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Abstract. We present a low-memory approach for the best-state estimate (data assimilation) of
hidden Markov models where model error is considered. In particular, our findings apply for the 4D-
Var framework. The novelty of our approach resides in the fact that the storage needed by our estima-
tion framework, while including model error, is dramatically reduced from O(number of time steps)
to O(1). The main insight is that we can restate the objective function of the state estimation (the
likelihood function) from a function of all states to a function of the initial state only. We do so
by restricting the other states by recursively enforcing the optimality conditions. This results in a
regular nonlinear equation or an optimization problem for which a descent direction can be com-
puted using only a forward sweep. In turn, the best estimate can be obtained by limited-memory
quasi-Newton algorithms that need only O(1) storage with respect to the time steps. Our findings
are demonstrated by numerical experiments on Burgers’ equations.
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1. Introduction. Data assimilation is the process of computing the best esti-
mate the trajectory of a dynamical system with observational data [5, 8, 9]. This
technique is used extensively in meteorology and hydrology in order to make accurate
predictions about the state of atmosphere and oceans [8, 13]. However, recent applica-
tions have called for explicit inclusion of model error such as from sub-grid modeling,
boundary conditions and forcings. All these modeling uncertainties are aggregated
into a component that is generically called model error [7, 15, 17], which in turn results
in the following best-fit 4DVar-with-model-error functional [11, 12, 23, 24, 26].

J (xt0 , xt1 , . . . , xtN ) =
1

2
(xt0 − xB)TQ−1

B (xt0 − xB)+ (1.1)

1

2

N∑
k=0

(Hk(xtk)− yk)TR−1
k (Hk(xtk)− yk)+

1

2

N−1∑
k=0

(xtk+1
−Mk(xtk))TQ−1

k (xtk+1
−Mk(xtk)).

All the quantities of interest are indexed by k, k = 0, 1, . . . , N , where tk is the time
instant. Here, the variables xtk , are the states of the model at times ti, that need to
be identified by minimizing the functional J . The data of the problem are as follows.
The quantities xB and QB are the background state and the background covariance
matrix, respectively. The vectors yk represent the observations, whereas the nonlinear
mapping H(·) is the observation operator that maps states into observables. The
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matrix Rk is the covariance error for the observations. The mapping Mk(·) describes
the evolution of the physical model, whereas the matrix Qk quantifies the covariance
of the model error. The functional J is the minus log likelihood of the hidden Markov
model [20, 21]:

xtk+1
= M(xtk) + ηk, yk = H(xtk) + εk, ηk ∼ N (0, Qk) εk ∼ N (0, Rk).

For this reason, we call the minimization of J, which is equivalent to the maximum
likelihood calculation for the hidden Markov model, state estimation of hidden Markov
models with model error.

In the limiting case of 0 model error, that is, Qk → ∞, we obtain the so-called
strongly constrained model [4, 8, 19], which is the one most commonly used in today’s
applications. Because it now includes the recursive constraints xtk+1

= Mk(xtk), it
can effectively be thought of as being a function only of the initial condition xt0 ,
which is the only variable that needs to be stored, all the others being obtained by
the recursion.

Unfortunately, this reduction does not apply to the case including model error,
also called weakly constrained, which is now a function of N + 1 times more variables
and thus requires substantially more memory to store the result of the minimization
of (1.1). As we move to ever higher spatial resolution such as global cloud resolving
models that require a horizontal resolution of 1–3 Km2, the amount of memory and
storage space in the case of considering model error would make such computations out
of practical reach. We focus on memory requirements because we are entering a phase
in computational science where power considerations lead us to reduced available
memory per unit of computational power ([6]).

In this study we introduce a numerical method that reduces the memory require-
ments of running the weakly constrained 4D-Var. The method is based on a shooting
philosophy constrained by the optimality conditions for the likelihood function. Burg-
ers’ equation is used to illustrate the technique and compare it with a derivative-free or
full memory-intensive implementation. While this will be done in a 1+1-DVar (in the
sense that the spatial dimension is only 1), our example has the same time-dependence
structure as full 4D-Var approaches. Therefore, we expect that conclusions about the
dependence of the storage requirements of method on the number of time steps, the
main investigation topic here, will carry through to the actual 4D-Var case.

The rest of the paper is structured as follows. In §2 we present our algorithm
in an abstract framework, and we analyze its well-posedness. In §3 we discuss the
implications of using the algorithms for the 4D-Var setup, and we present stability
and regularity conditions and considerations. Numerical experiments to validate our
findings are presented in §4. In §5 we summarize our conclusions.

2. A low-memory approach for data assimilation with model error. We
introduce an abstraction of the data assimilation with the model error problem, the
4D-Var problem (1.1). The abstraction will be useful in understanding the fundamen-
tals of our approach, reducing the notation burden, and providing a framework for
the extension of these results.

2.1. Abstraction of the problem. We assume that we are trying to recover
the states xi, i = 0, 1, . . . , N, of a system that evolves over N time steps with x0 as
an initial state and xN as a final state.

We assume that this optimal state is recovered by minimizing a cost functional
with several components. These components are of two types:
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• Evolution components, which constrain the relative evolution of two consec-
utive components, φi (xi,xi+1), i = 0, 1, . . . , N − 1.

• Observational components, which constrain each state either by means of
observations or by means of a background prior, γi, i = 0, 1, . . . , N .

We define the scaled cost functional Γ as

Γ(x0:N ) :=
1

N

(N−1∑
i=0

[γi(xi) + φi(xi,xi+1)] + γN (xN )
)
. (2.1)

Minimizing this functional Γ will result in the best estimate according to the Γ cri-
terion. The rescaling will not affect the solution of the problem, but it is useful in
comparing residuals for increasing N . We will ignore the rescaling in the theoretical
derivations, but we will use it when comparing the numerical results.

2.2. Illustration of the abstraction in the case of 4D-Var. In the case of
the 4D-Var approach (1.1), we have that, for i = 0, · · · , N − 1,

φi(xi,xi+1) =
1

2

(
xi+1 −Mi(xi)

)T
Q−1
i

(
xi+1 −Mi(xi)

)
(2.2)

corresponds to the model error. Also, for i = 1, · · · , N,

γi(xi) =
1

2
(yi −Hi(xi))

T
R−1
i (yi −Hi(xi)) (2.3)

corresponds to the difference between observations and its model counterparts. For
i = 0, γ0 includes the background error measurement for the current value of x0 and
is formulated as

γ0(x0) =
1

2
(x0 − xB)TQ−1

B (x0 − xB) +
1

2
(y0 −H0(x0))

T
R−1

0 (y0 −H0(x0)) . (2.4)

Here xi = xti denotes a state in the ith step. We also define by x0:N := [x0, · · · ,xN ]T

for shorthand.

2.3. Reduced-memory algorithm. In this section, our goal is to define an
algorithm to minimize functional Γ as in (2.1), while storing at any time only a small
number of {xi}.

Assumption 1. Assume that φi(xi,xi+1) and γi(xi) are continuously differen-
tiable and that the mixed differentiation function ∇2

xi+1xi
φi(xi,xi+1) is invertible in

the neighborhood of the minimum x∗0:N .
Later we will verify that this assumption is indeed valid for the case of the 4Dvar

approach with model error (1.1).
We now define a sequence of functions as follows:

θ0(x0,x1) := ∇x0
φ0 +∇x0

γ0; (2.5a)

θi(xi−1,xi,xi+1) := ∇xi
φi +∇xi

φi−1 +∇xi
γi, i = 1, . . . , N − 1; (2.5b)

θN (xN−1,xN ) := ∇xN
φN−1 +∇xN

γN . (2.5c)

It immediately follows from (2.1) that the following relationships hold for the
partial derivatives of Γ.

∇x0
Γ(x0:N ) = θ0(x0,x1) (2.6a)
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∇xi
Γ(x0:N ) = θi(xi−1,xi,xi+1), i = 1, . . . , N − 1. (2.6b)

∇xN
Γ(x0:N ) = θN (xN−1,xN ) (2.6c)

The core of our method is based on the following observation.
Theorem 1. Under Assumption 1, there exist continuously differentiable map-

pings λi(x0), i = 1, 2, . . . , N, such that

θ0(x0, λ1(x0)) = 0 (2.7)

θi(λi−1(x0), λi(x0), λi+1(x0)) = 0, i = 1, 2, . . . , N − 1. (2.8)

Moreover, for any x0, {λi(x0)}i=1,2...,N are the unique vectors with this property.
Proof. We have from the definition of θi (while temporarily dropping the obvious

dependence on x0) that

∇xi+1θi(xi−1,xi,xi+1) = ∇xi+1∇xiφi(λi, λi+1). (2.9)

From Assumption 1 we have that ∇2
xi+1xi

φi(λi, λi+1) is invertible, which in turn
makes the Jacobian of the associated nonlinear equation in (2.9) invertible in xi+1,
i = 1, 2, . . . , N − 1 (with a similar conclusion for i = 0). The conclusion follows from
application of the implicit function theorem recursively in (2.9).

Based on Theorem 1, we can rewrite Γ as a function of x0 as follows:

Γ̂(x0) =
1

N

[N−1∑
i=0

γi
(
λi(x0)

)
+ φi

(
λi(x0), λi+1(x0)

)
+ γN

(
λN (x0)

)]
. (2.10)

By transferring the cost function (2.1) into (2.10), a function of initial state, con-
siderable storage space is saved during computation since we reduce the multistate
function to a single-state function. The main vehicle for this reduction is the explicit
enforcement of the optimality conditions at each of the time steps other than the
initial one. In some sense, the optimality conditions become the strong constraint
in the approach, replacing the perfect model assumption from current 4DVar data
assimilation procedures, that is, of course, if we can manipulate the function Γ̂ as
required by the optimization algorithms in a way that does maintain an O(1) storage.

To that end, we need more theoretical support to verify that the optimum so-
lution of (2.10) is the same as the initial state of the original problem’s optimum
solution. It is well known that for a twice continuously differentiable function f , if x
is a local minimizer of f , then there are two necessary conditions must be satisfied:
f ′(x) equals 0 (first-order necessary condition; x here is called a stationary point)
and f ′′(x) is positive semi-definite (second-order necessary condition). The sufficient
conditions that x is a local minimizer of f are that x is a stationary point and f ′′(x)
is positive definite (second-order sufficient condition). Hence we need to figure out
the derivatives first.

The gradient of Γ̂ is calculated as

∇x0
Γ̂ = θ0(λ0, λ1) + (∇x0

λN )T θN (λN−1, λN ) +

N−1∑
i=1

(∇x0
λi)

T θi(λi−1, λi, λi+1).

Because of the way λi, i = 1, · · · , N are computed from the recursion (2.9), which
implies that θ0(λ0, λ1) ≡ 0 and θi(λi−1, λi, λi+1) ≡ 0, i = 1, · · · , N − 1, we have that

∇x0
Γ̂ = (∇x0

λN )T θN (λN−1, λN ) x0 ∈ N (x∗0). (2.11)
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Define Li := ∇x0
λi. The second-order derivative of Γ̂ at x∗0 is calculated by product

rule as

∇2
x0x0

Γ̂ = ∇λ0
θ0 + LT1∇λ1

θ0 +
(
LTN−1∇λN−1

θN + LTN∇λN
θN
)
LN+

N−1∑
i=1

(
LTi−1∇λi−1θi + LTi ∇λiθi + LTi+1∇λi+1θi

)
Li+

N−1∑
i=1

(
(θi)

T ⊗ Is
)
∇x0vec(Li) +

(
(θN )T ⊗ Is

)
∇x0vec(LN ), (2.12)

where Is is an s× s identity matrix with s being the dimension of xi and ⊗ denotes
Kronecker product. To prove (2.12), we need only to prove that the first derivative
matrix of s× s matrix M and s× 1 vector u, with respect to s× 1 vector x, i.e

∇x(Mu) =
(
uT ⊗ Is

)
∇xvec(M) +M∇xu.

Here the Kronecker product, uT ⊗ Is =
(
u1Is · · · usIs

)
, and vec(M) is a s2 × 1

vector stacking the columns of the matrix M on top of one another; that is, vec(M) =(
m11 · · · ms,1 · · · m1s · · · ms,s

)T
. The first derivative matrix of vec(M) is

∇xvec(M) =


∂m11

∂x1
· · · ∂m11

∂xs

...
...

...
∂mss

∂x1
· · · ∂mss

∂xs

 .

Hence the ith-row-and-jth-column element of
(
uT ⊗ Is

)
∇xvec(M) is

∑s
k=1

∂mik

∂xj
uk.

The ith-row-and-jth-column element of M∇xu is
∑s
k=1mi,k

∂uk

∂xj
. The ith-row element

of Mu =
∑s
k=1mikuk and hence the ith-row-and-jth-column element of ∇x(Mu) is∑s

k=1mik
∂uk

∂xj
+
∑s
k=1

∂mik

∂xj
uk. Hence (2.12) is verified.

From Theorem 1, the last line of Equation (2.12) is zero. Then (2.12) can be
simplified at x∗0 as

∇2
x0x0

Γ̂ = ∇λ0θ0 + LT1∇λ1θ0 +
(
LTN−1∇λN−1

θN + LTN∇λN
θN
)
LN+

N−1∑
i=1

(
LTi−1∇λi−1θi + LTi ∇λiθi + LTi+1∇λi+1θi

)
LTi .

Because ∇λj
θi = ∇xj

∇xi
Γ|xj=λj

, j = i− 1, i, i+ 1, one can easily verify that

∇2
x0x0

Γ̂ = ΛT
(
∇2
x0:N

Γ(x0, λ1:N )
)

Λ, (2.13)

where

ΛT =
[
I, (∇x0

λ1)T , · · · , (∇x0
λN )T

]
. (2.14)

From (2.6) and (2.11) as well as the definition of the mappings θi, it immediately
follows that the component x∗0 of a stationary point x∗0,x

∗
1, . . . ,x

∗
N of (2.1) also sat-

isfies ∇x0
Γ̂(x∗0) = 0. Therefore, it is a stationary point of Γ̂. In the following result,

we show that the reciprocal is also true under some mild assumptions.
Theorem 2. If x∗0 is a local minimizer of Γ̂(x0) and λN (x0) is invertible, then(

x∗0, λ1(x∗0), · · · , λN (x∗0)
)

is a stationary point of Γ(x0:N ).
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Proof. From the definition of the mapping λi(·) in Theorem 1, we have that for
i = 1, · · · , N − 1,

θ0(x∗0, λ1(x∗0)) = 0, θi(λi−1(x∗0), λi(x
∗
0), λi+1(x∗0)) = 0.

Furthermore, according to the condition that x∗0 is a local minimizer of Γ̂(x0), it

follows that the derivative of Γ̂ with respect to x∗0 is zero. That is, according to
(2.11),

(∇x0λN )T θN (λN−1, λN ) = 0.

Because ∇x0
λN is invertible, it follows that θN (λN−1, λN ) = 0. Let x∗i = λi(x

∗
0). It

is then immediate that x∗0:N satisfies (2.6) and is thus a stationary point of Γ(x0:N ).
The proof is complete.

According to (2.13), the Hessian of Γ̂ at its local minimizer is only a lower-
dimension projection of the Hessian of Γ at a corresponding point. Hence the local
minimum of Γ̂ is not necessary to be local minimum of Γ. Let us take a simple one-
dimensional problem for a counterexample. Let Γ(x0, x1) = x0x1− 1

2x
3
0 + 7

2x
2
0−6x0−

3x1. Here N = 1, φ0(x0, x1) = x0x1, γ0(x0) = − 1
2x

3
0 + 7

2x
2
0− 6x0, and γ1(x1) = −3x1.

It easy to show that x1 = 3
2x

2
0 − 7x0 + 6 solves ∂Γ(x0,x1)

∂x0
= 0. By replacing x1 in Γ by

3
2x

2 + 0− 7x0 + 6, we can get Γ̂(x0) = x3
0 − 8x2

0 + 21x0 − 18. Obviously, ∂Γ̂
∂x0
|x0=3 = 0

and ∂2Γ̂
∂x2

0
|x0=3 = 2 > 0; therefore, x0 = 3 is local minimizer of Γ̂. However, when

x0 = 3, the Hessian of Γ satisfies

∇2
x0,x1

Γ(x0, x1) =

[
−3x0 + 7 1

1 0

]
(2.15)

and is indefinite with eigenvalues −2.4142 and 0.4142.
We can prove that the initial state of local minimizer of (2.1) is also the local

minimizer of (2.10). Moreover, and perhaps more important we can now prove that
the minimization of (2.10) is equivalent to a nonlinear equation with nonsingular
Jacobian, whose residual can be computed by doing forward sweeps only.

Theorem 3. Let x∗0 be the first component of a local minimizer of Γ(x0:N ) that
satisfies the second-order sufficient condition. Then the following hold:

[i ] x∗0 is a local minimizer of Γ̂(x0) that satisfies the second-order sufficient
conditions in x0.

[ii ] The matrix ∇x0
λN (x0) is invertible at x∗0, where λN (x0) is one of the

mappings from Theorem 1.
[iii ] In a neighborhood of x∗0, we have that

[iii-a ] ∇x0θN (λN−1(x0), λN (x0)) is invertible in a neighborhood of x∗0.
[iii-b ] θN (λN−1(x0), λN (x0)) = 0⇒ x0 = x∗0
[iii-c ] There exists Cθ such that

||θN (λN−1(x0)λN (x0))|| ≥ Cθ
∣∣∣∣∣∣∇x0

Γ̂(x0)
∣∣∣∣∣∣

Proof. If x∗0:N is a local minimizer of Γ(x0:N ), then x∗0:N satisfies (2.9), and

θN (xN−1,xN ) = 0. Then, λi(x
∗
0) = x∗i and ∇x0 Γ̂(x∗0) = 0.

Furthermore the second-order sufficient condition is satisfied by x∗0:N for Γ; in

other words, ∇2
x0:Nx0:N

Γ(x∗0:N ) is positive definite. Then, ∇2
x0x0

Γ̂(x∗0) is also positive
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definite from (2.13) and the fact that the matrix Λ in that equation is full rank because
of the inclusion of an identity block.

To sum up, x∗0 is a stationary point of Γ̂(x∗0) that satisfies the second-order

sufficient condition. Then, it is also a local minimizer of Γ̂, and part [i] of the Theorem
is proved.

For part [ii], we use (2.11) to obtain that (where we drop the dependence of λi
on x0 to simplify notation)

∇2
x0x0

Γ̂(x∗0) = (∇x0
λN )T∇λN−1

θN (λN−1, λN )∇x0
λN−1+

(∇x0λN )T∇λN
θN (λN−1, λN )∇x0λN . (2.16)

Note that the component of the Hessian involving the second-derivative λN disappears
since θN (λN−1, λN ) = 0 at x∗0. Also note that the above formula for ∇2

x0x0
Γ̂(x∗0) does

not imply that it is nonsymmetric (which would be a contradiction). The symmetry
of the matrix would eventually unfold after using the recursion for λi and, implicitly,
their Jacobians. Nevertheless, the form presented is sufficient for us to reach our
conclusions.

Assume now that ∇x0
λN were not invertible. Then, there must be a vector u 6= 0

such that ∇x0
λNu = 0. Using (2.16), we obtain that uT∇2

x0x0
Γ̂(x∗0)u = 0, which

contradicts the conclusion reached at part [i]. This proves the part [ii] of the theorem.
For part [iii], we use (2.11) to obtain

(∇x0
λN )−T∇x0

Γ̂(x0) = θN (λN−1, λN ), (2.17)

which in turn, with ∇x0
Γ̂(x∗0) = 0, results in

∇x0
θN (λN−1(x∗0), λN (x∗0)) = (∇x0

λN )−T (x∗0)∇2
x0x0

Γ̂(x∗0).

Since the latter relationship—following parts [i] and [ii]— is a multiplication be-
tween two nonsingular matrices, it follows that ∇x0θN (λN−1(x∗0), λN (x∗0)) is nonsin-
gular which proves [iii-a] and [iii-b]. From (2.17), and part [ii] the conclusion [iii-c]
follows as well, as ∇x0

λN is continuous and thus invertible in a neighborhood of x∗0.
This completes the proof of part [iii] and of the theorem.

2.4. Our low-memory approach. The essence of our approach follows from
Theorem 1 and Theorem 3. From these theorems, the minimizer x∗0 of (2.10) and,
implicitly, the first component of the minimizer of the target function (2.1) can be
obtained by solving the nonlinear systems of equations in x0.

θN (λN−1(x0), λN (x0)) = 0 (2.18)

For given x0, the function on the left of the preceding equation is evaluated by com-
puting λi(x0) recursively using Theorem 1. In turn, the nonlinear equation (2.18) is
well-posed from Theorem 3[iii]. The resulting nonlinear equation can now be solved
by limited-memory quasi-Newton nonlinear equation methods such as limited-memory
Broyden methods [25, 3]. Alternatively, under some conditions, the same recursion
can be used to compute the objective function (2.10) and a descent direction for it, as
we will illustrate in §3. In turn, this can be used in a limited-memory quasi-Newton
optimization arproach such L-BFGS [3, 14].

Therefore, in principle, (2.18) can be solved by using only O(1) stored vectors.
The only vectors that need to be stored are the current x0, the vectors at the current
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recursion step (xi and xi+1 at the ith step of the recursion in Theorem 1), and the
vectors needed by limited-memory Broyden’s method. Once the convergence criterion
is satisfied, the sought-after quantity (typically, the best estimate of the last state x∗N )
can be output after one more recursion.

In any case, our approach compares favorably with a brute-force minimization
of (2.1) where, in principle, all vectors xi need to be stored, i = 0, 1, 2, . . . N . For
high-fidelity simulations in memory-starved environments, as the emerging high-end
computing facilities appear to be, this can be a major handicap.

2.5. Comparison with the strong constraint case. Some of the difficulties
in the direct approach to (2.1) appear in the case with strong constraints:

min Γ(x0:N ) := 1
N

(∑N−1
i=0 [γi(xi) + φi(xi,xi+1)] + γN (xN )

)
,

xi+1 = Mi(xi), i = 0, 1, 2, . . . , N − 1.
(2.19)

Note that, because of the constraints, this new problem has only 1 vector degree of
freedom, whereas the problem of minimizing (2.1) had N + 1 degrees of freedom. In
the 4DVar case with strong constraints, as applied operationally, the terms φi do not
appear, but we preserve them for generality; they will not change our approach.

The optimality conditions for (2.19) can be obtained by introducing Lagrange
multipliers µi, i = 0, 1, . . . , N − 1 and the Lagrangian function

L(x0:N ,µ0:N−1) = Γ(x0:N ) +

N−1∑
i=0

(xi+1 −Mi(xi))
T
µi. (2.20)

The optimality-feasibility conditions become ∇xi
L = 0, i = 0, 1, . . . , N, ∇µi

L = 0,
i = 0, 1, . . . , N − 1,. That is,

0 = ∇x0
γ(x0) +∇x0

φ0(x0,x1)−∇x0
MT

0 (x0)µ0 (2.21a)

0 = ∇xi
γ(xi) +∇xi

φi−1(xi−1,xi) +∇xi
φi(xi,xi+1) + (2.21b)

µi−1 −∇xi
MT
i µi, i = 1, 2 . . . , N − 1,

0 = ∇xN
γ(xN ) +∇xN

φN−1(xN−1,xN ) + µN−1 (2.21c)

0 = xi+1 −Mi(xi), i = 0, 1, . . . , N − 1. (2.21d)

We are now faced with two options. The first is the classical adjoint approach,
which can be thought to follow from Pontryagin’s principle of optimal control. That
is, one can think of x0 being the only (vector) degree of freedom.

Indeed, this setup is identical to the optimal discrete nonlinear control setup [2,
Proposition 3.2]. It can be seen from that reference that the situation described here
corresponds to the case in which the control over the first time stage is the initial state
variable, x0, and the dynamics and the objective function for the other variables do
not depend on the control. Following the maximum principle in this setup, at a given
x0, one computes the states by carrying out the forward recursion (2.21d) and stores
them. Subsequently, the Lagrange multiplier µN−1 is computed from (2.21c). Then,
all other Lagrange multipliers (the “adjoint variables”) are computed recursively from
(2.21b) backwards all the way to µ0. Next, the quantity

∇x0L = ∇x0γ(x0) +∇x0φ0(x0,x1)−∇x0M
T
0 (x0)µ0

8



is evaluated. This is simply the derivative of the objective function restricted on the
feasible manifold defined by (2.21d) but unrestricted in x0.

Subsequently, since the gradient is available, one has the option of carrying out
a quasi-Newton optimization approach or, similar to the weakly constrained case
described before, of solving the nonlinear equation resulting from setting the gradient
to zero, that is, (2.21a). Nevertheless, note that to carry out the backward recursion,
as is the case with all adjoint approaches, one needs to store at some point all vectors
x0:N , which may be a significant cost.

Alternatively and related to the approach in this work, one can look at the
optimality-feasibility conditions (2.21) as the nonlinear equation

∇xN
γ(xN (x0)) +∇xN

φN−1(xN−1(x0),xN (x0)) + µN−1(x0) = 0. (2.22)

Here, the component functions of x0 are defined recursively as follows. From a pre-
scribed x0, equation (2.21d) is solved for i = 0, and x1(x0) is obtained. Subsequently,
equation (2.21a) is solved for µ0(x0), which exists uniquely if ∇xM0(x0) is invertible
(which is the case for all time resolvents). Then a recursion is carried out through
(2.21b) and (2.21d), obtaining at each step xi+1(x0) and µi(x0) up to i = N − 1.
At that point, all the elements needed to evaluate the left-hand side of (2.22) are
computed, and that quantity can be evaluated. At this point, one can apply the
limited-memory Broyden method and carry out the solution of the optimality system
with O(1) vector storage as in the weakly constrained session.

On the other hand, the case for using the nonlinear equation—limited-memory
method for the strongly constrained case—is less compelling, since for the adjoint
case O(logN) vector storage schemes exist by using checkpointing on the adjoint
calculation while regenerating the x vectors as needed from (2.21d). While this results
in substantial additional computational expense, the approach is well understood and
has the advantage of leading to an optimization problem and guarantees of global
convergence to stationary points. Moreover, one does not need an extra solve with
∇xM(x) at every step. Otherwise, in terms of conceptual complexity, the limited-
memory quasi-Newton approach for the adjoint-optimization approach seems to be
comparable to the limited-memory quasi-Newton approaches proposed in this work.

In the weakly constrained case considered here (2.1), however, the backward re-
cursion option does not seem to exist. The reason is that the problem is now truly
a problem over an (N + 1)d dimensional space defined by x0:N , as opposed to over
a d dimensional case defined by x0 in the strongly constrained case. Therefore there
is no projected gradient to speak of, which is an important concept in adjoint cal-
culations. One could consider the optimality conditions of Theorem 1 as constraints
on (2.1) and then apply the approach described through Equations (2.21). Doing so,
however, would require second derivatives of Mi(x), which seems a steep price to pay
for a first-order algorithm insofar as optimization properties are concerned. Therefore
our approach in §2.3, while related with Pontryagin’s maximum principle, cannot be
really inferred from it. We will thus concentrate on the algorithm described in §2.3.

The comparison with the strongly constrained case reveals another interesting
insight. In the control literature, the forward-nonlinear equation approach is thought
of as a shooting approach for a boundary value problem. We can thus think of the
approach from this work as a shooting approach for the nonlinear equation of the
optimality conditions of (2.1) combined with a quasi-Newton method.

3. Low-memory algorithm for weakly constrained 4D-Var. In this sec-
tion, we show how the abstract approach from §2 works in the weakly constrained
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4D-Var frame. That is, we study the case when φi and γi are defined from (2.2) and
(2.3), respectively.

First, we need to ensure that Assumption 1 holds. For the weakly constrained
4D-Var method defined in (2.1), (2.2), (2.3) and (2.4) we know that

∇xi+1
∇xi

φi(xi,xi+1) = −(∇xi
Mi(xi))

TQ−1.

Therefore it is invertible if and only if ∇xi
Mi(xi) is invertible. In addition, for

satisfying Assumption 1 completely, Mi, Hi must be continuously differentiable.
Since in most applications Mi represents the solution flow of a regular ordinary

differential equation, the assumption that Mi is smooth and invertible holds. Since
the observation operator Hi can indeed be assumed to be continuously differentiable,
we conclude that Assumption 1 holds. Therefore Theorem 1 holds, and the reduced
objective function stationary point of the reduced objective function (2.10) is a solu-
tion of the nonlinear equation (2.18). In addition, if the weakly constrained 4D-Var
problem satisfies the strong-second order condition at its solution, then Theorem 3
also holds in this case, and the nonlinear equation is locally well-posed and solvable
by limited-memory Broyden methods.

3.1. Form of the recurrence in the weakly constrained 4D-Var case.
Because of quasi-quadratic form of φi and γi, for a fixed initial state x0, we get x1

by solving the θ0(x0,x1) = 0 as

x1 =M0(x0) +Q0(∇x0M0(x0))−TQ−1
B (x0 − xB)+ (3.1)

Q0(∇x0
M0(x0))−T (∇x0

H0(x0))TR−1
0 (H0(x0)− y0) ;

and we get xi+1 by solving the θi(xi−1,xi,xi+1) = 0 for i = 1, · · · , N − 1 as

xi+1 =M0(xi) +Qi(∇xiMi(xi))
−T (∇xiHi(xi))TR−1

i (Hi(xi)− yi) (3.2)

+Qi(∇xi
Mi(xi))

−TQ−1
i−1 (xi −Mi−1(xi−1)) .

With xN−1,xN computed by recurrence (3.2), we have

θN (xN−1,xN ) =2Q−1
N−1(xN −MN−1(xN−1))− (3.3)

2(∇xN
HN (xN ))TR−1

N (yN −HN (xN )).

3.2. Stability issues. The advantage of our method is most evident at large N
values. On the other hand, in that regime the recursive nature of the solution opens
the door to having an unstable scheme that, even if formally well defined, results in
quantities too large to be practical. These difficulties are not by themselves unique to
our method; the recurrence in the maximum principle approach (adjoint approach) in
the case of strong constraints is also susceptible to instability if the number of steps
considered is too large in relationship to the size of the eigenvalues of ∇xM(x) [2,
Equation (3.38)].

Therefore, the stability of the recurrence (3.2) needs to be studied. We are partic-
ularly interested in the limit case N →∞. For a dynamical system such as Burgers’
equation, given a fixed time interval, it is desirable that when the time step goes to
zero (i.e., the iteration number N increases to infinite) and the time interval T is
fixed, the solution of (3.2) will remain bounded.

Since a complete analysis is difficult for nonlinear systems, we will carry out this
analysis for linear time-invariant systems. That is, we will investigate only the case
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of linear Mi in (2.2) and Hi from (2.3):

Mi(xi) = Axi; (3.4)

Hi(xi) = Bxi. (3.5)

By replacing (3.4) and (3.5) in (3.2), the recurrence formula for computing xi+1, i =
1, · · · , N − 1, becomes

xi+1 =−QA−TBTR−1yi −QA−TQ−1Axi−1+ (3.6)

(QA−TQ−1 +A+QA−TBTR−1B)xi,

and

x1 =−QA−T (BTR−1y0 +Q−1
B xB) + (QA−TQ−1

B +A+QA−TBTR−1B)x0. (3.7)

We want to allow for an asymptotic analysis with h = T
N → 0, and with T fixed.

We thus discuss how the various quantities of interest should behave with h. In the
following we use the Landau notations: a = O(h), and, respectively a = o(h) indicates
that ||a/h|| is bounded, and respectively, converges to 0, as h→ 0.

To mimic the discretization of a continuous dynamical system, the propagator of
the dynamical system should satisfy A = I+O(h) = I+O

(
T
N

)
. Since the covariance

matrix R models instrument error, it is reasonable to assume that it is independent
of the time step, and we will thus take it constant. About the numerical error model
consistency requires that the error be no larger than O(h) = O( TN ) the size of the
time step and thus, its variance, no larger then the square of it. We make a marginally
stronger assumption below.

Assumption [A] We assume that A = A(h) = I + hP +O(h2), Q = Q(h)=
ψ(h)(Q0 +O(h)), R = O(1), QB = O(1) for h→ 0. Here Q0 is a constant invertible
covariance matrix, and ψ(h) = o(h2). Here h = T/N , and N is the number of time
intervals considered in the system.

To carry out the stability analysis under these circumstances, we first prove the
following Lemma. Note that A and Q depend on h.

Lemma 1. Under Assumption [A]
∣∣∣∣QA−TQ−1

∣∣∣∣N ,
∣∣∣∣QATQ−1

∣∣∣∣N and ||A||N are
bounded for all h sufficiently small.

Proof. Let A = I + hP1, with P1 := P1(h) = P + O(h). For h sufficiently small
the series expansion of (I + hP1) in h holds to give

∣∣∣∣QA−TQ−1
∣∣∣∣N =

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=0

(
−hQPT1 Q−1

)i∣∣∣∣∣
∣∣∣∣∣
N

≤ ||Q||

( ∞∑
i=0

(
h
∣∣∣∣PT1 ∣∣∣∣)i

)N ∣∣∣∣Q−1
∣∣∣∣ = ||Q||

∣∣∣∣Q−1
∣∣∣∣ (1− h ∣∣∣∣PT1 ∣∣∣∣)−N .

When N → ∞,
(
1− h ||Q||

∣∣∣∣Q−1
∣∣∣∣ ∣∣∣∣PT1 ∣∣∣∣)−N → exp(T ||Q0||

∣∣∣∣Q−1
0

∣∣∣∣ ∣∣∣∣PT ∣∣∣∣). Simi-
larly, ∣∣∣∣QATQ−1

∣∣∣∣N =
∣∣∣∣I + hQPT1 Q

−1
∣∣∣∣N ≤ (1 + h ||Q||

∣∣∣∣Q−1
∣∣∣∣ ∣∣∣∣PT1 ∣∣∣∣)N . (3.8)

and ||A||N = ||I + hP1||N ≤ (1 + h ||P1||)N . When N →∞, we have that(
1 + h ||Q||

∣∣∣∣Q−1
∣∣∣∣ ∣∣∣∣PT1 ∣∣∣∣)N → exp(T ||Q0||

∣∣∣∣Q−1
0

∣∣∣∣ ∣∣∣∣PT ∣∣∣∣),
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and (1 + h ||P1||)N → exp(T ||P ||). Hence the boundedness of the quantities in the
statement follow since sequences admitting limits are bounded and the proof is com-
plete.

Note that the second-order recurrence in (3.6), can be written in a matrix-vector
form as (

xi+1

xi

)
= L

(
xi
xi−1

)
+ S

(
yi
0

)
, (3.9)

where

L :=

(
D −E
Is 0

)
, (3.10)

E := QA−TQ−1A, Is is the s × s identity matrix, and D := QA−TQ−1 + A +
QA−TBTR−1B. Clearly L is a matrix with special form and we can derive LN with
some extra efforts. The first attempt is made in following lemma.

Lemma 2. Let U and V be s× s square matrices and L :=

(
U + V −UV
Is 0

)
.

Then

Ln =

(
gn −gn−1UV
gn−1 gn − gn−1(U + V )

)
, (3.11)

where gn =
∑n
i=0 V

iUn−i.
Proof. It is easy to verify that (3.11) holds for L1 because g0 = Is, U + V = g1,

−UV = −g0UV , g1 − g0(U + V ) = 0. Assume that (3.11) holds for Ln.

Ln+1 =

(
gn −gn−1UV
gn−1 gn − gn−1(U + V )

)(
U + V −UV
Is 0

)
=

(
gn(U + V )− gn−1UV −gnUV

gn −gn−1UV

)
. (3.12)

We also have that

gn(U + V )− gn−1UV =
n∑
i=0

V iUn−iU +
n∑
i=0

V iUn−iV −
n−1∑
i=0

V iUn−1−iUV

=

n∑
i=0

V iUn+1−i +

n∑
i=0

V iUn−iV −
n−1∑
i=0

V iUn−iV

=

n+1∑
i=0

V iUn+1−i = gn+1.

This proves the induction hypothesis for the upper left corner element of Ln+1. By
rearranging the above equality we obtain gn+1 − gn(U + V ) = −gn−1UV , which
demonstrates the induction hypothesis for the lower right element. Since the other
elements of Ln+1 are in the algebraic form required by the induction hypothesis, the
proof completes.

However, the matrix L in Lemma 2 is still a bit different in our case, a case we
begin to investigate with the following Lemma.
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Lemma 3. Let U, V and C be s× s square matrices, and

L :=

(
U + V + C −UV

Is 0

)
.

Then

Ln =

(
fn −fn−1UV
fn−1 −fn−2UV

)
, (3.13)

where fn(U + V + C)− fn−1UV = fn+1, with f−1 = 0s, f0 = Is.
Proof. Let fn be defined by the above recursion and initial conditions. The case

n = 1 immediately holds, and the recursion relation can immediately be verified by
inspection.

The difficulty with Lemma 3.13 is that the term C makes a general solution for
fn very complicated algebraically. To reduce the calculation of fn to the calculation
of gn, we prove the following.

Lemma 4. Let J1(h), J2(h) ∈ Rs×s be matrices satisfying J1(h) = J0
1 + O(h);

J2(h) = J0
2 +O(h); such that J0

1 and −J0
2 have no common eigenvalues and C(h) ∈

Rs×s, C(h) = o(h2). Define the matrices U(h) = Is + hJ1(h); V (h) = Is − hJ2(h).

There exists h0 such that ∀0 ≤ h ≤ h0 there exist the matrices Û(h) and V̂ (h)
satisfying

Û(h) + V̂ (h) = C(h) + U(h) + V (h), Û(h)V̂ (h) = U(h)V (h) (3.14)

and ∣∣∣∣∣∣Û(h)− U(h)
∣∣∣∣∣∣ = o(h),

∣∣∣∣∣∣V̂ (h)− V (h)
∣∣∣∣∣∣ = o(h). (3.15)

Proof. We write (3.14) in an equivalent form, by introducing the matrix-valued

mappings Ψ1(h), Ψ2(h) satisfying Û(h) = Is + hJ1(h) + hΨ1(h), and V̂ (h) = Is −
hJ2(h)−hΨ2(h). It immediately follows that the first equation in (3.14) is equivalent
to

h (Ψ1(h)−Ψ2(h)) = C(h). (3.16)

Replacing the same ansatz in the second equation of (3.14) we obtain that

(Is + hJ1(h) + hΨ1(h)) (Is − hJ2(h)− hΨ2(h)) = (Is + hJ1(h)) (Is − hJ2(h))⇔
hΨ1(h) (Is − hJ2(h))− (Is + hJ1(h))hΨ2(h)− h2Ψ1(h)Ψ2(h) = 0

Replacing now Ψ2(h) from (3.16) in the last relationship, and dividing by h2 we obtain
that (3.14) holds if and only if there exists Ψ = Ψ1(h) such that

Θ(h; Ψ) := −Ψ

(
J2(h) +

C(h)

h

)
− J1(h)Ψ +

C(h)

h2
+ J1(h)

C(h)

h
+ Ψ2 = 0 (3.17)

By our assumptions, the mapping Θ(h; Ψ) is continuous in h and infinitely differen-
tiable in Ψ (in effect, polynomial), and so are all its derivatives with respect to Ψ. It
also satisfies Θ(0,0s) = 0. The action of its Ψ derivative at the point (0,0s) along
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a direction Ψd (which can be seen as a matrix in Rs×s, making the derivative a 4
dimensional tensor) satisfies:

∇ΨΘ(0,0s)Ψd = −ΨdJ
0
1 − J0

2 Ψd. (3.18)

The right hand side of (3.18) is closely connected to Sylvester’s equation: AX+XB =
C, where A,B,C ∈ Rs×s and X is an unknown matrix in Rs×s. If A and −B have no
common eigenvalues, then Sylvester’s equation has a unique solution X for every C
[22, Theorem 1.16]. As J0

1 and −J0
2 have no common eigenvalues, it follows from the

properties of Sylvester’s equation that, the mapping ∇ΨΘ(0,0s)Ψd is one-to-one and
onto on Rs×s, and, thus, invertible with an inverse we denote by ∇ΨΘ−1. This makes
the equation in Ψ (3.17), Θ(h,Ψ) = 0, regular at (0,0s), and thus defines locally Ψ
uniquely as a function of h.

Since all the derivatives with Ψ of Θ are continuous in h it follows that there exists
a neighborhood of (0,0s) in which Θ, ∇ΨΘ, and ∇Ψ(Θ)−1 exist, and are continuous
and their norms are bounded by Cθ. Moreover, ∇ΨΘ is uniformly Lipschitz in Ψ with
respect to h (as it is differentiable, and its derivative is continuous in h and Ψ). We
assume without loss of generality that the Lipschitz constant is upper bounded by Cθ.

We also have from (3.17) that Θ(h;0s) = C
h2 + C

hΨ1(h) = β(h), with ||β(h)|| → 0
as h → 0. It then follow that there exists an h0 such as α(h) = η(h)C2

θ ≤ 1
2 ,

∀0 ≤ h ≤ h0, where

η(h) =
∣∣∣∣∇ΨΘ(h,0s)

−1Θ(h,0s)
∣∣∣∣ ≤ Cf ||β(h)|| . (3.19)

As a result, the conditions for Kantorovich’s theorem [16, §12.6.2] are met. There
exists a solution of the equation Θ(h,Ψ1(h)) = 0 satisfying ||Ψ1(h)|| ≤ CΨβ(h) for
some CΨ > 0 and all h ≤ h0.

From the equivalence of (3.17) with (3.14) it follows that Û(h) and V̂ (h) exist and

satisfy Û(h) − U(h) = hΨ1(h) = o(h), and V̂ (h) − V (h) = hΨ2(h) = C − hΨ1(h) =
o(h). This proves (3.15) and the claim.

The key bounding calculation is now provided by the following Lemma.
Lemma 5. Let fn be the sequence from Lemma 3 as applied to (3.9)–(3.10). To

this end, we use the identification U = QA−TQ−1, V = A, and C = QA−TBTR−1B.
Assume that Assumption [A] holds and that PT and −P have no common eigenvalues.
Then the following hold:

i 1
N ||fn|| is bounded for all N and 1 ≤ n ≤ N .

ii For any ε there exists N0 such that for all N ≥ N0, we have that∣∣∣∣fN − fN−1QA
−TQ−1

∣∣∣∣ < ∣∣∣∣ePT − Is∣∣∣∣+ ε.

Note that Q,A depend on h = T
N as defined in Assumption [A].

Proof. We first verify that the conditions needed to use Lemma 4 apply. With the
definition of U we have that U(h) = Q(h)A−T (h)Q(h)−1 = I + hQ0P

TQ−1
0 +O(h2),

V (h) = A(h) = I+hP +O(h2), and C(h) = o(h2). Moreover Q0P
TQ−1

0 has the same
eigenvalues as PT and P . Therefore Q0P

TQ−1
0 has common eigenvalues with −P if

and only if PT and −P do, which is excluded by our hypothesis.
Therefore the conclusions of Lemma 4 apply to give matrices Û and V̂ satisfying

(3.14) and (3.15). It then follows that the matrix L in (3.10) has the same form as in
2, and application of that result in conjunction with the definition of fn in Lemma 3
results in

fn =

n∑
i=0

V̂ iÛn−i. (3.20)
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In turn, this implies that ||fn||N+1 ≤ max

{∣∣∣∣∣∣V̂ ∣∣∣∣∣∣N , ∣∣∣∣∣∣Û ∣∣∣∣∣∣N}. From the fact that h = T
N

and (3.15) it follows that
∣∣∣∣∣∣V̂ ∣∣∣∣∣∣N ≤ (1 + h ||P || + o(h))N → exp{(||P ||T )} and the

sequence is thus bounded. From similar arguments, so is
∣∣∣∣∣∣V̂ ∣∣∣∣∣∣ which proves part [i]

of the claim.
For part [ii] we notice from (3.20) that

fn − fn−1Û =

n∑
i=0

V̂ iÛn−i −
n−1∑
i=0

V̂ iÛn−i = V̂ n. (3.21)

Using from (3.15) that QA−TQ−1 = Û + o(h), we obtain that∣∣∣∣fN − fN−1QA
−TQ−1 − Is

∣∣∣∣ ≤ ∣∣∣∣∣∣fN − fN−1Û − Is
∣∣∣∣∣∣+ ||fN−1|| o(h)

=
∣∣∣∣∣∣V̂ N − Is∣∣∣∣∣∣+

||fn−1||
N

(No(h))→ ||exp{PT} − Is|| .

The last relationship follows from the fact that ||fn−1||
N is bounded from part [i] whereas

No(h) = o(h)
h → 0, as well as the fact that V̂ = I + hP + o(h). From the properties

of the limit the proof is complete.
Discussion The only assumption we made beyond Assumption [A] is that P

and −PT have no common eigenvalues. This is the case for example if A is the
propagator of the dynamical system dx

dt = Px, where P is a stable matrix. Therefore,
the condition is satisfied if the target system is stable.

Theorem 4. Suppose that the sequence xi, i = 1, · · · , N is derived by recurrence
formula (3.2), and θN is computed by (3.3). Then ||∇x0xN || is bounded as N → ∞
and thus the recurrence (3.6) is stable.

Proof. We first prove that

∇x0
xN = fN + fN−1

(
−QA−TQ−1 +QA−TQ−1

B

)
where fn is defined in Lemma 3.

The second-order recurrence (3.6) can be written as (3.9) with L defined in (3.10).
Let LN1 , L

N
2 , L

N
3 , and LN4 denote the upper left block, upper right block, bottom left

block, and bottom left block of LN , respectively. According to (3.9), we will have

∇x0
xN = LN3

∂x1

x0
+ LN4 = LN3

(
QA−TQ−1

B +A+QA−TBTR−1B
)

+ LN4 . (3.22)

Let E, D as in (3.10) According to Lemma 3, LN3 = fN−1, L
N
4 = −fN−2E, and

fnD − fn−1E = fn+1. Moreover, we have that

∇x0
xN = fN−1D − fN−2E + fN−1

(
QA−TQ−1

B −QA
−TQ

)
= fN + fN−1

(
QA−TQ−1

B −QA
−TQ−1

)
In turn, this leads to the inequality

||∇x0
xN || ≤

∣∣∣∣fN − fN−1QA
−TQ−1

∣∣∣∣+ ||fN−1||
∣∣∣∣QA−TQ−1

B

∣∣∣∣ (3.23)

From Lemma 5[ii] the first term is bounded, whereas the second term can be written

as fN−1

N

∣∣∣∣NQA−TQ−1
B

∣∣∣∣, of which the first factor is bounded from Lemma 5[i] and
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the second factor is o(h) from Assumption [A]. Consequently ||∇x0
xN || is bounded

which proves the claim.
This result proves that even as N →∞, the essential components of our algorithm

will stay bounded. In that regime, as our algorithm stores O(1) vectors our storage
will be O(1/N) relative to a classical approach which stores all vectors xi; a large and
increasing storing efficiency.

3.3. Optimization-based low-memory approach. Here we investigate the
possibility of obtaining a descent direction for Γ̂ by doing forward sweeps only. The
advantage of such an approach compared to an adjoint one is that no information
needs to be stored for a reverse sweep which ensures a low-memory behavior. The
aim is to find a vector which is guaranteed to have a positive inner product with ∇x0

Γ̂.
In turn, this would provide a theoretical basis for using limited-memory, optimization-
based quasi-Newton methods such as L-BFGS methods [14].

We prove the main results for optimization-based approaches below.
Lemma 6. Suppose that assumption [A] holds and that the sequence xi, i =

1, · · · , N is derived by the recurrence formula (3.2), and θN is computed by (3.3).
Then there exists a Tδ and an N0, such that ∇x0

xN is positive definite for T < Tδ
and N ≥ N0.

Proof. We use the same notations as in the proof of Theorem 4. Following on
(3.23) and invoking Lemma 5 we obtain that GN = ∇x0xN satisfies ||GN − Is|| →
||exp(PT )− Is||. Choose now Tδ such that ||exp(PT )− Is|| ≤ 1

4 , ∀T ≤ Tδ. Then,
from the preceding limit, there exists N0 such that ||GN − Is|| ≤ 1

3 , ∀N ≥ N0. Since

this implies that
∣∣∣∣GTN − Is∣∣∣∣ ≤ 1

3 , it follows that
∣∣∣∣∣∣GT

N+GN

2 − Is
∣∣∣∣∣∣ ≤ 1

3 , and thus

GTN +GN is symmetric and positive definite, and so is GN . This proves the claim.
Theorem 5. Suppose that Assumption [A] holds and the sequence xi, i = 1, 2,

· · · , N is derived by the recurrence formula (3.2), and θN is computed by (3.3). Then

there exists a Tδ, such that (∇x0 Γ̂)T θN is positive for T < Tδ.
Proof. From (2.3), we have

(∇x0 Γ̂)T θN = (θN )T (∇x0xN )θN (3.24)

According to Lemma (6), there exists a Tδ, such that ∇x0
xN is positive definite for

T < Tδ.
Hence the proof is complete.
The significance of the result of Theorem 5 is that scaling the vector θN obtained

from the forward recursion (2.9) will now provide a descent direction for Γ̂(x0) when
the time interval is small enough under the conditions described in the Theorem.

Of course, the condition T ≤ Tδ may be quite limiting. On the other hand, as
proved in Theorem 3 [iii-c] we have that θN will be proportional with the distance
from the current point to the solution. Therefore its size is proportional to the one
of the gradient, and while we cannot ensure it will provide a descent direction, it is
quite likely that either it or its reciprocal will provide a substantial descent. So we
will use it even for T larger than Theorem 5 with an expectation that it could work
well, even as it cannot be generally proved to be the case.

3.4. Regularity of the weakly constrained 4D-Var problem. We now
prove the counterpart of Theorem 3 in 4D-Var framework. We first find the Hes-
sian matrix of Γ. Define

Wi :=
(
∇xiHi(xi)

)T
R−1
i ∇xiHi(xi)+
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((
(xi+1 −Mi(xi))

TQ−Ti
)⊗

Is

)
∇xivec

(
(∇xiMi(xi))

T
)
+((

(yi −Hi(xi))TR−Ti
)⊗

Im

)
∇xivec

(
(∇xiHi(xi))T

)
for i = 0, · · · , N . Here S is a symmetric block tridiagonal matrix with Vi, i = 0, · · · , N
as diagonal and −Ui, i = 0, · · · , N − 1 as subdiagonal, where

Ui :=
(
∇xi
Mi(xi)

)T
Q−1
i , i = 0, · · · , N − 1

Vi := Q−1
i−1 +

(
∇xi
Mi(xi)

)T
Q−1
i ∇xi

Mi(xi), i = 0, · · · , N − 1

V0 := Q−1
B +

(
∇x0
M0(x0)

)T
Q−1

0 ∇x0
M0(x0), VN := Q−1

N−1.

Because Γ takes the special form as in (2.1)–(2.4), its Hessian matrix is a block tridiag-
onal matrix. We can verify that Ui = −N∇xi

∇xi+1
Γ(x0:N ), Vi+Wi = N∇2

xi
Γ(x0:N ).

∇2
x0:N

Γ(x0:N ) =
1

N
(S + diag(W0, · · · ,WN )). (3.25)

Lemma 7. Suppose that the first- and second-order derivatives of Mi and Hi
are bounded; ∇xMi is nonsingular; Qi, Ri, QB are positive definite (all of which are
standard 4D-Var conditions); and Wi are positive semi-definite at the solution x∗0:N ,
i = 0, 1, . . . , N . Then ∇2

x0:N
Γ(x0:N ) is positive definite at that solution.

The significance of this result is that the optimization problem of the weakly
constrained 4D-Var satisfies the second-order sufficient condition. Therefore, from
Theorem 3, the nonlinear equation (2.18) is well-posed and thus can be solved by
the limited-memory Broyden method. Of all the conditions invoked, only the one
concerning the positive definiteness of Wi is nonstandard. They hold, for example,
for linear systems or for the case where the model and observation error is 0 at the
solution. Note, however, that these conditions are sufficient but not necessary for
well-posedness of the nonlinear equation (2.18). The only necessary condition is the
second-order condition, though it is of course difficult to ensure a priori in all nonlinear
problems for any variational approach, including ours.

Proof. If Z 6= 0, then

ZTSZ = zT0 Q
−1
B z0 +

N−1∑
i=0

(∇xiMi(xi)zi − zi+1)
T
Q−1
i (∇xiMi(xi)zi − zi+1) > 0.

The inequality holds because if the right-hand side is 0, then zi+1 =
(
∇xi
Mi(xi)

)
zi;

and z0 = 0, which in turn implies Z = 0, a contradiction. If Wi positive semi-definite,
then the Hessian matrix of Γ, (3.25) is positive definite, and the proof is complete.

4. Numerical experiments. We now present numerical experiments that il-
lustrate the theoretical findings discussed in §2 and §3. We solve both the nonlinear
formulation (2.18), which we expect to be regular based on Theorem 3 and the opti-
mization formulation with the objective (2.10), where a descent direction is obtained
based on Theorem 5. To solve the nonlinear equation (2.18) in a low-memory fashion
we use the limited-memory Broyden method defined in [25], whereas for the optimiza-
tion approach we use limited memory BFGS [14].

4.1. Model problem. In this study we focus on Burgers’ equation ([1, 10, 18]),
which describes the interaction between nonlinear advection and turbulent dissipa-
tion. This equation is a fundamental problem in fluid mechanics and has been used
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Fig. 4.1. Burgers’ equation with viscosity
coefficient µ = 0.01, 0.1, 0.5, 1 with initial con-
dition u(0, x) = sin(πx).

Fig. 4.2. Plots of numerical solutions
of L-BFGS (bottom left)and L-Broyden(bottom
right) methods and the solution of the Burgers
equation (top) for µ = 0.01, 4t = 4x/1000,
and N = 700.

extensively as a benchmark in meteorology (see [10] and references therein). The in-
viscid form (µ = 0) is also important because it captures the essence of the large-scale
transient waves of mid-latitudes. Variational data assimilation for Burgers equation
is discussed by [1].

Burgers’ equation has the following definition:

∂u

∂t
+

1

2

∂(u2)

∂x
= µ

∂2u

∂x2
, x ∈ (0, 1)× (0, T ), µ > 0, (4.1a)

u(0, t) = u(1, t) = 0; (4.1b)

u(x, 0) = u0(x). (4.1c)

Here µ is the viscosity coefficient. The solution of Burgers’ equation with viscosity
coefficient µ = 0.01, 0.1, 0.5, 1 is shown in Fig. 4.1.

As seen in Fig. 4.1, the function value drops sharply when the viscosity coefficient
is larger than 0.5. In such cases, the information content is limited, and therefore, we
choose the cases when µ is small.

In terms of the numerical discretization of the problem, we let umj denote the
function value u(j4x,m4t). According to [1], a centered finite-difference scheme for
Burgers’ equation is

um+1
j − umj
4t

+
(umj+1)2 − (umj−1)2

44x
− µ

(4x)2
(um+1
j+1 − 2um+1

j + um+1
j−1 ) = 0. (4.2)

Let Um denote the vector determined by umj , j = 0, · · · , N. The scheme in (4.2)

results in a discrete dynamical system that can be written compactly as PUm+1 =
S(Um). Here, P is a symmetric tridiagonal matrix with (1 + 2µ(4t)/(4x)2) on
the diagonal and −µ(4t)/(4x)2 on the sub- and superdiagonal. This defines the
discrete dynamical mapping M(·) discussed in §2 and §3. Specifically, we have that
Mi(U

i) = P−1S(U i), and ∇Mi(U
i) = P−1∇S(U i). Obviously, P = I + T

NB
0, B0 is

a tridiagonal matrix, with 2µ
(4x)2 on the diagonal and − µ

(4x)2 above and below, and

∇S(U i) = I − T
N (B1), where B1 is the tridiagonal matrix with zero on the diagonal,

Ui
2:N

24x on the superdiagonal, and −U
i
1:N−1

24x on the subdiagonal. Hence ∇Mi(U
i) =
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I+ T
NB

3 + · · · with B3 = B1−B0. ThereforeM(·) satisfies all the conditions required
of it for the theoretical developments in §2 and §3.

However, not every finite-difference scheme has this property. A counterexample
is the implicit Lax-Friedrichs scheme discussed by [1]. This scheme uses the average
of umj+1 and umj−1 in place of uij . By doing so, leads to ∇Mi(U

i) violating Assumption
[A].

4.2. Numerical results. We now describe in detail the numerical experiments,
the objective being the minimization of (2.10). The function Mi in (2.2) is de-
rived from the centered finite-difference scheme applied to Burgers’ equation. We
consider 4x = 1/501 and initial state U0 = sin(πx) to generate the data set G :=
{U0,Mi(U

i), i = 1, · · · , N}. The observation data are computed by applying Hi(G)
and perturbed by normal random noise times with standard deviation 0.1 to mimic
the action of a noisy nonlinear operator. To be closer to a real situation, the observa-
tions are taken every 10 steps in space-time (i.e., at time node i104t and space node
i104x).

We use the L-BFGS algorithm to compute the minimizer of (2.10) (but with
search direction ΘN as indicated by Theorem 5). We also use the L-Broyden al-
gorithm to compute the solution of (2.18). We choose Q to be a diagonal matrix
(4t)2[2, 1, · · · , 1, 2] on diagonal and QB and R to be 100 · I. The initial solution
U0 is perturbed with normal random noise times with standard deviation 0.1 and
used as the initial guess for this algorithm. Note that only the y-axis of each plot of
results is set to be log scaled. Also note that all numerical results are scaled by the
corresponding values of the initial guess.

In Fig. 4.3 and 4.4, we plot function values of Γ̂ as in (2.10) at each iteration of
the L-BFGS algorithm. We compare the results obtained by using different numbers
of stored vectors p = 2, 4, 6, 8 for N = 700 in Fig. 4.3. Note that the convergence rates
are similar. In 4.4, we plot the results of N = 800, 900, 1000, 1100. In Fig. 4.5 and
4.6, we plot function values of (2.10) at each iteration of the L-Broyden algorithm.
In Fig. 4.7 and 4.8 we show the norms of residuals of (3.3) at each iteration of the
L-Broyden algorithm. In Fig. 4.5 and 4.6 we compare the results obtained when
using the L-Broyden method for different p = 2, 4, 6, 8 when N = 700. The results for
L-Broyden with N = 800, 900, 1000, 1100 for p = 4 are shown in Fig. 4.7 and 4.8. We
see from our numerical simulations that the objective function is significantly reduced
(by 2-5 orders of magnitude).

Though the problems are not solved to high accuracy the solution does approach
a perturbed version of the original solution, as can be seen in Fig. 4.2. There, we
illustrate the numerical solutions of L-BFGS (bottom left) and L-Broyden (bottom
right) methods together with the solution of the Burgers equation (top) for µ = 0.01,
4t = 4x/1000, and N = 700.

Certainly, this is a limited set of experiments, for example 4t is much smaller
than would be used in practical problems, and for large 4t we have definitely seen
the instability that we analyze in §3.2 and which we can guarantee to not occur only
for fixed T and 4t sufficiently small. Also, we do not find in the experiments a
large dependence with p which is uncommon for quasi-Newton methods, which also
indicates that the circumstances here are quite particular.

Nevertheless, in these limited circumstances (which are the only ones in which we
can guarantee at the moment the method to work for large and increasing N , where
the method would be practically interesting) we observe that p can stay essentially
O(1) and still achieve convergence. We can see from the results described above that
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Fig. 4.3. Scaled function value of (2.10)
at each iteration of L-BFGS for µ = 0.01, 4t =
4x/1000, N = 700, and p = 2, 4, 6, 8..
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Fig. 4.4. Scaled function value of (2.10)
at each iteration of L-BFGS for µ = 0.01, 4t =
4x/1000, p = 6, and N = 800, 900, 1000, 1100.
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Fig. 4.5. Scaled function values of Γ̂ as in
(2.10) at each iteration of L-Broyden algorithm
for p = 2, 4, 6, 8, µ = 0.01, 4t = 4x/1000 and
N = 700.
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Fig. 4.6. Scaled norms of residuals of
(3.3) at each iteration of L-Broyden algorithm
for p = 2, 4, 6, 8, µ = 0.01, 4t = 4x/1000 and
N = 700.

the L-BFGS method using only forward sweeps converges faster than L-Broyden,
though our theory here through Theorem 5 applies only in the regime of small T .
Overall, we find that the numerical experiments validate the findings from §2 and §3,
that the nonlinear equation obtained by our reduction procedure (2.10) is well-posed
and can be solved both by using the L-Broyden method or L-BFGS method with
forward sweeps only even though p is much smaller than the dimension of x. That
is, the memory savings compared with that of the full method are significant: we use
little relative storage (i.e., p� N , some of our experiments have even produced good
results for N/p > 100).

5. Conclusions. Hidden Markov models with physical model error pose new
challenges to data assimilation. One of these challenges is the fact that, being weakly
constrained, the model can no longer be used to reduce the storage needs by deriving
a state from another state. Instead, the entire estimated trajectory must be stored.
This challenge is particularly burdensome with the emergence of new architectures
where less memory will be available per node.

We addressed this challenge by using a new approach, which constrains the prob-
lem with the optimality conditions at the states other than initial. In turn, this results
in a nonlinear equation whose residual vector can be computed by forward sweeps only,
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Fig. 4.7. Scaled function values of Γ̂ as in
(2.10) at each iteration of L-Broyden algorithm
for N = 800, 900, 1000, 1100, p = 4, µ = 0.01,
4t = 4x/1000.
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Fig. 4.8. Scaled norms of residuals of
(3.3) at each iteration of L-Broyden algorithm
for N = 800, 900, 1000, 1100, p = 4, µ = 0.01
4t = 4x/1000.

or an optimization problem where an approximation to the gradient can be computed
with foward sweeps only. In turn, no intermediate states need to be stored for ad-
vancing the best estimate algorithm. In conjunction with limited-memory algorithms
(Broyden or BFGS) we can solve such a problem with low or even O(1) storage. In a
numerical experiment using Burgers’ equation, we achieved up to 100 times reduction
in memory usage while computing the solution. We demonstrated this finding with a
numerical experiment using Burgers’ equation.

On the other hand, the approach poses other issues; in particular, it is prone to
instability problems. Our proofs in the interesting case, the one of large N , work
only in the limit of small time step h and the numerical demonstrations are also
done in this regime. To make the method practical beyond this context, we will
pursue several other avenues, such as multiple shooting and preconditioning based
on a coarser or reduced system. Nevertheless, we believe that algorithms reducing
storage (and implicitly, communication) are important issues that this method helps
address.
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