
Computer Science Technical
Report TR-08-12
July 3, 2008

Emil M. Constantinescu
and Adrian Sandu

“On Extrapolated Multirate Methods”

Computer Science Department
Virginia Polytechnic Institute and State University

Blacksburg, VA 24060
Phone: (540)-231-2193
Fax: (540)-231-6075

Email: {emconsta, sandu}@cs.vt.edu
http://eprints.cs.vt.edu



ON EXTRAPOLATEDMULTIRATEMETHODS ∗

EMIL M. CONSTANTINESCU† AND ADRIAN SANDU†‡

Abstract. In this manuscript we construct extrapolated multirate discretization methods that allow
to efficiently solve problems that have components with different dynamics. This approach is suited for
the time integration of multiscale ordinary and partial differential equations and provides highly accurate
discretizations. We analyze the linear stability properties of the multirate explicit and linearly implicit
extrapolated methods. Numerical results with multiscale ODEs illustrate the theoretical findings.

1. Introduction. In this study we develop multirate time integration schemes
using extrapolation methods for the efficient simulation of multiscale ODEs and PDEs.
In multirate time integration, the timestep can vary across the solution components
(e.g., spatial domain) and has to satisfy only the local stability conditions, resulting
in substantially more efficient overall computations. For PDEs the method of lines
(MOL) framework, where the temporal and spatial discretizations are independent,
can be followed to employ the methods discussed in this paper.
The development of multirate integration is challenging due to the consistency

and stability constraints that need to be satisfied by the timestepping schemes. En-
gstler andLubich [1997]developedmultirate schemes based on extrapolated forward
Euler methods (MURX). The components with slow dynamics are inactivated at cer-
tain time levels, while the fast components are evaluated every timestep. Our work
extends this strategy to extrapolated compound multirate explicit and implicit steps.
In this case the extrapolation procedure operates on multirate timestepping schemes.
Previous work in multirate methods includes [Rice, 1960; Gear andWells, 1984; Gün-
ther and Rentrop, 1993; Skelboe, 1989]. The reader can also examine more recent
work presented in [Günther et al., 2001; Kværnø and Rentrop, 1999; Kværnø, 2000;
Bartel and Günther, 2002]. Similar concepts for conservative solutions are found in
[Constantinescu and Sandu, 2007; Dawson and Kirby, 2001; Kirby, 2002; Tang and
Warnecke, 2006] and for parabolic equations using a locally self-adjusting multirate
timestepping [Savcenco et al., 2005, 2006].
In this paper we are concerned with solving the following initial value problem

y′(x) = f (x, y(x)) , x > x0 , y(x0) = y0 , y ∈ R
N with (1.1)

y =
[
y1 y2 . . . yM

]T , f (x, y) = [
f1(x, y) f2(x, y) . . . fM(x, y)

]T
and

yr ∈ R
nr , fr : R

N+1 → Rnr , r = 1, . . . , M , and
M∑

r=1

nr = N ,

where y is the solution vector partitioned into components yr, r = 1 , . . . , M, that
have their own particular time scales. Among others, these types of problems occur
naturally in electric circuit simulations [Bartel and Günther, 2002] and in problems
using variable grid sizes [Constantinescu et al., 2008]. We seek to apply time dis-
cretizationmethodswith adifferent timestep length for eachdynamic characteristic to
(1.1) and consider the extrapolation methods [Deuflhard, 1985; Hairer et al., 1993a,b]
with multirate explicit and implicit base schemes for time marching. When solving
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space/time-dependent PDEs in the the method of lines framework, f represents the
spatial discretization.
For simplicity, but without loss of generality, we shall consider the simplified

problem
{
y′(t) = f

(
x, y(x), z(x)

)
z′(t) = g

(
x, y(x), z(x)

) [
y(x0) z(x0)

]T
=

[
y0 z0

]T , x > x0 , (1.2)

where y represents the slow evolving component and z the fast one.

2. Extrapolation Methods. Consider a sequence ni of positive integers with
ni < ni+1, 1 ≤ i ≤ E and define corresponding step sizes h1, h2, h3, . . . by hi = H/ni.
Further, define the numerical approximation of (1.1) at x0 + H using the step size hi
by

Ti,1 := yhi (x0 +H) , 1 ≤ i ≤ E . (2.1)

This approximation is obtained using a base method. Let us assume that the local error
of the pth order method used to solve (2.1) has an asymptotic expansion of the form

y(x) − yh(x) = ep+1(x) h
p+1 + · · · + eN(x) h

N + Errh(x) h
N+1 , (2.2)

where ei(x) are errors that do not depend on h, and Errh is bounded for x0 ≤ x ≤ xend.
By using E approximations to (2.1) with different hi’s one can eliminate the error
terms in the local error asymptotic expansion (2.2) by employing the same procedure
as in Richardson extrapolation (see [Hairer et al., 1993a, Chap. II.9]). High order
approximations of the numerical solution of (1.1-1.2) can be determined by solving a
linear system with E equations. Then the kth solution represents a numerical method
of order p + k − 1 [Hairer et al., 1993a, Chap. II, Thm. 9.1]. The most economical
solution to this set of linear equations is given by the Aitken-Neville formula [Aitken,
1932; Neville, 1934; Gasca and Sauer, 2000]:

T j,k+1 = T j,k +
T j,k − T j−1,k(
n j/n j−1

)
− 1
, j = 1 . . . k. (2.3a)

If the numerical method (2.1) is symmetric, then the Aitken-Neville formula yields

T j,k+1 = T j,k +
T j,k − T j−1,k

(
n j/n j−1

)2
− 1
, j = 1 . . . k. (2.3b)

Scheme (2.1), (2.3) is called the extrapolation method. For illustration purposes,
the T j,k solutions can be represented in a tableau (2.1). As it can be seen from the
tableau, the method is represented by a sequence of embedded methods which can
be used for step size control and variable order approaches. There are several choices
for the sequences n j; however, Deuflhard [1983] showed that the harmonic sequence
n j = 1, 2, 3, . . . is the most economical one. This sequence will be used for the rest of
this study.

3. Linearly Implicit Euler. Consider the implicit Euler method applied to prob-
lem (1.1) under smoothness assumptions:

yi+1 = yi + h f
(
xi+1, yi+1

)
,

≈ yi + h
(
J
(
yi+1 − yi

)
+ f

(
xi+1, yi

))
= yi + h

(
J
(
yi+1 − yi

)
+ f

(
xi, yi

))
+ O(h2) ,

2



T11
T21 T22
T31 T32 T33
· · · · · · · · · · · ·

p
p p + 1
p p + 1 p + 2
· · · · · · · · · · · ·

(a) Extrapolation (T j,k) tableau (b) Orders for the extrapolation terms
T 2.1

Tableaux with (a) the T j,k solutions and (b) their corresponding orders.

where J is an approximation to
∂ f
∂y (xi, yi). Then the linearly implicit Euler method is

given by

(I − hJ)
(
yi+1 − yi

)
= h f

(
xi, yi

)
. (3.1)

This method has been used in [Deuflhard, 1985; Deuflhard et al., 1987] as the
“base method,” for solving stiff ODEs of type (1.1) with the extrapolation method
(2.1), (2.3).

4. Multirate BaseMethods. Consider the following multirate base methods for
solving (1.2) with the extrapolation algorithm (2.1), (2.3): the m−ratemultirate explicit
Euler method

yn+1 = yn + h f (yn, zn) (4.1a)

zn+ i
m

= zn+ i−1
m

+
h

m

g(Yn+ i−1
m

, zn+ i−1
m

) , i = 1, . . . ,m ,

where m is a positive integer and Yn+ i
m

is an approximation of y at xn+ i
m

. Forward

Euler is first order accurate and hence the zeroth order interpolation can be used to
approximate Y: Yn+ i

m

= yn or Yn+ i
m

= yn+1; by using the former a more parallelizable

implementationmaybeobtained. Thefirst order interpolation canalsobe considered:
Yn+ i−1

m

= m−i+1
m
yn +

i−1
m
yn+1, i = 1, . . . ,m . Formally we have

Yn+ i−1
m

= yn ,

Yn+ i−1
m

= yn+1 ,

Yn+ i−1
m

=
m − i + 1

m

yn +
i − 1

m

yn+1 .

All three possibilities are considered in this study.
Linearly implicit Euler method (3.1) can also be considered as a candidate for

the base methods used in the extrapolation procedure. The m−rate multirate linearly
implicit method is given by



I − h fy(0) −h fz(0)

−
h

m

gy(0) I −
h

m

gz(0)


 ·

[
yn+1 − yn
zn+ 1

m

− zn

]
=



h f

(
yn, zn

)
h

m

g
(
yn, zn

)

 , (4.1b)

(
I −
h

m

gz(0)

) (
zn+ i

m

− zn+ i−1m

)
=
h

m

g
(
Yn+ i−1

m

, zn+ i−1
m

)
, i = 2, . . . ,m ,

where the shorthand notation f{y ,z}(0) and g{y ,z}(0) denotes the derivatives evaluated
at x0, the initial extrapolation time in (2.1). Methods (4.1) are first order accurate
multirate schemes that are considered for the base methods of the extrapolation
procedure. We next discuss the accuracy of these extrapolated multirate methods.
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2
2 3
2 3 4
· · · · · · · · · · · ·

1
1 2
1 2 3
· · · · · · · · · · · ·

(a) Local orders (b) Global orders
T 5.1

The classical (a) local and (b) global orders for the extrapolation methods with first order base methods.

5. Accuracyof theExtrapolatedMultirateMethods. InHenrici’snotation [Henrici,
1962], one step methods are expressed as

yn+1 = yn + hΦ
(
xn, yn, h

)
. (5.1)

It is easy to see that methods (4.1) can be represented in Henrici’s notation. A
method of order p applied to a differential equation with each term being sufficiently
differentiable possesses an expansion of the local error of the form

y(x + h) − y(x) − hΦ
(
x, y(x), h

)
= dp+1(x) h

p+1 + · · · + dp+N(x) h
N+1 + O

(
hN+2

)
. (5.2)

Following [Gragg and Stetter, 1964; Hairer et al., 1993a] we are looking for a global
error function ep(x) of the form (see [Hairer et al., 1993a, Chp. II, Thm. 3.6])

y(x) − yh(x) = ep(x) h
p + O(hp+1) . (5.3)

Methods (4.1) are of this type with p = 1. Then we have the following result due to
Gragg and Stetter [1964].
T 5.1 ([GraggandStetter, 1964]). Suppose that a givenmethodwith sufficiently

smooth increment function Φ satisfies the consistency condition Φ
(
x, y, 0

)
= f (x, y) and

possesses an expansion (5.2) for the local error. Then the global error has an asymptotic
expansion of the form

y(x) − yh(x) = ep(x) h
p + · · · + eN(x) h

N + Eh(x) h
N+1 (5.4)

where e j(x), j = p, p + 1, . . .N, satisfies (5.3) with e j(x0) = 0 and Eh(x) is bounded for
x0 ≤ x ≤ xend and 0 ≤ h ≤ h0.
Proof. See Gragg [1965] and [Hairer et al., 1993b, Chp. II, Thm. 8.1].
Methods (4.1) possess the local error expansion (5.2) and global error expansion

(5.4) and therefore can be extrapolated using (2.1),(2.3a). It follows that the orders of
accuracy of the extrapolation methods (4.1) are the ones given in Table 5.1.
Next we illustrate the theoretical accuracy results on a numerical example using

the extrapolation scheme with base methods (4.1).

6. Numerical Accuracy Investigation of the Extrapolated Multirate Methods.
Consider the following linear initial value problem

(
ŷ(x)
ẑ(x)

)′
=

(
Γ ε
ε −1

) (
ŷ(x) − g(x)
ẑ(x) − g(ωx)

)
+

(
g(x)
g(ωx)

)′
,

(
ŷ(x0)
ẑ(x0)

)
=

(
g(x0)
g(ωx0)

)
,

where g is a known function. This problem was adapted to vector form [Bartel and
Günther, 2002] from the scalar Prothero-Robinson [Hairer et al., 1993b] test problem.

The exact solution is
[
ŷ(x) ẑ(x)

]T
=

[
g(x) g(ωx)

]T
.
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F. 6.1. The exact solution of the modified nonlinear Prothero-Robinson equation (6.1) with ε = 0.5, Γ = −2.0,
ω = 20.0.

We further consider the following change of variables:

(
ŷ(x)
ẑ(x)

)
=

(
−1 + y2(x)
−2 + z2(x)

)
,

(
ŷ(x)
ẑ(x)

)′
=

(
2y(x)y′(x)
2z(x)z′(x)

)
,

(
y(x0)
z(x0)

)
=

( √
1 + g(x0)√
2 + g(ωx0)

)
.

The problem in y and z becomes nonlinear and if g(x) = cos(x) the following problem
is obtained

(
y(x)
z(x)

)′
=

(
Γ ε
ε −1

) 


(
−1 + y2 − cos(x)

)
/(2y)(

−2 + z2 − cos(ωx)
)
/(2z)


 −

(
sin(x)/(2y)
ω sin(ωx)/(2z)

)
. (6.1a)

The exact solution of (6.1a) is given by given by

(
y(x)
z(x)

)
=

( √
1 + cos(x)√
2 + cos(ωx)

)
, (6.1b)

and represented in Figure 6.1.
We illustrate the theoretical findings using the example described by (6.1) with

ε = 0.5,Γ = −2.0,ω = 20.0using schemes (4.1) that are implemented inMatlab R©using
variable precision arithmetic with 64 digits of accuracy. The experiments consist in
integrating (6.1a)with successively smaller stepsH using the extrapolationprocedure
(2.1), (2.3a) with the explicit and implicit multirate base methods (4.1) with m = ω =
20.
The observed orders based on the numerical error in L1 and L2 norms are pre-

sented in Table 6.1 and confirm the theoretical expectations as discussed in Section 5.

7. LinearStabilityAnalysis of the ExtrapolatedMultirateMethods. Following
the analysis done by Kværnø [2000], we investigate the extrapolated schemes with
the basemethods defined by (4.1) applied to the following generic linear test problem

(
ŷ(x)
ẑ(x)

)′
=

(
α11 α12
α21 α22

) (
ŷ(x)
ẑ(x)

)
=

(
f
(
ŷ(x), ẑ(x)

)
g
(
ŷ(x), ẑ(x)

)
)
,
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2
2 3
2 3 4
2 3 4 5
2 3 4 5 6
2 3 4 5 6 7
2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

T 6.1
The local discretization order of the extrapolation method (2.1), (2.3a) with the multirate (two-rate (m = ω =

20)) base methods.

where αi j ∈ R. The system can be scaled to

(
y(x)
z(x)

)′
=

(
−1 ε
ω −m

)

︸         ︷︷         ︸
A

(
y(x)
z(x)

)
=

(
f
(
y(x), z(x)

)
g
(
y(x), z(x)

)
)
. (7.1)

In this scaling we assume for simplicity that m is an integer and thus we obtain the
scale difference (m) between the slow component y and the fast one, z. The coupling
between these two components is represented by ε and ω. System (7.1) is stable if
the real part of the eigenvalues of A is negative, which gives ωε ≤ m .
The transfer or stability function R(. . . hAi j . . . ) for a numerical discretization of

(7.1) is defined by the quantity that verifies

(
yn+1
zn+1

)
= R(. . . hAi j . . . )

(
yn
zn

)
.

In order for the discretization method to be stable, one needs to have the spectral
radius ρ(R(. . . hAi j . . . )) ≤ 1. The stability functions of (4.1) can be easily calculated.
The stability function of the extrapolatedmethod is calculated from the extrapolation
formula (2.3a) as [Hairer et al., 1993b, Chap. IV]:

R j,k+1(. . .hAi j . . . ) = R j,k(. . .hAi j . . . ) +
R j,k(. . . hAi j . . . ) − R j−1,k(. . . hAi j . . . )

(n j/n j−k) − 1
.

We take a practical approach and ask the following question: How does the
stability region of a multirate method with ratio m applied to (7.1) compare to the
stability region of the single-rate method with the timestep length of the fastest
component (i.e. H/m)? In other words we look for the degradation or appreciation in
stability of the multirate method compared to the single-rate method. We note that
the multirate method is more efficient in this case by taking fewer steps on the slow
components.

8. NumericalLinearStability Investigationof theExtrapolatedMultirateMeth-
ods. In this section we investigate the linear stability properties of the extrapolation
method (2.1), (2.3a) with the multirate base methods (4.1) applied to problem (7.1).
We consider the ratio m = 2 fixed and investigate the stability region (ρ(R) ≤ 1)

in the hω-hε plane.
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F. 8.1. The stability region for problem (7.1) with the explicit multirate (m = 2) method (4.1a) (thin red line)
and the corresponding single-rate explicit method (m = 1) (thick dark line) for various entries in the extrapolation
tableau.

In Figure 8.1 we show the stability regions for the extrapolatedmultirate explicit
method (4.1a) for the extrapolation terms in positions T11, T22, T32, and T44 (see Table
2.1). The stability region of the multirate method is slightly degraded; however, for
practical purposes, we consider that the reduction in the stability region is acceptable.

In Figure 8.2 we show the stability regions for the extrapolated multirate im-
plicit method (4.1b) for the extrapolation terms in positions T11, T22, T44, and T55.
Experimentally, we determine that on the first column of the extrapolation tableau
the multirate implicit methods preserve the “unconditional” stability of the implicit
base (single-rate) method; i.e., the stability region extends to (∞,∞) and (−∞,−∞)
in the hω-hε plane. However, when the multirate solution is extrapolated, the sta-
bility region shrinks in quadrants II and IV (of Fig. 8.2). This aspect needs to be
investigated further.

9. Concluding Remarks. Multirate methods are very useful for solving mul-
tiscale problems. In this manuscript we construct extrapolated multirate implicit
and explicit discretization methods that allow to efficiently solve problems that have
multiple scales. We propose two extrapolation methods that are based on multi-
rate forward and linearly implicit Euler schemes. The cost of implementing these
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F. 8.2. The stability region for problem (7.1) with the implicit multirate (m = 2) method (4.1b) (thin red line)
and the corresponding single-rate explicit method (m = 1) (thick dark line) for various entries in the extrapolation
tableau.

methods is very small and can easily reach very high orders of accuracy.

The extrapolationmethodapproachpresented in this study represents a sequence
of embeddedmethods which can be used for step size control and variable order ap-
proaches due to their trivial extension to higher orders. Extrapolation methods are
less efficient than the popular Runge-Kutta or linear multistep schemes. However,
the extrapolationmethods can be parallelized very easily [Rauber and Rünger, 1997].
Each entry on the first extrapolation tableau column (Ti,1) can be computed indepen-
dently. Moreover, the cost is linearly increasing and thus each entry can be optimally
scheduled on multiprocessor/multicore machines or architectures. This could lead to
more efficient overall implementations.

The extrapolated multirate forward Euler method shows only a slight degrada-
tion of the linear stability region; however, in practice we consider that the increased
efficiency of the multirate method outweighs this minor drawback.

By the numerical investigation of the linear stability region we determine that
extrapolatedmultirate linearly implicit method performs very well for nonstiff prob-
lems or for stiff problems with relaxed coupling among components. The linear
stability region does not resemble the unconditional stability of the single-rate coun-
terpart, however, the stability is probably large enough for practical applications.

8



This aspect needs to be further investigated.

The methods under investigation can be used in the high and very high order
discretization of ODEs and PDEs using the method of lines approach. Numerical
results with ODEs verify the theoretical findings.
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