns are becoming more relevant as the share of wind and
solar generation is increasing.

Consider the optimization problem

min
z

f(z, η) (7a)

c(z, η) = ω, (λ). (7b)

wherez ∈ ℜnz are the decision variables,η ∈ ℜnη , ω ∈ ℜω

are parameters, andλ ∈ ℜm are Lagrange multipliers. The
objective functionf : ℜnz × ℜnη → ℜ and constraint
functions c : ℜnz × ℜnη → ℜm are differentiable. The
following results can be easily extended to include inequality
constraints. The optimization problem can represent different
problems, such as economic dispatch, optimal power flow, and
transmission/generation expansion, which are parameterized in
quantities such as demands and renewable supply (η, ω). These
quantities are in turn affected by weather conditions. The
following are well-known results of optimization sensitivity.

Theorem 1:Consider that a solutionx∗(η, ω0), λ∗(η0, ω0)
of problem (7) satisfies the linear independence constraint
qualification [10]. Then, the multipliersλ∗(η0, ω0) are unique,
and

λ∗(η0, ω0) =
∂f

∂ω
(z∗(η0, ω0), η0).

Consequently, up to first order, we have that

f(z∗(η0, ω), η0) ≈ f(z∗(η0, ω0), η0) + λ∗(η0, ω0)
T (ω − ω0).

(8)

We can use this linear function to estimate the effectω on
the cost function as described in Equation (1). Theorem1 is a
basic result of practical significance since Lagrange multipliers
are used to establish market prices (e.g., locational marginal
prices). Most optimization solvers provide information about
Lagrange multipliers since these are computed as part of the
solution procedure. We also have the following result.

Theorem 2:Consider that a base solution
x∗(η0, ω0), λ∗(η0, ω0) of problem (7) satisfies the linear
independence constraint qualification and the strong second-
order conditions [11]. Then, the base solution is locally unique,
and the following sensitivity matrices exist:

∂z∗

∂η
(z∗(η0, ω0), η0),

∂λ∗

∂η
(z∗(η0, ω0), η0)

∂z∗

∂ω
(z∗(η0, ω0), η0),

∂λ∗

∂ω
(z∗(η0, ω0), η0).

Furthermore, there exist nonempty neighborhoods around the
base solution in which the solutionz∗(η, ω), λ∗(ω, η) is unique.

Following the same idea used in (8), we can use
the sensitivity matrices to compute first-order estimates of
z∗(η, ω), λ∗(ω, η). Theorem2 is a more general result that

allows one to quantify the effect of parameter changes on the
entire solution vector and not only on the cost function. This
approach can be used to handle nonlinear cost functions to
compute the sensitivity functionΨ(·) in (1). Some optimization
solvers provide sensitivity matrices. Examples include CPLEX,
Gurobi, and IPOPT [12], [13].

As an example of the above concepts, consider the following
economic dispatch problem [14]:

min
ℓ+T∑

k=ℓ

∑

j∈G

cj ·Gk,j (9a)

s.t.Gk+1,j = Gk,j +∆Gk,j , k ∈ T , j ∈ G (9b)
∑

(i,j)∈Lj

Pk,i,j +
∑

i∈Gj

Gk,i =
∑

i∈Dj

Dk,i

−
∑

i∈Wj

Wk,i, k ∈ T , j ∈ B (λk,j) (9c)

Pk,i,j = bi,j(θk,i − θk,j), k ∈ T , (i, j) ∈ L (9d)

0 ≤ Gk,j ≤ Gmax
j , k ∈ T , j ∈ G (9e)

|∆Gk,j | ≤ rmax, k ∈ T , j ∈ G (9f)

|Pk,i,j | ≤ Pmax
i,j , k ∈ T , (i, j) ∈ L (9g)

|θk,j | ≤ θmax
j , k ∈ T , j ∈ B (9h)

Gℓ,j = given, j ∈ G. (9i)

The objective of this problem is to minimize the regional
generation cost for given demand and renewable supply levels.
Here, G, L, and B are the sets of generators, lines, and
nodes/buses (intersections of lines) in the geographical region,
respectively.Dj andWj are the sets of demand and renewable
supply nodes connected to busj, respectively. The time horizon
is given by the setT := {ℓ, ..., ℓ + T } starting at the timeℓ,
whereT is the horizon length. VariablesGk,j are the generator
supply levels for time instantk and busj. Following a similar
notation,Pk,j are the transmission line power flows,θk,j are
the voltage angles,Wk,i are the renewable supply flows, and
Dk,i are the demand levels that are fixedparameters. Constraint
(9c) is Kirchhoff’s law, which holds at each time and bus
and which balances flow across the network. TheLagrange
multipliers of Kirchhoff’s law, obtained in the solution of
the optimization problem, are the locational marginal prices
(LMPs) λk,j for each time instant and node. In Figure1 we
present a typical LMP field for the Illinois grid averaged over
an entire year of operation. Note that prices are heterogeneous
across the network because of limited transmission capacity
(e.g., transmission congestion). Regions with extremely high
or low (even negative) prices normally indicate insufficient
transmission capacity towards that region (i.e., there exists
locational scarcity).

The priceλk,j indicates the sensitivity of the regional gen-
eration cost to changes in demand or renewable supply levels
at time k and nodej. This information can be used with the
following scenarios,

• By focusing at the network nodesj ∈ B with existing
renewable supply, one can assess the effect of variations
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Fig. 1: Spatial field of locational marginal prices ($/MWh)
under time-averaged conditions in Illinois grid.

of renewable supply (e.g., wind) on the regional generation
cost under existing conditions. In particular, adjoint anal-
ysis permits one to assess the effect of the current state
of weather variables, such as wind speed, on the future
renewable power supply and demand and the regional cost.
This assessment is important since most of the uncertainty
in weather forecasts is associated with the uncertainty in
the current state.

• By considering the hypothetical case in which all network
nodesj ∈ B can be used to supply wind power, one can
assess optimal locations for future renewable generators
and the effect of renewable supply patterns on the regional
generation cost.

• By examining the weather conditions around the geo-
graphical network, one can assess the effect of the pre-
vailing weather conditions at a particular location (not
necessarily inside the network) on the regional cost. Since
weather fronts evolve slowly over large geographical re-
gions, grid operators can use this information in advance.
In addition, one can mitigate weather uncertainty by de-
ploying meteorological stations at locations of maximum
sensitivity. Moreover, regions of high sensitivity to weather
can indicate transmission congestion and can thus pinpoint
regions of high potential for transmission expansion.

If sensitivity matrices are available, the analysis can be ex-
tended to compute effects of particular variables of interest. For
instance, one can assess the effect of variations of renewable
supply directly on the locational marginal pricesλk,j . This
information can be used to expand transmission capacity and/or
deploy meteorological stations to homogenize the prices across
the network.

V. L ARGE-SCALE NUMERICAL STUDY

In this section, we illustrate the adjoint sensitivity capabilities
using the Illinois power grid system. The system comprises
1,900 buses, 2,538 transmission lines, 870 load nodes, and
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Fig. 2: Power curve function.

261 generators. Our data consists of detailed specifications for
the network topology, ramp and generation limits, fuel costs,
and transmission lines. We analyze the effect of the initial
conditions of wind speed on the regional generation cost. To
do so, we have extracted locational marginal prices from an
economic dispatch formulation for the system reported in [14].

The key to using analysis methods from weather forecasts
in conjunction with problems such as grid integration and
planning is to find the appropriate link between the two
frameworks. On the one hand we have access to a numerical
weather prediction model that deals with physical quantities
such as wind speed and temperature; on the other hand we have
an optimization problem that deals with economic metrics and
decisions. This study takes advantage of the relation between
wind speed and the regional energy cost. The intermediate
quantity between these two variables is wind power, which
can be estimated directly from wind speed and the technical
specifications of wind turbines.

The wind power function or curve represents the power
output of a wind turbine as a function of wind speed. The power
curve is characterized by a sigmoid profile, since the turbine
does not produce any power when there is low wind, saturates
at a certain value once the wind speed exceeds a certain
threshold, and has a fast-growing activation area between these
two extremes. For our tests, we constructed the following power
curve starting from the hyperbolic tangent function, scaled and
shifted to mimic real-life behavior:

ω(w(t)) = 10(1 + tanh(0.7w(t)− 4)). (10)

The graph of this function is shown in Fig.2. One can
also determine this power function from historical data and
regression models. We estimate the sensitivity of the time-
dependent cost functionΨ, with respect to initial wind speed
w(t) =

√
U2 + V 2, whereU andV are the W-E and S-N wind

components, respectively. After defining (10), the sensitivity
variables (̂λ) are computed as

λ̂t ← λ̂t + λ(t)
∂Ψ

∂α

α

Ψ
(11)

← λ̂t + λ(t)
(0.7α sech(4− 0.7w(t))2)

w(t)

α

1908ω(w(t))
,



5

wherek = N, . . . , 1, α = {U, V }.
The first term represents the base cost, the second term is

the partial derivative of the cost function to either one of the
wind components at a certain time, and the third term is used
for scaling. The scaled version is useful because it allows us
to compare sensitivities in model states with different units
of measure, for instance, wind speed and temperature. The
constant1908 corresponds to the number of locations used in
our study; for this experiment we used all the buses for which
we had available data. The remaining constants are part of the
power curve expression.

The computational part of the experiment that uses WRF
is divided in two stages. The first stage performs a weather
forecast for the time period of interest, in our case 24 hours. It
is possible to use shorter or longer forecast windows, but the ac-
curacy of the results tends to degrade after simulating 2-3 days.
This is due to the high nonlinearity of the processes governing
the atmosphere, which gives rise to a chaotic behavior, as well
as due to uncertainties in initial conditions. The forecastmodel
is configured to save the values of the variables of interest
(wind speed components) at each point in time of interest.
This process is called checkpointing, and in our experiments
it takes place at every hour. In the second stage, we use the
checkpointed values to compute the initial state of the adjoint
model (corresponding to the final time of the forecast) and the
intermediate adjoint forcing variables, using formula (11). We
then run the adjoint model.

One simplifying assumption was made regarding the loca-
tions where the adjoint variables are initialized and forced.
Since we are interested in wind power, one would usually be
interested in studying sensitivities of the locations correspond-
ing to the wind farms that currently produce energy. Since
current wind adoption levels are low, we used the locations
of the nodes. Consequently, this represents a planning scenario
in which we seek to assess the effect of wind power injections
at different nodes.

The adjoint model is initialized with potential perturbations
at the locations of interest and propagates them backwards
in time. After each one hour of simulation, another set of
perturbations is forced into the adjoint model based on the
computations performed during forecast, and the adjoint model
continues to propagate the updated field farther back in time. At
the end of the adjoint model run, the adjoint variables indicate
areas to which the cost functional is sensitive.

For our tests, a serial version of WRF and its adjoint were
compiled without shared- or distributed-memory parallelism
capabilities. The compute server used for running the models
operates on an 8-core Intel Xeon CPU clocked at 2.66 Ghz
with 32 GB of RAM. The space discretization of the simulation
domain was set at 25 kilometers (approx. 15 miles) for each
grid point, while the time step was set at 150 seconds. Running
the experiment took less than 1 hour using these parameters.
We observed no clear benefits in the accuracy of our results
when reducing the time step size to 30 seconds.

We employed WRF with real data and performed simulations
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Fig. 3: Regional cost sensitivity with respect to the wind
speed (a-d) and potential temperature (e-f), 6 and 12 hours

before the final time (June 11th, 2000 - 12:00)

on four scenarios. Two scenarios take place in June 2000, one
on the 10th of the month and another on the 14th, both starting
at 12:00 CST. The other two scenarios take place in October
2000, the 18th and 20th respectively, from 06:00 CST. While
June is associated with a high demand of electricity, October
is characterized by lower demands. We present two scenarios
from each month in order to account for social factors such as
energy demands during weekends (June 10) and business days
(June 14, October 18, October 20). This approach, along with
the different meteorological conditions of each scenario,leads
to different regional cost sensitivities.

In Fig. 3.a and3.b we show the evolution of the vertically
integrated sensitivities with respect to wind, 6 and 12 hours
in retrospect from the final forecast time. In other words,
the sensitivity at the final time (11) is propagated backwards
6 and 12 hours and gives a measure of the influence of
the initial condition on the final target state 6 and 12 hours
ahead. The larger the value, the more sensitive is the final-time
target solution to the current state. The high sensitivity regions
illustrated in this study indicate areas with high impact onthe
future wind speed conditions. The integrated vertical profile of
the sensitivities at 6 hours and 12 hours in retrospect, as seen
from the south, are illustrated in Fig.3.c and3.d, respectively.
This information can be interpreted in the following ways:

• From a numerical point of view, high-sensitivity regions
indicate regions that need to be resolved accurately by
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the NWP models. In other words, resolution should be
increased in these regions.

• From an uncertainty quantification point of view, high-
sensitivity regions indicate locations where forecast errors
have the largest impacts on the system. This information
can be used to determine optimal locations for meteoro-
logical stations to mitigate this uncertainty.

• From a generation expansion point of view, regions of high
sensitivity indicate locations where wind farms should
be installed. In addition, these regions identify locations
for natural gas generators to provide necessary ramping
capacity. We note that adjoint sensitivity information can
augment traditional resource maps used for wind farm
planning since it is equally important to install wind
generators in regions with high wind speeds but also with
low uncertainty in neighboring regions.

• From a transmission expansion point of view, regions of
high sensitivity that match regions of high price indicate
nodes at which transmission congestion limits wind adop-
tion.

• From a operational point of view, regions of high sensi-
tivity indicate locations that will affect market clearing
tasks such as unit commitment and economic dispatch
due to higher sensitivity to uncertainty. Thus, if sensitivity
information can be provided in advance to the ISOs, they
can prepare to face high uncertainties of wind power
variation by allocating reserves or by committing peaking
units.

The sensitivity to wind illustrated in Figs.3-6 demonstrate
that on different days, different meteorological sources affect
the target area. This analysis points to the dynamic size of
the domain necessary for such a simulation to efficiently
achieve accurate forecasts. We highlight the variability of these
directions under different seasonal conditions. We observe that
the highest sensitivity is consistently observed in the western
part of the state as indicated by the wind directions. In addition,
we note that regions of high sensitivity are not necessarily
inside the network region of interest since wind fronts move
across large geographical regions.

We also note the variability in the vertical column, a
consequence of the fact that wind components are not two-
dimensional but three-dimensional fields. The cost function
at our target sites is influenced in a different manner by the
evolution of wind at different height layers. We notice thatthe
highest sensitivity is observed in the first layers, corresponding
to the 100-4000 meter range. From a forecasting point of
view, this indicates that a high uncertainty at these heights can
translate into a large impact on cost. This is of significance
since few sensors exist to measure conditions at those heights.
From a generation point of view, the vertical sensitivity profiles
indicate that the highest wind power generation is expected
above 50 meters, as is the current practice.

In Fig. 3.e and3.f we show the sensitivities with respect to
the ambient temperature. This illustrates the effect of tempera-
ture fields on the cost function. Positive and negative values

indicate locations in the temperature field that, if perturbed
(or forecast incorrectly), increase or decrease the cost. This
is important since it indicates that other physical variables
can affect wind speed and thus regional cost. Consequently,
care should be taken to mitigate uncertainty and forecast those
variables accurately.

The two scenarios from June (see Figs3 and 4) exhibit
different dynamics, indicating a complex relationship between
weather variables and the grid conditions. A similar conclusion
can be drawn for the sensitivities computed in October (see
Figs. 5 and6).
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Fig. 4: Regional cost sensitivity with respect to wind speed, 6
and 12 hours before the final time (June 15, 2000 - 12:00)
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Fig. 5: Regional cost sensitivity with respect to wind speed, 6
and 12 hours before the final time (October 19, 2000 - 06:00)

VI. CONCLUSIONS

We have presented a framework for adjoint sensitivity of
numerical weather prediction models. We have found that
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Fig. 6: Regional cost sensitivity with respect to wind speed, 6
and 12 hours before the final time (October 21, 2000 - 06:00)

adjoint analysis provides valuable information that can aid in
planning and operation tasks for the power grid. We discuss
how to use optimization sensitivity capabilities to map physical
weather variables to power grid economic metrics. Particular
applications of the framework include wind farm and meteoro-
logical sensor placement and generation/transmission expansion
planning. A numerical case study has been provided to illustrate
the developments.
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