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Abstract Atmospheric flows are characterized by a large range of length scales as

well as strong gradients. The accurate simulation of such flows requires numerical

algorithms with high spectral resolution, as well as the ability to provide nonoscilla-

tory solutions across regions of high gradients. These flows exhibit a large range of

time scales as well—the slowest waves propagate at the flow velocity and the fastest

waves propagate at the speed of sound. Time integration with explicit methods are

thus inefficient, although algorithms with semi-implicit time integration have been

used successfully in past studies. We propose a finite-difference method for atmo-

spheric flows that uses a weighted compact scheme for spatial discretization and

implicit-explicit additive Runge-Kutta methods for time integration. We present re-

sults for a benchmark atmospheric flow problem and compare our results with ex-

isting ones in the literature.

1 Introduction

The simulation of atmospheric flows requires accurate numerical solutions of the

compressible Navier-Stokes equations or the inviscid Euler equations if the phys-

ical viscosity and heat conduction are neglected. Such flows are characterized by

localized flow structures and strong gradients, and numerical algorithms need a

high spectral resolution and must be nonoscillatory across regions of strong gra-

dients. Algorithms used for numerical weather prediction include finite-difference

methods [13], finite-volume methods [1], and discontinuous Galerkin and spectral

element methods [10, 9]. Although standard finite-difference methods suffer from

poor spectral resolution, compact finite-difference methods [15] have significantly
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higher spectral resolution and have been applied to applications such as large eddy

simulations and direct numerical simulations of turbulent flows [14, 18].

In this study, we propose a high-order finite-difference method for atmospheric

flows based on compact-reconstruction weighted essentially nonoscillatory (CR-

WENO) schemes [5, 6, 8]. The CRWENO schemes combine the high spectral res-

olution of linear compact schemes with the solution-dependent stencil adaptation

method of the WENO schemes [17, 11] to produce nonoscillatory solutions. They

are thus well suited for simulating atmospheric flows. We explore implicit-explicit

time-integration schemes based on a separation of stiff and nonstiff components of

the governing equations [10]. We present results for a benchmark atmospheric flow

problem.

2 Governing Equations

We consider the conservative form of the Euler equations based on the mass, mo-

mentum, and potential temperature for mesoscale flows (neglecting the Coriolis

forces) [10]. These are given by

∂

∂ t





ρ ′

ρu

ρθ



+∇ ·





ρu

ρu⊗u+ p′I

ρθu


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



0

−ρ ′gk̂

0



 (1)

where ρ is the density, u is the velocity vector, p is the pressure, I is the iden-

tity matrix, and g is the acceleration due to gravity acting along the z-axis of the

coordinate system with unit vector k̂. The potential temperature θ is given by

θ =
T

π
; π =

(

p

p0

)
R

CP

, (2)

where T is the temperature, π is the Exner pressure, p0 is the pressure at the sur-

face (or reference altitude), R is the universal gas constant, and CP is the constant

pressure specific heat. The system of equations is completed by the equation of

state, p = p0

(

ρRθ
p0

)

CP
CV , where CV is the constant volume specific heat. Equation

(1) is expressed in terms of the density, pressure, and potential temperature per-

turbations (ρ ′, p′, θ ′) that can be expressed as (·)′ = (·) (x,y,z, t)− ¯(·)(z), where
¯(·) is the mean density, pressure, or potential temperature in hydrostatic balance

CPθ̄ dπ̄
dz

= −g. The governing equations form a system of hyperbolic partial differ-

ential equations (PDEs) and are solved by a conservative finite-difference algorithm.
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3 Numerical Methodology

Equation (1) can be expressed as a system of hyperbolic conservation laws with a

source term
∂ U

∂ t
+

∂ fi (U)

∂ xi

= s (U) , i = 1, · · · ,D, (3)

where U is the solution, fi is the flux along the ith dimension, s is the source term,

and D is the number of dimensions. We describe the discretization of (3) in one di-

mension (D= 1); it can be trivially extended to multiple dimensions. A conservative,

finite-difference spatial discretization of (3) on this grid results in a semi-discrete or-

dinary differential equation (ODE) in time,

dU j

dt
+

1

∆x

[

f̂ j+1/2− f̂ j−1/2

]

= s j, j = 1, · · · ,N, (4)

where j denotes the grid index, U j = U(x j) is the cell-centered solution, f̂ j+1/2 is

the numerical flux at the cell interface x j+1/2, and s j is the source term evaluated at

the cell center.

3.1 Reconstruction

We use the CRWENO scheme [5, 6, 8] to reconstruct the interface fluxes f̂ j+1/2

from the cell-centered flux f j. We briefly summarize the scheme in this section; a

more complete description is available in [5]. The fifth-order CRWENO scheme

(CRWENO5) is constructed by considering three third-order-accurate compact in-

terpolation schemes for the flux function at the ( j+1/2)th interface:

2

3
f̂ j−1/2 +

1

3
f̂ j+1/2 =

1

6

(

f j−1 +5 f j

)

; c1 =
2

10
, (5)

1

3
f̂ j−1/2 +

2

3
f̂ j+1/2 =

1

6

(

5 f j + f j+1

)

; c2 =
5

10
, (6)

2

3
f̂ j+1/2 +

1

3
f̂ j+3/2 =

1

6

(

f j +5 f j+1

)

; c3 =
3

10
. (7)

Multiplying (5)–(7) with their optimal coefficients (ck, k = 1,2,3) and adding, we

obtain the fifth-order-accurate compact interpolation scheme,

3

10
f̂ j−1/2 +

6

10
f̂ j+1/2 +

1

10
f̂ j+3/2 =

1

30
f j−1 +

19

30
f j +

1

3
f j+1. (8)

We now compute weights ωk based on the local smoothness of the solution [11] such

that they converge to the corresponding optimal coefficient ck when the solution is

locally smooth, and approach zero at or near a discontinuity. They can be expressed

as
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ωk =
αk

∑k αk

; αk =
ck

(ε +βk)
p ; k = 1,2,3, (9)

where ε = 10−6 is a small number to prevent division by zero. The smoothness

indicators (βk) measure the local smoothness of the solution and are given by

β1 =
13

12
( f j−2 −2 f j−1 + f j)

2 +
1

4
( f j−2 −4 f j−1 +3 f j)

2, (10)

β2 =
13

12
( f j−1 −2 f j + f j+1)

2 +
1

4
( f j−1 − f j+1)

2, (11)

and β3 =
13

12
( f j −2 f j+1 + f j+2)

2 +
1

4
(3 f j −4 f j+1 + f j+2)

2. (12)

Multiplying (5)–(7) with ωk instead of ck, and adding, we obtain the CRWENO5

scheme:

(

2

3
ω1 +

1

3
ω2

)

f̂ j−1/2 +

[

1

3
ω1 +

2

3
(ω2 +ω3)

]

f̂ j+1/2 +
1

3
ω3 f̂ j+3/2

=
ω1

6
f j−1 +

5(ω1 +ω2)+ω3

6
f j +

ω2 +5ω3

6
f j+1. (13)

This scheme is fifth-order accurate when the solution (ωk → ck) is smooth, and it

yields a nonoscillatory solution across discontinuities by biasing the interpolation

stencil away from it. Equation (13) requires the solution to a tridiagonal system of

equations at each time-integration step or stage; however, past studies [5] demon-

strated the higher computational efficiency of the CRWENO scheme compared with

a standard finite-difference scheme. A scalable and efficient parallel implementa-

tion of the CRWENO5 scheme is discussed in [7]. This discussion describes the

left-biased computation of the interface flux; the corresponding expressions for the

right-biased interface flux can be similarly obtained. The final flux at a given in-

terface is computed from the left- and right-biased approximations by using the

Rusanov upwinding scheme [16].

3.2 Time Integration

Equation (4) is integrated in time by using explicit Runge-Kutta (ERK) and implicit-

explicit additive Runge-Kutta (ARKIMEX) methods. Efficient implementations of

these methods are available in the TS (time-stepping) module of PETSc [3, 4]. ERK

methods are often inefficient, however, because the time-step size is restricted by the

acoustic (fastest) wave. Implicit-explicit time-integration methods have been previ-

ously applied to atmospheric flows [10, 9]. We briefly summarize the separation of

stiff and nonstiff components of the governing equations and its implicit-explicit

discretization in time.

Equation (1) can be rearranged such that the right-hand side comprises a nonstiff

term and a linear stiff term [10],
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∂ U

∂ t
= S(U)+L(U) , (14)

U =





ρ ′

ρu

ρθ ′



 , S(u) =−∇ ·





0

ρu⊗u

ρθu−ρθ̄u



 , L(u) = −





∇ ·ρu

∇p′+gρ ′k̂

∇ ·ρθ̄u



 ,

where the pressure perturbation is linearized as p′ = γ p̄

ρ̄θ̄

(

ρθ − ρ̄θ̄
)

, with γ =CP/CV

as the specific heat ratio. The nonstiff component, S(U), of the right-hand side of

(14) consists of the entropy waves; and the linear stiff component, L(U), consists of

the acoustic and gravity waves. Equation (14) is spatially discretized and integrated

in time by using the ARKIMEX methods [2, 12, 19], where an ERK method is

applied to the nonstiff term and an ARK method is applied to the stiff term. This

multistage procedure can be expressed as

U(k) = Un +∆t
k−1

∑
i=1

akiŜ
(

U(i)
)

+∆t
k

∑
i=1

ãkiL̂
(

U(i)
)

, k = 1, · · · ,s, (15)

Un+1 = Un +∆t
s

∑
i=1

biŜ
(

U(i)
)

+∆t
s

∑
i=1

b̃iL̂
(

U(i)
)

, (16)

where s is the number of stages, the superscripts of U indicate the stage index, and

the subscripts of U indicate the time step. The coefficients aki and bi specify the

ERK method, and the coefficients ãki and b̃i specify the ARK method. Ŝ and L̂ are

the spatially discretized forms of S(U) and L(U), respectively.

Past applications of implicit-explicit time-integration to atmospheric flows [10,

9] used discontinuous Galerkin or spectral element methods for the discretization

of spatial derivatives; these approaches resulted in (15) being a linear system. We,

however, use a nonlinear finite-difference operator to discretize the spatial deriva-

tive, as given by (4) and (13). Thus, L̂ is nonlinear even though L is linear, and (15)

is a nonlinear system of equations. We make two comments on our algorithm in this

context.

• We ensure that the discretized right-hand side (Ŝ+ L̂) is consistent with the right-

hand side of (14) by using the same finite-difference operator to discretize both

S and L. The nonlinear weights in (13) are computed based on the smoothness

of S+L, and the resulting CRWENO5 scheme is applied to both terms.

• We linearize the finite-difference operator at each stage such that (15) is a linear

system of equations. We compute the nonlinear weights in (13) at the beginning

of stage k based on the smoothness of (S+L)
(

U(k−1)
)

(or (S+L)(Un) for

k = 1); and we solve (15) as a linear system (since, once the nonlinear weights

are fixed, (13) is a linear operator).
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(a) Potential temperature perturbation contours (b) Cross-sectional variation of poten-

tial temperature perturbation

Fig. 1 Solutions of the inertia-gravity wave problem obtained on a grid with 1200×50 points.

4 Results

We verify our algorithm by solving the two-dimensional inertia-gravity wave prob-

lem, a benchmark atmospheric flow problem [13]. The domain is a periodic chan-

nel with dimensions 300,000× 10,000 meters. Zero-flux boundary conditions are

specified at the top and bottom boundaries. The initial atmosphere has a mean flow

of 20 meters/second and is uniformly stratified with a Brunt-Vaisala frequency of

N = 0.01/second [10, 13]. A perturbation in the potential temperature is introduced

as

θ ′ = θc

sin
(

πcz
hc

)

1+
(

x−xc
ac

)2
, (17)

where θc = 0.01 Kelvin, hc = 10,000 meters, ac = 5000 meters, xc = 100,000 me-

ters, and πc is the trigonometric constant. Solutions are obtained at a final time of

3000 seconds.

Figure 1(a) shows the potential temperature perturbation (θ ′) contours for a so-

lution obtained with the CRWENO5 scheme on a grid with 1200× 50 points. The

solution is integrated in time with the second-order-accurate, two-stage ARKIMEX

2C method at a CFL of 8. We observe good agreement with results in the literature

[1, 10, 13]. The cross-sectional variation of the potential temperature perturbation

through z = 5000 meters is shown in Figure 1(b) for the solutions obtained with

the CRWENO5 as well as the fifth-order WENO (WENO5) [11] schemes. The ex-

plicit four-stage, fourth-order Runge-Kutta (RK4) and the three-stage, third-order

ARKIMEX (ARKIMEX3) methods are used to integrate the solution in time. Excel-

lent agreement is observed for all the methods with the reference solution, obtained

by using the spectral element method with 10th-order polynomials and 250-meter

grid resolution [10].

The convergence and conservation properties of our algorithm are evaluated by

obtaining solutions on a fine grid with 8192× 256 points. Figure 2(a) shows the

L2 norm of the error as a function of the time-step sizes. The reference solution
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(a) L2 norm of the error as a function of time step size (b) Mass conservation error as a function

of time step size

Fig. 2 Error analysis on a grid with 8192×256 points.

is computed with the strong-stability-preserving three-stage, third-order Runge-

Kutta (SSPRK3) scheme and a small time-step size of 0.0005. We consider two

ERK schemes, SSPRK3 and RK4, and three ARKIMEX schemes, ARKIMEX2C,

ARKIMEX3, and ARKIMEX4 (four-stage, fourth-order). The methods converge at

their theoretical convergence rates. Figure 2(b) shows the error in mass conservation

for the various methods and time-step sizes. Mass is conserved to round-off error

for all the methods considered.

5 Conclusions

A high-order-accurate finite-difference method for the simulation of atmospheric

flows is proposed in this paper. The algorithm uses the CRWENO scheme for spa-

tial discretization and the ARKIMEX schemes for time integration. The high spec-

tral resolution of the CRWENO scheme allows the accurate modeling of all rel-

evant length scales, while maintaining nonoscillatory behavior across regions of

strong gradients. The ARKIMEX methods split the governing equations into its stiff

and nonstiff components and integrates them with implicit and explicit multistage

Runge-Kutta schemes, respectively. Thus, the time-step size is not restricted by the

acoustic waves. The algorithm is applied to a benchmark atmospheric flow prob-

lem, and solutions show excellent agreement with existing results in the literature.

The split implicit-explicit time-integrators show optimal convergence when coupled

with the nonlinear finite-difference scheme and do not violate mass conservation.
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