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The numerical simulation of meso-, convective, and micro-scale atmospheric flows

requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic

weather prediction algorithms often solve the equations in terms of derived quanti-

ties such as Exner pressure and potential temperature (and are thus not conservative)

and/or as perturbations to the hydrostatically balanced equilibrium state. This paper

presents a well-balanced, conservative finite-difference formulation for the Euler equa-

tions with a gravitational source term, where the governing equations are solved as

conservation laws for mass, momentum, and energy. Preservation of the hydrostatic

balance to machine precision by the discretized equations is essential since atmospheric

phenomena are often small perturbations to this balance. The proposed algorithm uses

the WENO and CRWENO schemes for spatial discretization that yields high-order

accurate solutions for smooth flows and is essentially nonoscillatory across strong gra-

dients; however, the well-balanced formulation may be used with other conservative

finite-difference methods. The performance of the algorithm is demonstrated on test

problems as well as benchmark atmospheric flow problems, and the results are verified

with those in the literature.
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Nomenclature

A = flux Jacobian matrix

a = Runge-Kutta coefficients for stage calculation

b = Runge-Kutta coefficients for step completion

c = optimal weights for WENO scheme

D = discretization operator

e = energy per unit mass (J/m3)

e∗ = non-dimensional energy per unit mass

F,G = flux vectors along x, y

f = one-dimensional flux function (vector)

f = one-dimensional flux function (scalar)

g = gravitational force (per unit mass) vector (m/s2)

g∗ = non-dimensional gravitational force (per unit mass) vector

g = gravitational force per unit mass (m/s2)

i, j = grid indices

L = right-hand side operator for semi-discrete ODE

n = index for time integration

p = pressure (N/m2)

p∗ = non-dimensional pressure

Q = Runge-Kutta stage values of q

q = state vector

R = universal gas constant (J/kg K)

R = interpolation operator

r = order of spatial discretization scheme

s = source term

T = temperature (K)

t = time (s)

t∗ = non-dimensional time

u = velocity vector (m/s)

u∗ = non-dimensional velocity vector

u, v = flow velocity components in x, y (m/s)
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X,X−1 = matrices with right and left eigenvectors as columns and rows, respectively

x = spatial position vector (m)

x∗ = non-dimensional spatial position vector

x, y = spatial position

α = nonconvex WENO weights

β = smoothness indicators for WENO discretization

ε = parameter for WENO discretization

κ = dissipation factor due to gravitational field

γ = specific heat ratio

Λ = diagonal matrix of eigenvalues

ν = dissipation factor in Rusanov’s upwinding

φ = scalar function

ϕ = pressure variation function for stratified atmosphere

π = Exner pressure

σ = interpolation coefficients

τ = parameter for WENO discretization

θ = potential temperature (K)

ρ = density (kg/m3)

ρ∗ = non-dimensional density

% = density variation function for stratified atmosphere

ω = nonlinear WENO weights

I. Introduction

Recent decades have seen the development of several numerical algorithms for the accurate sim-

ulation of atmospheric flows. Hydrostatic models [1, 2] or simplified models that remove acoustic

waves [3–5] are often used for flows with large horizontal scales (such as planetary simulations). Non-

hydrostatic effects are significant when simulating meso-, convective, and micro-scale atmospheric

phenomena; thus, the solution to the compressible Euler equations is required [6–8]. Various formu-

lations of the Euler equations have been proposed in the literature and used for operational weather

prediction software [9, 10]. Algorithms that solve the Euler equations in terms of derived quantities
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that are relevant to atmospheric flows [11–15] (such as Exner pressure and potential temperature) do

not conserve mass, momentum, and energy, even though the numerical discretization may be conser-

vative. Several algorithms [8, 16–20] solve the governing equations in terms of mass and momentum

conservation and use the assumption of adiabaticity to simplify the energy conservation equation

to the conservation of potential temperature [21]. Recent efforts solve the Euler equations as con-

servation laws for mass, momentum, and energy [9, 22–24], with no additional assumptions. This

form of the governing equations is identical to that used in simulating compressible aerodynamic

flows [25, 26]. Thus, a conservative discretization conserves the mass, momentum, and energy to

machine precision, and the true viscous terms may be specified if needed. This approach is followed

here.

Several operational algorithms to simulate atmospheric flows [12, 16, 27] are based on the

finite-difference method; however, they have been criticized for their low spectral resolution (due

to low-order spatial discretization) and the lack of scalability [19]. These drawbacks have been ad-

dressed to some extent by high-order finite-volume [8, 17, 20, 22, 24] and finite-element or spectral-

element [9, 10, 19] methods. Often, atmospheric phenomena are characterized by strong gradients,

and stable solutions are obtained by using a total-variation-diminishing/bounded (TVD/TVB) dis-

cretization (such as slope-limited methods [17, 20, 24]), applying a filter [9], or adding artificial diffu-

sion [8, 9]. On the other hand, the weighted essentially nonoscillatory (WENO) schemes [28, 29] use

solution-dependent interpolation stencils to yield high-order accurate nonoscillatory solutions and

have been applied successfully to several application areas [30] including compressible and incom-

pressible fluid dynamics. The compact-reconstruction WENO (CRWENO) schemes [31] apply the

solution-dependent stencil selection to compact finite-difference schemes [32] and thus have higher

spectral resolution than the standard WENO schemes. The CRWENO schemes have been applied to

turbulent flows [33] and aerodynamic flows [34] where the resolution of small length scales is crucial.

Although the CRWENO schemes require the solution to banded systems of equations at every time-

integration step or stage, a scalable implementation of the CRWENO scheme [35] demonstrated its

performance for massively parallel simulations. The accuracy, spectral resolution, and scalability of

the WENO and CRWENO schemes make them well suited for the simulation of atmospheric flows.
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The Euler equations, with the addition of gravitational and Coriolis forces as source terms,

govern the dynamics of atmospheric flows and constitute a hyperbolic balance law. This paper

focuses on meso-, convective, and micro-scale flows, and the Coriolis forces are neglected. Balance

laws admit steady states where the flux derivatives are balanced by the source terms. In the context

of atmospheric flows, steady states are in hydrostatic balance where the pressure gradient is coun-

teracted by the gravitational body force. Numerical methods must be able to preserve such steady

states on a finite grid to machine precision. Atmospheric phenomena are often small perturbations

to the hydrostatic balance, and thus errors in balancing the discretized pressure gradient with the

gravitational forces have the potential to overwhelm the flow. One way to ensure the preservation

of this balance is by subtracting the hydrostatically balanced quantities from the flow variables

and expressing the equations in terms of the perturbations [8, 9, 20]. Alternatively, well-balanced

discretization methods for the governing equations can be formulated that preserve the hydrostatic

balance on a finite grid. Balanced finite-volume methods have been proposed [36, 37] and applied

to the Euler equations with gravitational source terms [17, 22, 24]. A well-balanced, conservative

finite-difference formulation for the shallow water equations was introduced [38] and extended to

general balance laws [39] as well as finite-volume and discontinuous Galerkin discretizations [40].

This formulation was applied to the Euler equations with gravitational source terms [41]; however,

it was derived only for the special case of an isothermal equilibrium, and other balanced equilibria

or flow problems relevant to atmospheric flows were not considered.

This paper presents a high-order, well-balanced finite-difference algorithm for atmospheric flows.

The governing equations are solved as conservation laws for mass, momentum, and energy. The

balanced formulation of Xing and Shu [39, 41] for conservative finite-difference methods is extended

to a more general form of the hydrostatic balance that includes, as specific cases, the isothermal

equilibrium [41], as well as other examples of stratified atmosphere encountered in the literature. The

fifth-order WENO and CRWENO schemes are used in this study; however, the balanced formulation

may be used with other discretization schemes expressed in the conservative finite-difference form. In

the absence of gravitational forces, the proposed algorithm reduces to the standard finite-difference

discretization of the Euler equations. One of the motivations for this approach is to develop a unified
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numerical framework for both aerodynamic and atmospheric flows. Explicit, multistage Runge-

Kutta methods are used for time integration; in the future, efficient semi-implicit methods [10, 18]

will be explored. The ability of the algorithm to maintain the hydrostatically balanced equilibrium to

machine precision is demonstrated. The algorithm is verified by solving benchmark atmospheric flow

problems, and the results are compared with those obtained with two operational weather prediction

solvers: Weather Research and Forecasting (WRF) [16] and Nonhydrostatic Unified Model of the

Atmosphere (NUMA) [9].

The outline of the paper is as follows. Section II describes the governing equations. The

numerical method, including the well-balanced formulation is described in Sec. III. The algorithm

is verified and results for benchmark flow problems are presented in Sec. IV. The Appendix contains

three specific examples of the general well-balanced formulation.

II. Governing Equations

The dynamics of atmospheric flows are governed by the Navier-Stokes equations [26], with the

addition of gravitational and Coriolis forces as source terms. The effects of viscosity are insignificant,

and the inviscid Euler equations [25] are solved. Various equation sets have been used in the

literature [9, 10]. The algorithm proposed here solves the Euler equations stated as the conservation

of mass, momentum, and energy. Mesoscale flows are considered, and Coriolis forces are neglected.

The governing equations are

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+∇ · (ρu⊗ u + pId) = −ρg, (2)

∂e

∂t
+∇ · (e+ p)u = −ρg · u, (3)

where ρ is the density, u is the velocity vector, p is the pressure, and g is the gravitational force

vector (per unit mass). Id denotes the identity matrix of size d, where d is the number of space

dimensions. The energy is given by

e =
p

γ − 1
+

1

2
ρu · u, (4)
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where γ is the specific heat ratio. The equation of state relates the pressure, density, and temperature

as p = ρRT , where R is the universal gas constant and T is the temperature. Two additional

quantities of interest in atmospheric flows are the Exner pressure π and the potential temperature

θ, defined as

π =

(
p

p0

) γ−1
γ

, and θ =
T

π
, (5)

respectively. The pressure at a reference altitude is denoted by p0. Equations (1)–(3) may be

nondimensionalized as follows:

x∗ =
x

L∞
, u∗ =

u

a∞
, t∗ =

t

L∞/a∞
, ρ∗ =

ρ

ρ∞
, p∗ =

p

ρa2∞
, g∗ =

g

a2∞/L∞
, (6)

where the subscript ∞ denotes reference quantities, the superscript ∗ denotes nondimensionalized

variables, L∞ is a characteristic length scale, and a =
√
γp/ρ is the speed of sound. The governing

equations, expressed in terms of the nondimensionalized variables, are

∂ρ∗

∂t∗
+∇ · (ρ∗u∗) = 0, (7)

∂ (ρ∗u∗)

∂t∗
+∇ · (ρ∗u∗ ⊗ u∗ + p∗Id) = −ρ∗g∗, (8)

∂e∗

∂t∗
+∇ · (e∗ + p∗)u∗ = −ρ∗g∗ · u∗, (9)

where the ∇ operator now denotes derivatives with respect to the nondimensionalized vector x∗.

Equations (7)–(9) are identical in form to (1)–(3). Thus the same equations are used to solve

both nondimensional and dimensional problems. Subsequent discussions describing the numerical

discretization do not distinguish between the dimensional and nondimensional equations, and the

superscript ∗ is omitted for convenience.

III. Numerical Method

This paper considers two-dimensional flows with gravity acting along the y-dimension; however,

the numerical methodology and the well-balanced formulation can be trivially extended to three-

dimensional flows. Equations (1)–(3) constitute a hyperbolic system of partial differential equations

and are discretized by a conservative finite-difference method. The governing equations can be
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Fig. 1 Illustration of a two-dimensional Cartesian grid with the grid points (cell centers) and

cell interfaces on which Eq. (10) is discretized with a conservative finite-difference formulation.

The gray shaded region represents a discrete cell.

expressed as a hyperbolic conservation law

∂q

∂t
+
∂F (q)

∂x
+
∂G (q)

∂y
= s (q) , (10)

where the state vector, the flux vectors along x and y, and the source terms are

q =



ρ

ρu

ρv

e


, F =



ρu

ρu2 + p

ρuv

(e+ p)u


, G =



ρv

ρuv

ρv2 + p

(e+ p)v


, s =



0

0

−ρg

−ρvg


. (11)

The Cartesian velocity components are u and v, and g is the gravitational force (per unit mass).

Figure 1 shows a part of a two-dimensional Cartesian grid around the grid point (i, j) whose spatial

coordinates are (xi = i∆x, yj = j∆y), along with the neighboring grid points and the cell interfaces.

A conservative spatial discretization [42, 43] of Eq. (10) on this grid yields a semi-discrete ordinary

differential equation (ODE) in time,

dqij
dt

+
1

∆x

[
f̂i+1/2,j − f̂i−1/2,j

]
+

1

∆y

[
ĝi,j+1/2 − ĝi,j−1/2

]
= sij , (12)

where qij = q(xi, yj) is the cell-centered solution, (xi = i∆x, yj = j∆y) are the spatial coordinates

of a grid point, and i, j denote the grid indices. The numerical approximation to the flux function

8



at the cell interfaces f̂i+1/2,j = f̂
(
xi±1/2,j

)
, ĝi,j+1/2 = ĝ

(
yi,j±1/2

)
satisfies

∂F

∂x

∣∣∣∣
xi,yj

=
1

∆x
[f̂(xi+1/2,j , t)− f̂(xi−1/2,j , t)] +O (∆xr) , (13)

∂G

∂y

∣∣∣∣
xi,yj

=
1

∆y
[ĝ(yi,j+1/2, t)− ĝ(yi,j−1/2, t)] +O (∆yr) , (14)

for an rth-order spatial discretization method, and thus f̂ and ĝ are the primitives of F and G,

respectively. The discretized source term sij in Eq. (12) is expressed as its cell-centered value, and

this naive treatment does not preserve the hydrostatic equilibrium [41] except in the limit ∆x→ 0.

The treatment of the source term for a well-balanced formulation is discussed in subsequent sections.

Equation (12) can be rewritten as

dq̃

dt
= L (q̃) , (15)

where q̃ = [qij ; 1 ≤ i ≤ Ni, 1 ≤ j ≤ Nj ] is the entire solution vector on a grid withNi×Nj points and

L denotes the right-hand side operator comprising the discretized flux and source terms. Equation

(15) is integrated in time with multistage explicit Runge-Kutta schemes, expressed as follows:

Q(s) = q̃n + ∆t

s−1∑
t=1

astL
(
Q(t)

)
, s = 1, · · · , S (16)

q̃n+1 = q̃n + ∆t

S∑
s=1

bsL
(
Q(s)

)
, (17)

where S is the number of stages, Q(s) is the sth-stage value, ast and bs are the coefficients of the

Butcher table [44], and the superscripts n and n + 1 denote the time levels tn = n∆t and tn+1 =

(n + 1)∆t, respectively. The strong-stability-preserving third-order Runge-Kutta (SSPRK3) [45]

and the classical fourth-order Runge-Kutta (RK4) schemes are used in this study; their Butcher

tables are given by

0 0

1 1 0

1/2 1/4 1/4 0

1/6 1/6 2/3

, and

0 0

1/2 1/2 0

1/2 0 1/2 0

1 0 0 1 0

1/6 1/3 1/3 1/6

, (18)

respectively.
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A. Reconstruction

The reconstruction step computes the numerical flux primitives f̂i±1/2,j and ĝi,j±1/2 in Eq.

(12) from the cell-centered values of the flux functions F (q) and G (q), respectively. This section

describes the approximation of a scalar, one-dimensional function primitive at the cell interface

f̂j+1/2 = f̂
(
xj+1/2

)
from the cell-centered values of the function fj = f (xj). It is extended to

multiple dimensions by carrying out a one-dimensional reconstruction at the interface along the grid

line normal to that interface. Vector quantities are reconstructed in a component-wise manner where

the reconstruction process described below is applied to each component of the vector independently.

The fifth-order WENO [29] and CRWENO [31] schemes are used in this study.

The fifth-order WENO scheme (WENO5) [29] is constructed by considering three third-order

accurate interpolation schemes for the numerical flux f̂j+1/2:

f̂1j+1/2 =
1

3
fj−2 −

7

6
fj−1 +

11

6
fj , c1 =

1

10
, (19)

f̂2j+1/2 = −1

6
fj−1 +

5

6
fj +

1

3
fj+1, c2 =

6

10
, (20)

f̂3j+1/2 =
1

3
fj +

5

6
fj+1 −

1

6
fj+2, c3 =

3

10
, (21)

where ck, k = 1, 2, 3 are the optimal coefficients. Multiplying Eqs. (19)–(21) by the corresponding

ck and taking the sum yields a fifth-order interpolation scheme,

f̂j+1/2 =
1

30
fj−2 −

13

60
fj−1 +

47

60
fj +

27

60
fj+1 −

1

20
fj+2. (22)

The optimal coefficients ck are replaced by nonlinear weights (ωk, k = 1, 2, 3) and the WENO5

scheme is the weighted sum of Eqs. (19)–(21) with these nonlinear weights:

f̂j+1/2 =
ω1

3
fj−2 −

1

6
(7ω1 + ω2)fj−1 +

1

6
(11ω1 + 5ω2 + 2ω3)fj +

1

6
(2ω2 + 5ω3)fj+1 −

ω3

6
fj+2. (23)

The weights are evaluated based on the smoothness of the solution [46],

ωk =
αk∑
k αk

; αk = ck

[
1 +

(
τ

ε+ βk

)2
]
, (24)

where

τ = (fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2)
2
. (25)
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The parameter ε = 10−6 prevents division by zero and the smoothness indicators (βk) are given by

β1 =
13

12
(fj−2 − 2fj−1 + fj)

2
+

1

4
(fj−2 − 4fj−1 + 3fj)

2
, (26)

β2 =
13

12
(fj−1 − 2fj + fj+1)

2
+

1

4
(fj−1 − fj+1)

2
, (27)

and β3 =
13

12
(fj − 2fj+1 + fj+2)

2
+

1

4
(3fj − 4fj+1 + fj+2)

2
. (28)

Other definitions for the nonlinear weights exist in the literature [47–49] as well as a comparison

of the nonlinear properties of the WENO5 scheme with these weights [33]. When the solution is

smooth, the nonlinear weights converge to the optimal coefficients (ωk → ck) and Eq. (23) reduces

to Eq. (22). The scheme is fifth-order accurate for such solutions. Across and near discontinuities,

the weights corresponding to the stencil containing the discontinuity approach zero and Eq. (23)

represents an interpolation scheme with its stencil biased away from the discontinuity. Nonoscillatory

solutions are thus obtained.

The fifth-order CRWENO scheme (CRWENO5) [31] is similarly constructed by considering

three third-order accurate compact interpolation schemes [32] for the numerical flux f̂j+1/2:

2

3
f̂1j−1/2 +

1

3
f̂1j+1/2 =

1

6
(fj−1 + 5fj) ; c1 =

2

10
, (29)

1

3
f̂2j−1/2 +

2

3
f̂2j+1/2 =

1

6
(5fj + fj+1) ; c2 =

5

10
, (30)

2

3
f̂3j+1/2 +

1

3
f̂3j+3/2 =

1

6
(fj + 5fj+1) ; c3 =

3

10
, (31)

where ck, k = 1, 2, 3 are the optimal coefficients. A fifth-order compact scheme is obtained by

multiplying Eqs. (29)–(31) by their corresponding optimal coefficient ck and adding

3

10
f̂j−1/2 +

6

10
f̂j+1/2 +

1

10
f̂j+3/2 =

1

30
fj−1 +

19

30
fj +

1

3
fj+1. (32)

The CRWENO5 scheme is constructed by replacing the optimal coefficients ck by nonlinear weights

ωk and can be expressed as

(
2

3
ω1 +

1

3
ω2

)
f̂j−1/2 +

[
1

3
ω1 +

2

3
(ω2 + ω3)

]
f̂j+1/2 +

1

3
ω3f̂j+3/2

=
ω1

6
fj−1 +

5(ω1 + ω2) + ω3

6
fj +

ω2 + 5ω3

6
fj+1. (33)

The weights ωk are computed by Eq. (24) and Eqs. (26)–(28). The resulting scheme, given by

Eq. (33), is fifth-order accurate when the solution is smooth (ωk → ck) and reduces to Eq. (32).
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Across and near discontinuities, the weights corresponding to the stencils containing the discontinu-

ity approach zero and a biased (away from the discontinuity) compact scheme is obtained. Equation

(33) results in a tridiagonal system of equations that must be solved at each time-integration step

or stage; however, the additional expense is justified by the higher accuracy and spectral resolution

of the compact scheme [31, 33, 34]. An efficient and scalable implementation of the CRWENO5

scheme was recently proposed in [35, 50] and is used in this study.

The solution of a hyperbolic system is composed of waves propagating at their characteristic

speeds along their characteristic directions and thus the final flux at the interface is an appropriate

combination of the left- and right-biased fluxes. The description of the WENO5 and CRWENO5

schemes above considered a left-biased reconstruction of the scalar flux; the corresponding right-

biased reconstruction can be obtained by reflecting the expressions around the interface j + 1/2.

The Roe [51, 52] and the Rusanov [52, 53] upwinding schemes are used in this study. The Roe

scheme is expressed as

f̂j+1/2 =
1

2

[
f̂Lj+1/2 + f̂Rj+1/2 −

∣∣∣A(q̂Lj+1/2, q̂
R
j+1/2

)∣∣∣ (q̂Rj+1/2 − q̂Lj+1/2

)]
, (34)

where

∣∣∣A(q̂Lj+1/2, q̂
R
j+1/2

)∣∣∣ = Xj+1/2

∣∣Λj+1/2

∣∣X−1j+1/2. (35)

The eigenvalues Λ and the eigenvectors X,X−1 are evaluated at the interface from the Roe-averaged

flow variables. The superscripts L and R indicate the left- and right-biased interpolations, respec-

tively. The Rusanov scheme is given by

f̂j+1/2 =
1

2

[
f̂Lj+1/2 + f̂Rj+1/2 −

(
max
j,j+1

ν

)(
q̂Rj+1/2 − q̂Lj+1/2

)]
. (36)

The dissipation factor is ν = a + |u|, where a is the speed of sound and u is the flow velocity. We

note that q̂L,Rj+1/2 in Eqs. (34) and (36) are the left- and right-biased interface values for q that are

reconstructed in the same manner as f̂L,Rj+1/2.

B. Well-Balanced Formulation

A hyperbolic balance law, such as Eq. (10), admits steady-state solutions where the flux deriva-

tive is exactly balanced by the source term. For atmospheric flows, the gravitational force on the

12



fluid is balanced by the pressure gradient, resulting in the hydrostatic balance. The numerical

algorithm must preserve this balance to machine precision because errors have the potential to

overwhelm physically relevant perturbations to the balance. In this section, a well-balanced formu-

lation of the finite-difference discretization of Eq. (10) is presented; this formulation reduces to the

balanced discretization previously proposed [41] for the specific case of an isothermal hydrostatic

balance. Although the formulation is described for two-dimensional flows with gravity acting along

the y-dimension, it can be easily extended to three dimensions and for domains where the gravity

may not be aligned with a specific dimension.

Steady atmospheric flow in hydrostatic balance can be expressed in the following general form:

u = constant, v = 0, ρ = ρ0% (y) , p = p0ϕ (y) , (37)

where the subscript 0 indicates the flow variables at a reference altitude, and %, ϕ are scalar functions.

The flow quantities are a function of y only since the gravitational force is assumed to act along the

y-direction. The pressure and density at the reference altitude are related by the equation of state

p0 = ρ0RT0. At equilibrium, Eq. (10) reduces to

dp

dy
= −ρg. (38)

Therefore, by substituting Eq. (37) in Eq. (38) and considering the equation of state, the functions

% (y) and ϕ (y) satisfy

RT0 [% (y)]
−1
ϕ′ (y) = −g, (39)

where ϕ′ (y) is the y-derivative of ϕ (y). The necessity of a well-balanced algorithm can be explained

as follows: Let a general, linear finite-difference approximation to the derivative of an arbitrary

function φ (y) be expressed as follows:

∂φ

∂y

∣∣∣∣
y=yj

≈ D [φ] ≡ 1

∆y

n∑
k=−m

σDk φj+k, (40)

where m and n are integers defining the stencil [j −m, j −m+ 1, · · · , j + n− 1, j + n] of the finite-

difference operator D, and σDk are the stencil coefficients. With this notation, the discretized form

of Eq. (38) at a grid point can be written as

D [p]j = − (ρg)j , (41)
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where the subscript j indicates the corresponding terms evaluated at the jth grid point. If D is

a consistent finite-difference operator, Eq. (41) is exactly satisfied as ∆x → 0. On a finite grid

with ∆x 6= 0, however, the error in satisfying Eq. (41) is nonzero and is related to the spatial

discretization error of the finite-difference operator D.

A well-balanced algorithm must satisfy Eq. (38) in its discretized form on a finite grid (∆x 6= 0)

as well; thus, the discretized flux derivative must exactly balance the discretized source term. The

first step modifies Eq. (10) as

∂q

∂t
+
∂F (q)

∂x
+
∂G (q)

∂y
= s∗ (q, y) , (42)

where s∗ =
[
0, 0, ρRT0 [% (y)]

−1
ϕ′ (y) , ρvRT0 [% (y)]

−1
ϕ′ (y)

]T
. The relationship between % (y) and

ϕ (y), given by Eq. (39), ensures that Eq. (42) is consistent with Eq. (10). The source terms are

thus rendered in a form similar to that of the flux term [39, 41]. With this modification, Eq. (38)

can be rewritten as

dp

dy
= ρRT0 [% (y)]

−1
ϕ′ (y) . (43)

It can then be discretized by using the notation in Eq. (40) to yield

DG [p]− ρRT0 {% (y)}−1Ds∗ [ϕ (y)] = 0, (44)

where DG and Ds∗ are the finite-difference operators used to approximate the y-derivatives of the

flux function G and the source term s∗, respectively. Although Eq. (44) holds true for ∆x → 0 if

DG and Ds∗ are both consistent finite-difference operators, it is not exactly satisfied for ∆x 6= 0

with the error being related to the spatial discretization errors of DG and Ds∗ . However, Eq. (44)

is exactly satisfied for ∆x 6= 0 if

DG = Ds∗ = D. (45)

Substituting Eq. (45) and exploiting the linearity of D, the left-hand side of Eq. (44) reduces to

D
[
p− ρRT0 {% (y)}−1 ϕ (y)

]
= D

[
p0ϕ (y)− ρ0% (y)RT0 {% (y)}−1 ϕ (y)

]
= 0. (46)

The term ρRT0 {% (y)}−1 = p0 in Eq. (44) is constant and hence it can be moved inside the discretized

derivative operatorD. Equation (45) implies that a linear finite-difference algorithm to solve Eq. (42)
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is well balanced (preserves hydrostatically balanced steady states to machine precision) if the flux

derivative and the modified source terms are discretized by the same linear operator.

The WENO5 and CRWENO5 schemes are nonlinear finite-difference operators since their coef-

ficients are solution dependent. The standard procedure to compute the discretized flux derivative

along y with these schemes can be summarized as follows:

ĜL,R
j+1/2 = RL,RG [G] ≡

n∑
k=−m

σ̂k (ω)Gj+k, (47)

Ĝj+1/2 =
1

2

[
ĜL
j+1/2 + ĜR

j+1/2 +
∣∣Aj+1/2

∣∣ (q̂Lj+1/2 − q̂Rj+1/2

)]
(Roe) (48)

or Ĝj+1/2 =
1

2

[
ĜL
j+1/2 + ĜR

j+1/2 +

(
max
j,j+1

ν

)(
q̂Lj+1/2 − q̂Rj+1/2

)]
(Rusanov), (49)

∂G

∂y

∣∣∣∣
y=yj

≈ 1

∆y

[
Ĝj+1/2 − Ĝj−1/2

]
, (50)

where j is the grid index along the y-coordinate (the index along the x-coordinate is suppressed

for convenience of notation), RL,RG are the reconstruction operators with m and n defining the

stencil bounds, and the coefficients for the stencil points σ̂k are functions of the solution-dependent

nonlinear weights ω. Equations (23) and (33) (representing the WENO5 and CRWENO5 schemes)

can be represented through this operator. The subscript G denotes that the nonlinear weights (ω)

are computed based on G (q). The superscripts L and R denote the left- and right-biased operators,

respectively. The additional steps needed to construct a well-balanced algorithm are now described.

The derivative of ϕ (y) in the source term of Eq. (42) is discretized in the same manner as the

flux derivative, summarized as follows:

ϕ̂L,Rj+1/2 = RL,RG [ϕ] ≡
n∑

k=−m

σ̂kϕj+k, (51)

ϕ̂j+1/2 =
1

2

[
ϕ̂Lj+1/2 + ϕ̂Rj+1/2

]
, (52)

∂ϕ

∂y

∣∣∣∣
y=yj

≈ 1

∆y

[
ϕ̂j+1/2 − ϕ̂j−1/2

]
, (53)

where the vector ϕ is simply given by ϕ = [0, 0, ϕ (y) , ϕ (y)]
T. The remaining terms in the source

s∗ are evaluated at the cell center j. The interpolation operators in Eqs. (47) and (51) are both

RG; the interface values of both G and ϕ are computed with the same interpolation operator.

This is achieved in the WENO5 and CRWENO5 schemes by calculating the weights based on the

smoothness of the flux function G (q) and using these weights to compute the interface values of
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both G and ϕ at a given time-integration step or stage.

The final step in the construction of a well-balanced method is the suitable modification of the

dissipation term in the upwinding step. The Roe and Rusanov schemes, given by Eqs. (48) and (49),

are modified as follows:

Ĝj+1/2 =
1

2

[
ĜL
j+1/2 + ĜR

j+1/2 + κ
∣∣Aj+1/2

∣∣ (q̂∗,Lj+1/2 − q̂∗,Rj+1/2

)]
(Roe), (54)

Ĝj+1/2 =
1

2

[
ĜL
j+1/2 + ĜR

j+1/2 + κ

(
max
j,j+1

ν

)(
q̂∗,Lj+1/2 − q̂∗,Rj+1/2

)]
(Rusanov), (55)

where κ = maxj,j+1 ϕ (y), q̂∗,Lj+1/2 and q̂∗,Rj+1/2 respectively are the left- and right-biased interpolation

(at the interface) of a modified state vector q∗ =
[
ρ {% (y)}−1 , ρu {% (y)}−1 , ρv {% (y)}−1 , e∗

]T
. The

modified energy e∗ is given by

e∗ =
p {ϕ (y)}−1

γ − 1
+

1

2
ρ {% (y)}−1

(
u2 + v2

)
. (56)

At steady state, q∗ is a constant and the dissipation term in Eqs. (54) and (55) is zero with this

modification (q̂∗,Lj+1/2 = q̂∗,Rj+1/2).

Discretization of the flux derivatives in Eq. (42) by Eqs. (47), (54), or (55), and (50) and

evaluation of the source term as Eqs. (51), (52), and (53) result in the following discretized form of

the steady state equation, Eq. (43), at grid point j:

p0

[
ϕ̂j+1/2 − ϕ̂j−1/2

∆y

]
= ρjRT0 {%(yj)}−1

[
ϕ̂j+1/2 − ϕ̂j−1/2

∆y

]
. (57)

The interface approximation of the scalar function ϕ (y) is denoted by ϕ̂j+1/2. It is evaluated on the

left-hand side through Eq. (47), and Eq. (54) or (55), and is evaluated on the right-hand side through

Eq. (51) and Eq. (52). Equation (57) is exactly satisfied if the operator RG is linear. Although

RG represents nonlinear finite-difference operators, given by Eqs. (23) and (33), the nonlinearity

of these schemes arises from the solution-dependent weights ωk. Within a time-integration step or

stage, these weights are computed and fixed, and the operator RG is essentially linear. Therefore,

Eq. (57) is exactly satisfied.

Summary The steps to construct a well-balanced conservative finite-difference algorithm are

summarized as follows:

1. The governing equations are modified as Eq. (42).
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2. The flux derivatives are computed through Eqs. (47), (54) or (55), and (50).

3. The derivatives in the modified source term are computed through Eqs. (51), (52), and (53) (the

remaining terms are evaluated at the cell centers).

The resulting algorithm preserves a hydrostatically balanced steady state to machine precision. The

modified procedure to compute the flux derivative is applied to both the x and y dimensions; in the

absence of gravitational forces along a particular dimension (for example, g = 0 ⇒ % (y) = ϕ (y) =

1), it reduces to the standard flux computation given by Eqs. (47)–(50). Three examples of the

steady state, Eq. (37), that occur in atmospheric flow problems are presented in the Appendix, as

well as the resulting expressions for the modified source term in Eq. (42) and modified solution in

Eqs. (54) and (55).

IV. Verification and Results

This section demonstrates the performance of the numerical algorithm and verifies the computed

results with those in the literature. The ability of the algorithm to preserve the hydrostatic balance

to machine precision and accurately capture small perturbations is demonstrated. Comparisons are

made with a naive discretization of the source term to show the necessity for the well-balanced

formulation. Further, benchmark atmospheric flow problems are solved, and the results obtained

agree with those obtained with solvers based on other forms of the governing equations and using

different discretization techniques. Both dimensional and nondimensional problems are considered;

the descriptions of the former have the relevant units specified. One-dimensional problems in y are

solved with the two-dimensional code by specifying an arbitrary domain size in the x-dimension;

the number of grid points in x is taken as the number of ghost points required to implement the

boundary treatment, and periodic boundary conditions are applied along this dimension.

A. Well-Balanced Tests

A one-dimensional problem is initially considered to demonstrate the need for a well-balanced

discretization. The initial flow is static and in hydrostatic balance. An isothermal equilibrium is
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considered with a sinusoidal gravitational field potential [41, 54]

φ = − 1

2π
sin (2πy) , (58)

specified on a periodic domain 0 ≤ y < 1. The gravitational force in Eq. (10) is g (y) = φy (where

the subscript denotes the derivative), and the steady state is given by

ρ = exp (−φ) , p = exp (−φ) . (59)

The specific heat ratio is γ = 1.4 and the solutions are obtained at a final time of 1.0. This problem

is solved with the balanced discretization, as well as with a naive discretization that can be described

by Eq. (12), where the source term is discretized as sij =
[
0, 0,− (ρg)ij ,− (ρvg)ij

]T
and the flux

terms are discretized by the standard WENO5 and CRWENO5 schemes. The Roe scheme is used

for upwinding (Eq. (34) for the naive algorithm and Eq. (54) for the balanced algorithm). Since the

problem is steady, the error in the final solution is defined as

‖ε‖(·) =
‖q (x, tf )− q (x, 0) ‖(·)

‖q (x, 0) ‖(·)
, (60)

where tf denotes the final time. Figure 2 shows the L2 norm of the error as a function of the grid

resolution ∆y for the solutions obtained with the balanced and naive implementations. The RK4

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-03 1e-02 1e-01
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| 2

∆y

WENO5   - Naive
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WENO5   - Balanced
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5th order

Fig. 2 Relative error (L2 norm) with respect to the initial solution for a steady-state problem

with naive and balanced implementations of the algorithm.
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method is used for time integration with a time step of 10−3 for the cases. The naive implementation

results in a non-zero error for all the grid sizes, which shows that it is unable to preserve the

hydrostatically balanced equilibrium. In addition, the error in preserving the equilibrium shows

fifth-order convergence as the grid is refined for both the WENO5 and CRWENO5 schemes. The

errors for the CRWENO5 schemes are an order of magnitude lower than those of the WENO5

scheme at all grid resolutions. These observations are consistent with the numerical properties of

these schemes [31]. Therefore, the error in preserving the hydrostatic balance is indeed the spatial

discretization error of the algorithm, as discussed regarding Eq. (41). The balanced implementation

preserves the steady state to machine precision for both the WENO5 and CRWENO5 schemes.

The ability of the proposed formulation to preserve two examples of hydrostatic balance en-

countered in atmospheric flows is tested. These correspond to the second and third cases in the

Appendix; the specific flow conditions are described below. The initial solution is specified as the

balanced steady-state flow. The specific heat ratio is γ = 1.4 in all the examples.

Case 1 The first case corresponds to a stratified atmosphere with constant potential tem-

perature θ (Example 2 in the Appendix). The initial solution is specified by Eq. (68) with

u = v = 0m/s−1, R = 287.058 J/kg K, T = 300K, p0 = 105 N/m2, and g = 9.8m/s2. The

domain is 1000× 1000m2 discretized by 51× 51 points. Inviscid wall conditions are specified on all

boundaries. This case represents the hydrostatic equilibrium for the two-dimensional rising thermal

bubble problem [9]. A time step of 0.02 s is taken, and the solution is evolved until a final time of

Table 2 Relative error with respect to the initial solution for the three equilibria with the

WENO5 and CRWENO5 schemes.

Case Algorithm ‖ε‖1 ‖ε‖2 ‖ε‖∞ ‖ε‖1 ‖ε‖2 ‖ε‖∞

WENO5 CRWENO5

Case 1 Balanced 6.02E-15 7.11E-15 1.31E-14 1.50E-14 1.53E-14 2.09E-14

Naive 3.75E-02 4.39E-02 7.34E-02 2.86E-02 3.37E-02 6.17E-02

Case 2 Balanced 3.63E-15 4.35E-15 8.15E-15 1.58E-14 1.83E-14 6.11E-14

Naive 1.62E-02 1.60E-02 1.72E-02 1.89E-02 1.86E-02 1.99E-02
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Fig. 3 Pressure perturbation at a final time of 0.25 on a grid with 200 points with the WENO5

and CRWENO5 schemes (every fourth grid point is plotted). The reference solution is ob-

tained with the CRWENO5 scheme on a grid with 2, 000 points.

1000 s with the RK4 method.

Case 2 The second case corresponds to a stratified atmosphere with a specified Brunt-Väisälä

frequency N (Example 3 in the Appendix). The initial solution is specified by Eq. (75) with

N = 0.01 /s, u = 20m/s, v = 0m/s, R = 287.058 J/kg K, T = 300K, p0 = 105 N/m2, and

g = 9.8m/s2. The domain is 300, 000 × 10, 000m2 discretized by 1200 × 50 points. Periodic

boundaries are specified along x, and inviscid wall boundaries are specified along y. This case

represents the hydrostatic equilibrium for the inertia-gravity wave problem [9]. A time step of 0.25 s

is taken, and the solution is evolved until a final time of 3000 s with the SSPRK3 method.

The two cases are solved with the balanced formulation, as well as a naive discretization of

the source term. The Roe scheme is used for upwinding in all the cases. Table 2 shows the L1,

L2, and L∞ norms of the error defined by Eq. (60). When the balanced formulation is used, the

errors are zero to machine precision for both the CRWENO5 and WENO5 schemes in all the cases.

However, the naive discretization of the source term results in a significant error in preserving the

steady state. Thus, these tests demonstrate that the balanced algorithm is necessary to accurately

preserve the hydrostatic balance.

A one-dimensional problem [41] is used to test the accurate simulation of small perturbations
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to the hydrostatic balance. The initial solution represents a pressure perturbation to an isothermal

hydrostatic equilibrium with a constant gravitational field of unit magnitude,

ρ (y, 0) = exp (−y) , p (y, 0) = exp (−y) + η exp
[
−100 (y − 0.5)

2
]
, u (y, 0) = 0, (61)

on a unit domain y ∈ [0, 1] with extrapolative boundary conditions. The specific heat ratio is

γ = 1.4. Solutions are obtained at a final time of 0.25 with the RK4 method, and a time step of

0.0025 (corresponding to a CFL of ∼ 0.6). Figure 3 shows the initial and final pressure perturbations

(p (y, t)− exp (−y)), obtained with the WENO5 and CRWENO5 schemes on a grid with 200 points.

The reference solutions are obtained with the CRWENO5 scheme on a grid with 2, 000 points. Two

values of the perturbation strength (η) are considered: 10−2 and 10−4. The computed solutions agree

well with the reference solutions as well as with results reported in the literature [41]. These results

demonstrate that the algorithm is able to accurately capture both strong and weak perturbations

to the balanced steady state.

B. Sod’s Shock Tube with Gravitational Forcing

Sod’s shock tube test [55] is a benchmark one-dimensional Riemann problem. A modified test

case with gravitational forcing [41] is solved. The initial solution is given by

(ρ, v, p) =


(1, 0, 1) y < 0.5

(0.125, 0, 0.1) y ≥ 0.5

, (62)

on a unit domain y ∈ [0, 1] discretized by a grid with 101 points. The specific heat ratio is γ = 1.4.

Reflective boundary conditions are applied at both ends of the domain. The flow is subjected to a

gravitational field g = 1. Solutions are obtained at a final time of 0.2 with the SSPRK3 method and

a time step of 0.002 (corresponding to a CFL of ∼ 0.4). The Roe upwinding scheme is used. Figure 4

shows the solutions obtained with the WENO5 and CRWENO5 schemes; the reference solution is

obtained with the CRWENO5 scheme on a grid with 2, 001 points. The computed solutions agree

well with the reference solution and results in the literature [41].
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Fig. 4 Solution to the modified Sod’s shock tube problem (with gravity) obtained with the

WENO5 and CRWENO5 scheme on a grid with 101 points (every second point is plotted).

The reference solution is obtained with the CRWENO5 scheme on a grid with 2, 001 points.

The solution obtained by Xing and Shu [41] with the WENO5 scheme on a grid with 100

points is also shown.

C. Inertia-Gravity Waves

The inertia-gravity wave [9, 56] is a two-dimensional benchmark for atmospheric models that

involves the evolution of a potential temperature perturbation. The domain consists of a channel

with dimensions 300, 000m× 10, 000m. Periodic boundary conditions are applied on the left (x =
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Fig. 5 Inertia-gravity waves: Potential temperature perturbation contours for the solution

obtained with the CRWENO5 scheme on a grid with 1200× 50 points.

0m) and right (x = 300, 000m) boundaries, while inviscid wall boundary conditions are applied
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for the solution obtained at 3000 s with the WENO5 and CRWENO5 scheme on a grid with

1200× 50 points (250m× 200m resolution. The reference solutions are computed by using two

operational numerical weather prediction codes: NUMA [9] and WRF [16].
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Fig. 7 Inertia-gravity waves: Potential temperature perturbation contours with a naive treat-

ment of the source terms at a final time of 1 s. The solution is obtained with the CRWENO5

scheme on a grid with 1200× 50 points.

on the bottom (y = 0m) and top (y = 10, 000m) boundaries. The initial flow is a perturbation

added to a stratified atmosphere in hydrostatic balance (Example 3 in the Appendix). The Brunt-

Väisälä frequency is specified as N = 0.01 /s, the gravitational force per unit mass is 9.8m/s2,

and the horizontal flow velocity is u = 20m/s throughout the domain. The reference pressure and

temperature at y = 0m are 105 N/m2 and 300K, respectively. The perturbation is added to the
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potential temperature, specified as

∆θ (x, y, t = 0) = θc sin

(
πcy

hc

)[
1 +

(
x− xc
ac

)2
]−1

, (63)

where θc = 0.01K is the perturbation strength, hc = 10, 000m is the height of the domain, ac =

5, 000m is the perturbation half-width, xc = 100, 000m is the horizontal location of the perturbation,

and πc ≈ 3.141592654 is the Archimedes (trigonometric) constant. The evolution of the perturbation

is simulated until a final time of 3000 s.

Solutions are obtained with the WENO5 and CRWENO5 schemes on a grid with 1200 × 50

points that results in a resolution of 250m in x and 200m in y. The SSPRK3 method is used for

time integration with a time step of 0.25 s (corresponding to a CFL of ∼ 0.4). The Rusanov scheme

is used for upwinding. Figure 5 shows the potential temperature perturbation (∆θ) for the initial,

intermediate, and final solutions. The results agree well with those in the literature [17, 20, 24, 56].

The initial perturbation is centered at x = 100, 000m while the flow features in the final solution

are centered at x = 160, 000m; this translation is expected because of the mean horizontal velocity

of 20m/s.

Figure 6 shows the cross-sectional potential temperature perturbation at an altitude of y =

5, 000m. The solutions obtained with the WENO5 and CRWENO5 schemes are compared with

two reference solutions: “NUMA" and “WRF". NUMA [9] refers to a spectral-element solver and

the solution is obtained with 10th-order polynomials and 250m effective grid resolution. WRF [16]

uses a finite-difference discretization and the solution is obtained with a fifth-order upwind scheme

in x and a third-order upwind scheme in y [17]. Good agreement is observed with NUMA, while

there is a slight difference in the perturbation propagation speed with WRF. Figure 7 shows the

potential temperature contours of the solution after four time steps (final time of 1 s). A naive

treatment of the source term is used where the cell-centered values of the density and velocity are

used to compute it. The horizontal contours near the top and the bottom boundaries are the errors

resulting from the hydrostatic imbalance and they overwhelm the solution. This demonstrates the

need for the well-balanced formulation.
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Fig. 8 Rising thermal bubble: Potential temperature perturbation (∆θ) contours for the

solution obtained with the WENO5 scheme on a grid with 401× 401 points (2.5m resolution).
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(d) NUMA 2.5m

Fig. 9 Rising thermal bubble: Comparison of potential temperature perturbation (∆θ) con-

tours at 700 s for the solution obtained with the WENO5 scheme and NUMA [9] for two grid

resolutions.

D. Rising Thermal Bubble

The two-dimensional rising thermal bubble [9] is another benchmark for atmospheric flows that

simulates the dynamics of a warm bubble. The square domain of dimensions 1000m × 1000m is

specified with inviscid wall boundary conditions on all sides. The initial solution is a stratified

atmosphere in hydrostatic balance corresponding to Example 2 in the Appendix. The constant

potential temperature (and thus the reference temperature at y = 0m) is 300K and the reference

pressure is 105 N/m2. The ambient flow is at rest and experiences a constant gravitational force per

unit mass of 9.8m/s2. The warm bubble is added as a potential temperature perturbation specified
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Fig. 10 Rising thermal bubble: Cross-sectional potential temperature perturbation (∆θ) at

x = 500m and y = 720m for the solution obtained at 700 s with the WENO5 scheme and

NUMA [9] on grids with resolutions of 5m and 2.5m.

as

∆θ (x, y, t = 0) =


0 r > rc

θc
2

[
1 + cos

(
πcr
rc

)]
r ≤ rc

, r =
√

(x− xc)2 + (z − zc)2, (64)

where θc = 0.5K is the perturbation strength, (xc, yc) = (500, 350)m is the initial location at which

the bubble is centered, rc = 250m is the radius of the bubble, and πc is the trigonometric constant.

The flow is simulated to a final time of 700 s.

Figure 8 shows the solution obtained on a grid with 4012 points, corresponding to a resolution

of 2.5m. The Rusanov scheme is used for upwinding. The RK4 method is used for time integration

with a time step of 0.005 s (corresponding to a maximum CFL of ∼ 0.7). The potential temperature

perturbation (∆θ) is shown at 0 s (initial bubble), 250 s, 500 s, and 700 s. The warm bubble rises as

a result of buoyancy. The temperature differential within the bubble causes velocity gradients that

shear and deform the bubble to a mushroom-like cloud. At the top boundary, the deformed bubble

interacts with the inviscid wall to form a thin layer of warm air, while the trailing edges roll up due

to the local temperature difference. The solution agrees with the inviscid results reported in the

literature [8, 9].
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The solutions obtained by the proposed algorithm are compared with those obtained with the

two-dimensional version of NUMA [9] (Nonhydrostatic Unified Model of the Atmosphere) with the

same order of accuracy and grid resolution. NUMA solves the governing equations in terms of mass,

momentum, and potential temperature discretized by the continuous and discontinuous Galerkin

methods with spectral elements. Figures 9(a) and 9(b) show the final solution at 700 s obtained with

the WENO5 scheme on grids with 2012 and 4012 points (5m and 2.5m grid resolutions), respectively.

Figures 9(c) and 9(d) show the solutions obtained with NUMA using the continuous Galerkin

discretization. The domain is discretized with 402 and 802 elements with fifth-order polynomials,

respectively, resulting in effective grid resolutions of 5m and 2.5m. These solutions are obtained

at a CFL of ∼ 0.7 with the RK4 time integration method. Good agreement is observed for the

overall flow at both grid resolutions. Figure 10 shows the cross-sectional potential temperature

perturbation for the solutions shown in Fig. 9 along y (x = 500m) and x (y = 720m). While

the solutions obtained with NUMA exhibit smooth flow features, the WENO5 solutions predict

stronger gradients that result in qualitatively different flow features at small length scales. As

an example, WENO5 predicts a stronger roll-up of the trailing edges at 2.5m grid resolution at

600m ≤ x ≤ 700m, y ∼ 720m, as observed in Fig. 10(b). This difference is due to the treatment of

subgrid-length scales. The NUMA solver stabilizes the solution through a residual-based dynamic

subgrid-scale model [57, 58] designed for large-eddy simulation (LES), whereas the WENO5 solution

to the inviscid Euler equations relies on the linear and nonlinear numerical diffusion to stabilize the

unresolved scales. Incorporation of a subgrid-scale model in the current solver will be explored in

the future.

V. Conclusions

A well-balanced conservative finite-difference algorithm is proposed in this paper for the numer-

ical simulation of atmospheric flows. The governing equations (inviscid Euler equations) are solved

as conservation laws for mass, momentum, and energy, with no additional assumptions; thus, they

are of the same form as those that are used in the computational aerodynamics community. The

discretization of the hyperbolic flux and the treatment of the source term are modified so that the
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overall algorithm preserves hydrostatically balanced equilibria to machine precision; this formulation

is an extension of the previous work by Xing and Shu (2013). In the absence of gravitational forces,

the algorithm reduces to the standard finite-difference discretization of the Euler equations. The

fifth-order weighted essentially nonoscillatory and the compact-reconstruction weighted essentially

nonoscillatory schemes are used in this paper for spatial discretization; however, the well-balanced

formulation can be used with any conservative finite-difference methods. The ability of the proposed

algorithm to preserve a hydrostatically balanced equilibrium is demonstrated on examples of strat-

ified atmosphere. We show that the balanced formulation preserves such steady states to machine

precision, while a naive treatment of the source term does not. Benchmark flow problems are solved

to verify the algorithm. The solutions are compared with those obtained with operational, state-

of-the-art atmospheric flow solvers (WRF and NUMA) and good agreement is observed. Future

work will focus on incorporating semi-implicit and implicit time-integration methods, as well as a

subgrid-scale model similar to the models used in established atmospheric flow solvers.

Appendix

Three examples of the well-balanced finite-difference formulation are presented. These exam-

ples are representative of the hydrostatic equilibrium encountered in benchmark atmospheric flow

problems.

Example 1 The first example is the isothermal steady state. The resulting formulation is

identical to the previously proposed well-balanced WENO scheme [41]. The steady state can be

derived by assuming the temperature T = T0 to be a constant and applying the hydrostatic balance

Eq. (38). It is given by

u = constant, v = 0, ρ = ρ0 exp
(
− gy

RT

)
, p = p0 exp

(
− gy

RT

)
, (65)

where the reference density ρ0 and pressure p0 are related by the equation of state. Thus, the

functions % (y) and ϕ (y) in Eq. (37) are

% (y) = exp
(
− gy

RT

)
, ϕ (y) = exp

(
− gy

RT

)
. (66)
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The modified source term in Eq. (42) and the modified solution in Eqs. (54) and (55) are

s∗ =



0

0

ρRT0 exp
(
gy
RT

) {
exp

(
− gy
RT

)}
y

ρvRT0 exp
(
gy
RT

) {
exp

(
− gy
RT

)}
y


, and q∗ =



ρ exp
(
gy
RT

)
ρu exp

(
gy
RT

)
ρv exp

(
gy
RT

)
e exp

(
gy
RT

)


. (67)

Example 2 The second example is a hydrostatic balance that is frequently encountered in

atmospheric flows of practical relevance [9, 10, 17]. The steady state is derived by specifying a

stratified atmosphere with constant potential temperature θ = T0. The hydrostatic balance is thus

expressed as

γR

γ − 1
θ
dπ

dy
= −g ⇒ ρ = ρ0

[
1− (γ − 1)gy

γRθ

]1/(γ−1)
, p = p0

[
1− (γ − 1)gy

γRθ

]γ/(γ−1)
, u = constant, v = 0.

(68)

where π is the Exner pressure (see section II. Thus, the functions % (y) and ϕ (y) in Eq. (37) are

% (y) =

[
1− (γ − 1)gy

γRθ

]1/(γ−1)
, ϕ (y) =

[
1− (γ − 1)gy

γRθ

]γ/(γ−1)
, (69)

and the modified source term in Eq. (42) and the modified solution in Eqs. (54) and (55) are

s∗ =



0

0

ρRT0

{
1− (γ−1)gy

γRθ

}−1/(γ−1){(
1− (γ−1)gy

γRθ

)γ/(γ−1)}
y

ρvRT0

{
1− (γ−1)gy

γRθ

}−1/(γ−1){(
1− (γ−1)gy

γRθ

)γ/(γ−1)}
y


, (70)

and

q∗ =



ρ
{

1− (γ−1)gy
γRθ

}−1/(γ−1)
ρu
{

1− (γ−1)gy
γRθ

}−1/(γ−1)
ρv
{

1− (γ−1)gy
γRθ

}−1/(γ−1)
e∗


, (71)

where

e∗ =
p

γ − 1

[
1− (γ − 1)gy

γRθ

]−γ/(γ−1)
+

1

2
ρ

[
1− (γ − 1)gy

γRθ

]−1/(γ−1) (
u2 + v2

)
. (72)
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Example 3 The third example is a stratified atmosphere with a specified Brunt-Väisälä fre-

quency (N ) [9, 56]

N 2 = g
d

dy
(log θ)⇒ θ = T0 exp

(
N 2

g
y

)
. (73)

Assuming hydrostatic balance, the Exner pressure is given by

π = 1 +
(γ − 1)g2

γRT0N 2

[
exp

(
−N

2

g
y

)
− 1

]
, (74)

and the steady state flow variables are

p = p0

[
1 +

(γ − 1)g2

γRT0N 2

{
exp

(
−N

2

g
y

)
− 1

}]γ/(γ−1)
, (75)

ρ = ρ0 exp

(
−N

2

g
y

)[
1 +

(γ − 1)g2

γRT0N 2

{
exp

(
−N

2

g
y

)
− 1

}]1/(γ−1)
, (76)

u = constant, v = 0. (77)

Thus, the functions % (y) and ϕ (y) in Eq. (37) are

% (y) = exp

(
−N

2

g
y

)[
1 +

(γ − 1)g2

γRT0N 2

{
exp

(
−N

2

g
y

)
− 1

}]1/(γ−1)
, (78)

ϕ (y) =

[
1 +

(γ − 1)g2

γRT0N 2

{
exp

(
−N

2

g
y

)
− 1

}]γ/(γ−1)
. (79)

The modified source term in Eq. (42) and the modified solution in Eqs. (54) and (55) are

s∗ =



0

0

ρRT0 exp

(
N2

g
y

)[
1 +

(γ−1)g2

γRT0N2

{
exp

(
−N

2

g
y

)
− 1

}]−1/(γ−1)
{(

1 +
(γ−1)g2

γRT0N2

{
exp

(
−N

2

g
y

)
− 1

})γ/(γ−1)
}
y

ρvRT0 exp

(
N2

g
y

)[
1 +

(γ−1)g2

γRT0N2

{
exp

(
−N

2

g
y

)
− 1

}]−1/(γ−1)
{(

1 +
(γ−1)g2

γRT0N2

{
exp

(
−N

2

g
y

)
− 1

})γ/(γ−1)
}
y


(80)

and

q∗ =



ρ exp
(
N 2

g y
) [

1 + (γ−1)g2
γRT0N 2

{
exp

(
−N

2

g y
)
− 1
}]−1/(γ−1)

ρu exp
(
N 2

g y
) [

1 + (γ−1)g2
γRT0N 2

{
exp

(
−N

2

g y
)
− 1
}]−1/(γ−1)

ρv exp
(
N 2

g y
) [

1 + (γ−1)g2
γRT0N 2

{
exp

(
−N

2

g y
)
− 1
}]−1/(γ−1)

e∗


, (81)

where

e∗ =
p

γ − 1

[
1 +

(γ − 1)g2

γRT0N 2

{
exp

(
−N

2

g
y

)
− 1

}]−γ/(γ−1)
(82)

+
1

2
ρ exp

(
N 2

g
y

)[
1 +

(γ − 1)g2

γRT0N 2

{
exp

(
−N

2

g
y

)
− 1

}]−1/(γ−1) (
u2 + v2

)
. (83)
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