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Abstract. This paper introduces a three and a four order explicit time
stepping method. These methods have high stage order and favorable
monotonicity properties. The proposed methods are based on multistage-
multistep (MM) schemes that belong to the broader class of general linear
methods, which are generalizations of both Runge-Kutta and linear mul-
tistep methods. Methods with high stage order alleviate the order reduc-
tion occurring in explicit multistage methods due to non-homogeneous
boundary/source terms. Furthermore, the MM schemes presented in this
paper can be expressed as convex combinations of Euler steps. Conse-
quently, they have the same monotonicity properties as the forward Euler
method. This property makes these schemes well suited for problems with
discontinuous solutions.

1 Introduction

The numerical solution of time-dependent partial differential equations and non-
linear hyperbolic conservation laws are of great practical importance as they
model diverse physical phenomena that appear in engineering, aeronautics, as-
trophysics, meteorology oceanography, environmental sciences, etc. Representa-
tive examples for nonlinear hyperbolic conservation laws include gas dynamics,
shallow water flow, ground-water flow, non-Newtonian flows, traffic flows, ad-
vection and dispersion of contaminants, etc.

In the “method of lines” approach the temporal and spatial discretizations
are independent. Traditionally Runge-Kutta (RK) and linear multistep meth-
ods (LM)s have been used for the integration of ODEs and semi-discrete time-
dependent PDEs. General linear (GL) methods [1, 2] represent a natural gen-
eralization of both Runge-Kutta (RK) and linear multistep (LM) methods.
The methods investigated in this work are based on multistage-multistep (MM)
schemes that belong to the broader class of GL methods. Multistep-multistage
schemes are aimed at enhancing the stability and accuracy properties of the
classical RK and LM methods. They use both internal stages like RK methods
and information from previous solution steps like LM methods.

Explicit Runge-Kutta methods have stage order equal to one, and hence are
subject to order reduction in the presence of non-homogeneous boundary and
source terms [3, 13, 14]. The proposed high-stage order MM methods alleviate



this problem without loosing their explicit character. Moreover, they can be
expressed as convex combinations of Euler steps, and consequently, they have
the same monotonicity properties that the spatial discretization method has
with the forward Euler time stepping scheme, but with a different time step
restriction [15, 6]. This property makes the proposed MM schemes well suited for
problems with discontinuous solutions (e.g., hyperbolic problems). Furthermore,
the monotonicity properties can also guarantee the positivity of the solution.

In this study we investigate explicit time stepping methods of orders three
and four based on MM schemes. The proposed methods have high stage order
and favorable monotonicity properties. These features allow them to:

– avoid order reduction due to non-homogeneous boundary/source terms and
– prevent non-physical behavior with discontinuous solutions.

The proposed methods are aimed at modeling the transport components in at-
mospheric and oceanic simulations. The rest of this manuscript is organized
as follows. In Sections 2 and 3 we present some background material on MM
schemes and the monotonicity property considered in this study. The two pro-
posed methods are presented in Sec. 4. Numerical experiments that illustrate
the main features of the new methods are shown in Sec. 5. A short discussion
concludes the paper.

2 Problem Formulation and Monotonicity Considerations

In this work we are concerned with the numerical solution of nonlinear time-
dependent partial differential equations in the method of lines approach:

y′(t) = f(t, y(t)) , t0 < t < tFinal , y(t0) = y0 , (1)

where f represents the discretization of the spatial variables forming a semi-
discrete equation, continuous in time. System (1) is nonauthonomous, however,
for brevity we skip the time argument of f , unless noted otherwise.

We next introduce the concept of strong stability which defines the mono-
tonicity properties that the proposed methods obey.

Definition 1 (Strong stability[12, 6, 15]). A sequence {y(n)} is said to be
strongly stable in a given semi-norm || · || if ||y(n+1)|| ≤ ||y(n)|| for all n ≥ 0.

Strong stability preserving (SSP) integrators are high order time stepping schemes
that preserve the stability properties of the spatial discretization used with ex-
plicit Euler time stepping. Spurious oscillations can occur in a numerical solution
that obeys the classical linear stability [6]. In PDEs with hyperbolic compo-
nents an appropriate spatial discretization combined with an SSP time stepping
method yields a numerical solution that does not exhibit nonlinear instabilities.

The favorable properties of SSP schemes derive from convexity arguments.
In particular, if the forward Euler method is strongly stable for any time step
smaller than ∆tFE (i.e., ||y + ∆tf(y)|| ≤ ||y||, ∆t ≤ ∆tFE), then higher-order



methods can be constructed as convex combinations of forward Euler steps with
various step sizes [15]. For example an explicit s-stage Runge-Kutta method can
be represented in Euler steps:

y[n] = y
(s+1)
[n−1] , y

(1)
[n−1] = y[n−1] , (2a)

y
(i)
[n−1] =

i−1∑

j=1

[
α(i,j)y

(j)
[n−1] + β(i,j)∆tF

(j)
[n−1]

]
; i = 2, 3, . . . , s, s + 1 . (2b)

SSP methods preserve the strong stability of the forward Euler scheme for
bounded time steps ∆t ≤ C · ∆tFE, where C is referred to as the CFL coeffi-
cient for the SSP property.

Theorem 1 (SSP for Runge-Kutta methods[6, 15]). If the forward Euler
method is strongly stable under the CFL restriction ∆t ≤ ∆tFE, then the Runge-
Kutta method (2) with β(i,j) ≥ 0 is SSP provided that ∆t ≤ C∆tFE, where

C = Min
{(

α(i,j)/β(i,j)
)

: 1 ≤ i ≤ s, 1 ≤ j ≤ i − 1, β(i,j) 6= 0
}

.

In order to compare methods with different computational cost, a scaled or
effective CFL coefficient, denoted by Ĉ, is obtained by scaling the method’s CFL
with the number of right-hand-side evaluations.

3 Multistep Multistage Methods

We consider the following explicit k-step s-stage multistep-multistage method to
compute the numerical solution of (1) with time step ∆t. The solution at step
n, y[n] ≈ y(tn) = y(n∆t) is given by

y[n] = y
(s+1)
[n−1] , y

(1)
[n−1] = y[n−1] , (3a)

y
(i)
[n−1] =

k∑

ℓ=2

s∑

j=1

[
α

(i,j)
[n−ℓ]y

(j)
[n−ℓ] + β

(i,j)
[n−ℓ]∆tF

(j)
[n−ℓ]

]
+ (3b)

+

i−1∑

j=1

[
α

(i,j)
[n−1]y

(j)
[n−1] + β

(i,j)
[n−1]∆tF

(j)
[n−1]

]
; i = 2, 3, . . . , s, s + 1 ,

where F
(i)
[n−ℓ] = f

(
t[n−ℓ] + ci∆t, y

(i)
[n−ℓ]

)
. We refer to y

(i)
[n−ℓ], i = 1 . . . s + 1, ℓ =

1 . . . k as the stage i value at step n− ℓ, and to F
(i)
[n−ℓ] as the corresponding stage

derivative. The first sum in (3b) represents linear combinations of stage values
and derivatives evaluated at previous steps, whereas the second sum describes

the internal stages of the current step evaluation. Each stage value y
(i)
[n−ℓ] is

an approximation to y (tn−ℓ + ci∆t). The abscissa, c, is determined from the
consistency conditions.



The linear stability of method (3) is analyzed on a linear scalar test problem:
y′(t) = λy(t), λ ∈ C. By applying (3) to the test problem yields a solution of
form yn+1 = R(z) yn, where z = λ∆t and R(z) is referred to as the stability
function of the method. Method (3) is linearly stable if |R(z)| ≤ 1. The linear
stability region is defined as the set S = {z ∈ C : |R(z)| ≤ 1}.

We give the following result without proof.

Theorem 2 (SSP for MM methods). If the forward Euler method is strongly

stable under the CFL restriction ∆t ≤ ∆tFE, then method (3) with β
(i,j)
[n−ℓ] ≥ 0 is

SSP provided that ∆t ≤ C∆tFE, where

C = Min
{(

α
(i,j)
[n−ℓ]/β

(i,j)
[n−ℓ]

)
: 1 ≤ i ≤ s, 1 ≤ j ≤ i − 1, 1 ≤ ℓ ≤ k, β

(i,j)
[n−ℓ] 6= 0

}
.

By using consistency and convexity arguments the above theorem reduces to
Theorem 1 and the proof is given in [6]. The importance of the SSP property is
illustrated in Fig. 2.a where non-physical oscillations develop in the solution.

4 The Proposed Methods

In this section we present two new explicit multistep-multistage schemes that
have stage order equal to three and are strong stability preserving.

4.1 Method MM p3 q3

Method MM p3 q3 (4) is an order three and stage order three (p = 3, q = 3)
MM method with three stages and two steps (s = 3, k = 2). The CFL coefficient

is C=1.44 (Ĉ=0.48).

α
(2,1)
[n−1] = 0.697169114587643 β

(2,1)
[n−1] = 0.484471495618137

α
(3,2)
[n−1] = 0.76354468478889 β

(3,2)
[n−1] = 0.530596705549337

α
(4,3)
[n−1] = 0.816170594740032 β

(4,3)
[n−1] = 0.567167105426239

α
(2,1)
[n−2] = 0.302830885412357 β

(2,1)
[n−2] = 0.109139040169882

α
(3,1)
[n−2] = 0.23645531521111 β

(3,1)
[n−2] = 0.109233120743169

α
(4,1)
[n−2] = 0.183829405259968 β

(4,1)
[n−2] = 0.106231031926622

(4)

c = [0, 0.290779650375662, 0.625397767570505 , 1]T .

4.2 Method MM p4 q3

Method MM p4 q3 (5) is an order four and stage order three (p = 4, q = 3) MM
method with two stages and four steps (s = 2, k = 4). The CFL coefficient is

C=0.64 (Ĉ=0.32).



α
(2,1)
[n−1] = 0.641788036235959 β

(2,1)
[n−1] = 1.

α
(3,2)
[n−1] = 0.530533524263627 β

(3,2)
[n−1] = 0.826649133840462

α
(3,1)
[n−2] = 0.278475821635639 β

(3,1)
[n−2] = 0.433906221232917

α
(2,1)
[n−3] = 0.295361832953222 β

(2,1)
[n−3] = 0.354153138170544

α
(3,1)
[n−3] = 0.111760513607703 β

(3,1)
[n−3] = 0.174139291008244

α
(2,1)
[n−4] = 0.062850130810818

α
(3,1)
[n−4] = 0.07923014049303

(5)

c = [0, 0.574879079831644 , 1]T .

4.3 Linear Stability

The linear stability region for MM p3 q3 (4) is shown in Figure 1.a. We remark
that the stability region contains a segment of the imaginary axis, which is
a desirable property when solving PDEs via the method of lines with certain
spatial discretizations [9].

In Figure 1.b we show the stability region of MM p4 q3 (5), and here we
note again that the stability region contains a segment of the imaginary axis.
The region is smaller than in the case of (4); however, the fourth order method
requires only two function evaluation. It follows that MM p4 q3 has two thirds
of the cost of MM p3 q3.
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Fig. 1. Linear stability regions (shaded) for MM p3 q3 and MM p4 q3.

4.4 Starting Procedures

Each step of the MM method (3) requires past precomputed information, specif-

ically, y
(j)
[n−ℓ] and F

(j)
[n−ℓ], 2 ≤ ℓ ≤ k. In this study the initial step is considered to



provide an approximation to the exact solution and its derivative at the corre-
sponding time within order p, the order of the MM method under consideration.

In practice, for the proposed methods, one can easily compute the initial
solution and its derivative components with the classical SSP RK schemes [6,
8] of corresponding orders and at the respective times as given by the method
abscissa.

5 Numerical Results

In this section we present two numerical experiments that illustrate the proper-
ties of the two proposed MM methods. In the first experiment we investigate the
SSP (monotonicity) properties. In the second numerical experiment we present
the order reduction phenomenon, and show how it can degrade the accuracy of
high order (p) low stage order (q = 1) multistage methods. We further show that
the proposed methods maintain their corresponding orders of consistency (p).

5.1 Monotonicity

Methods with SSP properties are needed to evolve in time solutions that may
develop discontinuities of hyperbolic PDEs. The SSP conditions impose a very
strict restriction on the time steps, and hence the time stepping scheme efficiency
is very important.

Figure 2 shows the solutions of the advection equation obtained with the
proposed methods MM p3 q3 (4) and MM p4 q3 (5) and the optimal third

order RK scheme, RK3, with three stages, C = 1 (Ĉ = 0.33) [6, 8]. The space
discretization is first order upwind, chosen for its well understood behavior. The
time step for MM p3 q3 is such that the CFL coefficient is 1.3. At t = 0.22
(Figure 2.a) the MM method solution remains oscillation free, while the RK3
solution shows the effects of linear instability. The solution obtained by using
MM p4 q3 (Figure 2.b) is also stable, but at a lower CFL coefficient comparable,
however, with the one used for the MM p3 q3 case; i.e., MM p3 q3 and RK3
require three function evaluations per step, and hence, a CFL of two thirds is
needed for a fair comparison.

We next explore the monotonicity properties of the SSP MM methods on a
nonlinear hyperbolic equation. The inviscid Burgers’ equation is

∂y(t, x)

∂t
+

∂

∂x

(
1

2
y(t, x)2

)
= 0 , 0 ≤ x ≤ 1 , 0 ≤ t ≤ tFinal . (6)

The spatial discretization uses the third-order upwind-biased flux limited scheme
based [4, 10, 11]. This spatial discretization is SSP with forward Euler steps and
hence, with the proposed MM methods described in this work. The SSP condition
is satisfied if the CFL coefficient of the method C is smaller than the CFL number
of the problem: C ≤ problem CFL number = max(y)∆t/∆x.

In Figure 3 we show the solution of the Burgers’ equation integrated with
RK3 (s = 3, C = 1) and MM p3 q3 (4) (C=1.44) at time 0.25 with a method CFL
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Fig. 2. Solution of the advection equation integrated in time with RK3 and the
multistep-multistage schemes MM p3 q3 and MM p4 q3.

of 1.5. The solution given by the MM scheme remains oscillation free, whereas
the classical RK method becomes unstable.

5.2 Avoiding Order Reduction
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Fig. 3. Solution of Burgers’ equation
integrated in time with RK3 (C = 1.00)
and the multistep-multistage schemes
MM p3 q3 (C = 1.44). The CFL of the
problem is 1.5.

Order reduction describes the behav-
ior where the effective order of a nu-
merical method on a given problem is
smaller than its theoretical order as
given by the classical theory. Order re-
duction can considerably degrade the
efficiency of the numerical integration.
Moreover, order reduction is difficult
to detect in practical computations be-
cause embedded methods used for er-
ror estimation are also affected by it.

Explicit RK methods have the
stage order equal to one, which makes
them susceptible of order reduction
for problems with non-homogeneous
boundary conditions and/or nonzero
source terms. In order to illustrate
this, we consider the test problem from
[14] (advection with a nonlinear source
term):

∂y(t, x)

∂t
= −

∂y(t, x)

∂x
+ b(t, x) ,

0 ≤ x ≤ 1
0 ≤ t ≤ 1

,
y(t, 0) = b(t, 0)
y(0, x) = y0(x)

.

The initial condition is y0(x) = 1+x and the (left) boundary and source term is
b(t, x) = (t− x)/(1 + t)2. The exact solution given by y(t, x) = (1 + x)/(1 + t) is



linear in space, allowing us to use first order upwind space discretization without
introducing discretization errors. For the time integration we employ the typical
RK methods of orders 2, 3, and 4. Sanz-Serna et al. [14] show that RK methods
with p ≥ 3 suffer from order reduction. This theoretical result is verified in our
numerical experiment.

Figure 4.a shows the discretization error versus the time step with the forc-
ing terms switched off [14]. In this case all methods retain their expected order,
verifying the classical theory. In Figure 4.b we show the results with stiff bound-
ary and source terms. In this case both the third order RK3a method [5] and
the fourth order “classical” RK4 method [7] display second order behavior. In
these situations a second order method can be more efficient than higher order
methods. The high stage order proposed methods MM p3 q3 (4) and MM p4 q3
(5) retain their corresponding orders of consistency.
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Fig. 4. Numerical illustration of the order reduction phenomenon. The L∞ norm of
error is shown versus the time step length for RK methods of orders 2-4 and MM p3
q3 and MM p4 q3. (a) Results with no forcing show that the effective order of each
method equals its theoretical order. (b) When forcing is present the effective order of
RK methods is two (order reduction). The high stage-order MM methods maintain
their theoretical orders of accuracy.

6 Discussion

In this paper we introduce two new explicit multistage-multistep methods with
high stage orders for solving ordinary differential equations and PDEs via the
method of lines. The MM methods are SSP – they have the monotonicity prop-
erties of forward Euler scheme, but under a different time step restriction.

To our knowledge the proposed methods are the first explicit high-stage order
SSP methods. The two numerical experiments presented in this paper motivate
both properties – SSP and high stage order.



An error control mechanism can be considered by using a lower order embed-
ded method; however, changing the time step requires restarting the method.
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