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1. Motivation: Management of Energy Systems under Ambient
Conditions Uncertainty

Mihai Anitescu - Optimization under uncertainty

° 2



N
Ambient Condition Effects in Energy Systems

Operation of Energy Systems is Strongly Affected by 2 ‘%\‘ﬁu‘ém
Ambient Conditions A S

- Power Grid Management: Predict Spatio-Temporal
Demands (Douglas, et.al. 1999)

- Power Plants: Generation levels affected by air humidity
and temperature (General Electric)

- Petrochemical: Heating and Cooling Utilities (ExxonMobil) »_* :
- Buildings: Heating and Cooling Needs (Braun, et.al. 2004)

- (Focus) Next Generation Energy Systems assume a

major renewable energy penetration: Wind + Solar + Fossil
(Beyer, et.al. 1999)

- Increased reliance on renewables must
account for variability of ambient conditions,
which cannot be done deterministically ...
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\ | 20% Wind
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- We must optimize operational and planning
decisions accounting for the uncertainty in
ambient conditions (and others, e.g. demand)

/" \{10% Wind

- Optimization Under Uncertainty. I N

Wind Power Profiles
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2. Impact: Stochastic Unit Commitment — Management of
Energy Systems
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Stochastic Predictive Control
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Stochastic Unit Commitment with Wind Power (SAA)
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ramping constr., min. up/down constr.

Thermal Units Schedule? Minimize Cost
Satisfy Demand

Have a Reserve

Dispatch through network

—

=  Wind Forecast — WRF(Weather Research and Forecasting) Model

— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) 43t
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Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind
power penetration, using the same windfarm sites as the one
existing today.

ANANA
wind
power

0

Ay,

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= The solution is only 1% more expensive then the one with
exact information. Solution on average infeasible at 10%.
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Some Considerations in Using Supercomputing for Power
Grid

= Isitreally worth using a supercomputer for this task? (We need the answer every
1hr with 24 hour time horizons. )

= Let’s look at the most pressing item of Supercomputing usage: power.

— BG/P (and exascale) needs <~ 20MW of power.

— The Midwest US has 140GW of power installed, and the peak demands runs up to
110GW.

—  We will never reduce power consumption, but we will make it more reliable, less
dependent on fossil, and cheaper by better managing the peak
= |f we accept this will lead to 10% more renewable penetration (our SUC study),
then this is worth on the order of 10-15GW, far above what BG/P costs in power
consumption.
= |n addition operational constraints makes supercomputing (if uncertainty needed
to account for) necessary and not just useful or convenient.

= But, even if approximations will work, this tool will be helpful as the “gold
standard” for validating other algorithms to be deployed on defined
computational resources.
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3. Low-Hanging Fruit Scalable Software: PIPS (Parallel Interior
Point Stochastic Programming) — Petra, Lubin, Anitescu
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PIPS — Our Scalable Stochastic Programming Solver Using

Direct Schur Complement Method
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Parallelizing the 15t stage linear algebra

We distribute the 15t stage Schur complement system.

O 4 |-
0
C= 4 0 ,Q dense symm. pos. def,, AO sparse full rank.
0

= (Cistreated as dense.

= Alternative to PSC for problems with large number of 15t stage variables.

= Removes the memory bottleneck of PSC and DSC.

= We investigated Scalapack, Elemental (successor of PLAPACK)
— None have a solver for symmetric indefinite matrices (Bunch-Kaufman);
— LU or Cholesky only.
— So we had to think of modifying either.
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Cholesky-based LDI’like factorization

~
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= Can be viewed as an “implicit” normal equations approach.
= In-place implementation inside Elemental: no extra memory needed.

= |dea: modify the Cholesky factorization, by changing the sign after processing p
columns.

= |t is much easier to do in Elemental, since this distributes elements, not blocks.
= Twice as fast as LU

= Works for more general saddle-point linear systemes, i.e., pos. semi-def. (2,2) block.

Mihai Anitescu -- Stochastic Programming
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Distributing the 15 stage Schur complement matrix

All processors contribute to all of the elements of the (1,1) dense block
.~ 1< . ~-1 -1
Q:Q0+§2 Ai BiQi Bz' Ai
i=1
= Alarge amount of inter-process communication occurs.
= Possibly more costly than the factorization itself.

= Solution: use buffer to reduce the number of messages when doing a
Reduce_scatter.

L D] approach also reduces the communication by half — only need to send lower
triangle.

Mihai Anitescu -- Stochastic Programming
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Large-scale performance

= Comparison of Scalapack (LU), Elemental(LU), and LDL'(1024 cores)

Units  1st Stage Size Factor (Sec.) Reduce (Sec.)
(O+A) LU(S) LU(E) LDL" LU LDLT

300 23436+1224  16.59 2004 671 5432 26.35
640  49956+2584 60.67 83.24 36.77 256.95 128.59 SAA problem:
1000 78030+4024  173.67 263.53 90.82  565.36 248.22¢— | 189 million variables

Total Walltime
2048 , - —
Linear Scaling
----- w---- | DLAT
...... o LU
""" .
= Strongscalng 1 A
T N~ e N 9
= 90.1% from 64 to 1024 cores; § ______________
= 75.4% from 64 to 2048 cores. (‘;).’_ 1024 1 “,"_:::.’.‘"'
= >4,000 scenarios. G
«t:ﬁw‘"g“
“"’
'/'
256 r
64 ' -
64 256 1024 2048
Processors
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PIPS — Parallel solver for stochastic optimization

Interior-point method implementation (Mehrotra’s algorithm)

Scenario-based decomposition of the linear algebra.

PIPS reuses OOQP (Object-oriented quadratic programming solver) class hierarchy.
New parallel linear algebra layer for block-angular IPM linear systems.

Hybrid MPI+SMP parallelization

First-stage Schur complement: dense linear algebra.
— Distributed factorization and backsolves (by using Elemental) if needed.
— Shared-memory parallelization(SMP) is obtained via Elemental.

— Distributed assembling of the SC matrix is done by a streamlined Reduced_scatter that is also
in-node SMP-accelerated.

Second-stage linear systems are sparse.
— Supports various sparse solvers: MA57 (HSL UK), WSMP(IBM).
— SMP is obtained with WSMP

Mihai Anitescu - Optimization under uncertainty
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PIPS Solver Capabilities
= Hybrid MPI/SMP running on Blue Gene/P

— Successfully (though incompletely due to allocation limit) run on up to 32,768 nodes (96% strong
scaling) for lllinois problem with grid constraints. 3B variables, maybe largest ever solved?

= Handles up to 100,000 first-stage variables. Previous results dealt with O(20-50).

= Close to real-time solutions (24 hr horizon in 1 hr wallclock)

— Further development needed, since users aim for
e More uncertainty, more detail (x 10)
e Faster Dynamics = Shorter Decision Window (x 10)
e Longer Horizons (California == 72 hours) (x 3)

Mihai Anitescu - Optimization under uncertainty
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Components of Execution Time and Strong Scaling

1400 — Strong Scaling
1200- B Backsolve = .
- 1000+ @ Factor SC 7 |==- Linear )y 2
S 800- O Distrib. SC| < —e— PIPS
4;% g 4 y
8 600 SR o
= 4001 2 /
Q
5 200 A ch x| ;
10 — 3
5 - )
0~ = ~ 7 | | |
4k 8k 16k 32k 4k 8k 16k 32k
BG/P Nodes BG/P Nodes

= 32K nodes=130K cores (80% BG/P)
= “Backsolve” phase embarrassingly parallel, but not Schur Complement (SC)
= Communication for “Distrib. SC” not yet a bottleneck, but we will get there.
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4. The harder problems need some mathematics
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4.1 Q1: How do | deal with the impending first-stage
bottleneck?
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The Stochastic Preconditioner

The limiting factor in the scalability of Schur method is the expensive solve with dense
Schur complement matrix

~ N ~_1 -1
C:QO+%2 AiT(BZ_Ql. Bf) 4
i=1

— A computational bottleneck: workers sit idle waiting for the master to factorize C.

Remedy — the preconditioned Schur complement (PSC)
— 1. factorize incomplete matrix P in the same time C is computed.
— 2. use the factorization of P to solve with C very fast.

In linear algebra terms

— Pis a preconditioner for C. Bur choice of Pis |

~ 1 n ~ 1
Sn:QO+;2 AZ(BkiQkiB,Zj A |,
i=1

1

where K = {kl , kzaK , kn} is an IID subset of n scenarios.
— Krylov iteratives solves (PCG or BiCGStab) replaces the direct solves

Mihai Anitescu - Optimization under uncertainty
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Preconditioned Schur Complement (PSC)

P is a C built from a
subset of scenarios

/

LDL =H, L,=GL'D', i=LK N, I DI —p ¥
N M=M=M
C=H, _ZGiHi_lGiT
i=l1
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Quality of the Stochastic Preconditioner

= “Exponentially” better preconditioning (Petra & Anitescu 2010)

2
n&e
Pr(|/1(Sn_1 N)—1|Z€)S2p4 eXp| ——5= 5
Optimal use of PSC — linear scaling
10 ( A Y
= A typical scaling behavior of our y

approach. Better scaling than the

direct Schur complement method
(DSC) is exhibited by PSC.

= DSC uses p processes, PSC uses p+1. gs.

2.5¢ — — — Linear scaling
—6— DSC
—6— PSC
1 1 1 1 1
10 15 20 30

# Cores
Factorization of the preXonditioner can not be

hidden anymore by the computation of C. ”
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Performance of the preconditioner

= Eigenvalues clustering & Krylov iterations

3
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= Affected by the well-known ill-conditioning of IPMs.

S, =S, and S, = E[ S(®@) |, where

S(@) = (O, + D, )+ [A%w) (B (@@ + D)) B (@) A(co)}
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4.2 Q2: How do | use very expensive samples?
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Bootstrap for stochastic optimization of energy systems

Sampling the uncertainty present in complex energy systems may be a
computationally intensive task

— Example: weather forecasting
— May need 400K CPUs for 30 samples at the resolution we need.

Obtaining uncertainty estimates (confidence intervals) on the optimal value is
important in policy-making process.

Only a small number of samples(scenarios) can be afforded. Therefore an
operational constraint makes me start to care about the low-sample size regime
and its asymptotics.

But how good is the current state of the theory in that regime?

Mihai Anitescu - Optimization under uncertainty
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Theory situation for Stochastic Programming

Most estimates for SAA are based on results of the following type:
N”[GTG} 2 5N(0,1)
o

= This allows, in principle, for the convergence of the confidence intervals to be
arbitrarily slow.

= Current state of the area is built around application of the Delta Theorem , which
provides the results of the type:

Xy (@)= X(®)=0,(N"™) & P(N*

Xy (@) - X(®)]) =0

=  But this is not sufficient for similar results for the confidence intervals !!!

~1, 0<w< P(lim N*|X, (0)— X(w)|=0)=1
log(N +1) N—seo
Hozo fo= 1 7| Pty @)20)- PX@)20) = —— 5 N
v(@)<0)- w)<0)= >
log(N +1) so=l. log(N +1)

= |ntuition: Convergence in probability tells me how well | behave on a “good” set
increasing to probability 1, but tells me nothing about the bad set.

Mihai Anitescu - Optimization under uncertainty

26



Large Deviation + Bootstrap

= Bootstrap is a resampling method that builds high-order confidence estimates.

= The idea of bootstrapping is to squeeze out information from a small number of
samples by resampling (with replacement).

= But it applies only to finite-dimensional functions of means, and the optimal value
of stochastic optimization is not one (due to nonlinearity).

= |dea: Use large deviations, to produce exponentially convergent probability sets
P(IN"(0-6)1> €)= f,(e)N" exp(~f,(eN°)

= Here, é depends on the expected value of the objective function and its higher
derivatives at the solution of the SAA approximation problem. We can thus use
bootstrap theory to produce confidence intervals for @ and exponential
convergence ensures order stays the same as for bootstrap !!

Mihai Anitescu - Optimization under uncertainty
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The estimator

= We proposed a corrected statistic, computable at the SAA approximation
T -1
1 ( EVL(x"Y,AY) ] EVL(x",A") J(x") [ EVL(x"Y,AY) ]

(D=E[f(x )] 2 J(x™) 0 0

= Listhe Lagrangian of the problem and J is the Jacobian of the constraints.
= " is the solution of the SAA problem obtained from a sample of size N.

= Bootstrapping is performed based on a second sample of size M, and it works due
to the fact that it is now applied at a set point " so finite dimensional results do

apply.

Mihai Anitescu - Optimization under uncertainty
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Accuracy of the estimator’s confidence levels

= We proved that bootstrap confidence intervals bu*ild using @ are close to second
order correct for the true optimal value @ = f(x ):

POeJ))=a+O(N"""),a>0.

We observed the predicted or better correctness in the numerical simulations

-2r BCa coverage error for the 5% percentile
- b
= 8 S S o Correctness order 0.32 o
8_4— ,,,,,,, r e d o—e— P covee fit
= | N T tteea,,, . - ‘e_\o
% o T ,o ,,,,,, °‘ o SAA
s o Ve, it
- Correctness order0.82 ~""'rer O ,,,,,,,,,
_8 Il 1 Il Il 1 L Il 1 o J
1 1.5 2 2.5 Slog(N 3.5 4 4.5 5 5.5
5r BCa coverage error for the 95% percentile
= ¢ @
o0 Correctnessorder 1.14 | ., .., fit
o s
= VUENTTTe P O SAA
st T e O “ ] [
Correctness order 2.11 Q """""""
_1 0 1 1 'l 'l 'l 'l L L o J

—

1.5 2 2.5 3.5 4 4.5 5 5.5

gy

bootstrapping ¢ outperforms classical normal approximation method.
We now have analytical techniques for asymptotics of confidence intervals in SP!
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4.3: Q3: How do | roll the horizon in real time?

Mihai Anitescu - Optimization under uncertainty
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Fundamental Limitations of Off-The-Shelf sptlmlzatlon

Example DO:

min (a(t) = ()2 + 52(0? - n(0)

Off-the-Shelf : Solve to Given Accuracy (Neglect w

Dynamics) ’ Pl

el (t) = [|Vaf (@7 (t), n(t))]| < b E 0

Real-Time (Z & A) : One SQP Iteration per step  «}
. 50 2 Ie 8 T|n~:leo = 2 6 1‘8 20



MPC as Dynamic Generalized Equation (Z & A)

Context: Parametric NLP ;2')"3 f(z,t), s.t.c(z,t) =0
KKT system for QP

— i % T IA.T *
Time linearization of Optimality Conditions: Find wr = [z A [ Vaf(ajo (@ Bz + 382 Vaal(wy, to) Ac
s.t. c(z 1) + Vee(z  to) Az =0
to to
0 € F(wf, T Vel (i, 4p) (w — wiy) + Noy (w) ™" Bo> -z

wto

Note: Canonical Form Idu'ltical to Time-Steping for DVI

Exact Solution Satisfies:
d € F(w,}"o, to) + VwF(’w;‘O, to)(w — w;gko) + Ny (w) 6 = F(’wiko, to) — F(’w;:o, t)

< LAt?

From Lipschitz Continuity of strongly regular GE: | wt* —-W,

' ' * D+ QP Soluti
Optimal Solution W3 Q- -, Wt QP Solution

(. )
*
t
r(w,t) - Strong Regularity Requires SSOC and LICQ

- NLP Error is Bounded by LGE Perturbation
- One QP solution from exact manifold is second-order
accurate

Linearization Point



One-QP per step stabilizes

But for linearized DO | am never EXACTLY on the manifold: What then?

Wy W .
s & P2 Wy Solve off-manifold time-dependent QP

—_ (:’
Wi, 0/7 min Vo f (@, thp1)T Dz + 02TV 40 LDy, 1) A
w* S.t. C(ftk,tk-}-l) + VxC(ftk,tk)TA:U =0
4 tk+1 w} Az > —Ty,
k42
wtk +
Theorem (elucidating an issue posed by Diehl et al.)
- A: LGE is Strongly Regular at ALL e.guﬁg.P satisfies LICQ and SOSC everywhere
Then: For sufficiently small ,A\b can track the manifold stably, solving 1 QP per step
—_— k —_ k
Hwtk — Wy, | < L¢5T = ||wtk;_|_1 — Wi | < Lv,b(s’l“
Moreover: Stability Holds Even if QP Solved t o O(AtQ)]. Can use iterative methods.

Much less effort per step and better chances for real-time performance !
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Need for more features of ““ solvers

*  One QP per step may still be too much

* Moreover | may need also good global and fast local convergence properties as well, it is not all
about asymptotics!

* Sometimes one switch regimes, the optimal point moves far away, and you still want to be able to
track well. — MPC algorithm must exhibit global convergence and fast local convergence (i.e.
Newton)!

* Also, power grid problems can be huge (US ~ 1 — 100 Billion Variables). Need scalable solvers.

Control of Polymerization Reactor

- Set-l’\oint Closed-Loop Transitions

u (t) - Product A
Cooling 2T (t)

System Product B

Time ¢
Zc (t ) Reactant Concentration

T (t) Temperature



Technical Problem

mwin f(x,t)
T T \T
st h(z,t) =0, (\) wh = [z7, A7)
x > 0.
Solution forms Time-Moving and Non-Smooth Manifold
w™ (t)
Latency A * ,w* A Non-Smooth
w k4N X
| NGO A Wkt TN Manifold
wk €-----=---- >
! Active-Set Change E >
tk bk+1 tht+N

- Challenge is to Track Manifold Accurately (Classical Optimization) AND Stably (Latency
Conscious: A good Step, Computer Fast)



Technical Problem

* Challenge is to Track Manifold Accurately AND Stably (Get Good Step with Minimum Latency)

* This requires NLP Solvers with the Following Features:
* A) Classical Optimization Oriented :
1) Superlinear Convergence (Newton-Based)
2) Scalable Step Computation (Iterative Linear Algebra)

* B) Latency Conscious:
3) Asymptotic Monotonicity of Minor Iterations (Makes Progress in O(N))
4) Active-Set Detection and Warm-Start

- Existing Solvers Tend to Fail at Least One Feature
- Interior Point: 4, and to some extent, 2,3
- Augmented Lagrangian: 1
- SQP: 2



Exact Differentiable Penalty Functions (EDPFs)

Consider Transformation using Squared Slacks

min f(x) min f(z)
s.t. h(x) =0 <t h7(x) —0
L 2 0 r — 22
Equivalent To:
min f(z%)
S.t. h?ZQ) —0 L(z%,N) = f(z%) + M h(z?)

V.L(Z2 N =22 (Vf(zz) + Vh(ZQ))\)
=2.XY2v,0(z,)\)

Apply DiPillo and Grippo’ s Penalty Function pipiiio, Grippo, 1979, Bertsekas, 1982

Pz )\ a,8) = Lz, \) + %ac(:c)T o(x) 4+ 28Vl (. )T XVoL(z, )

Solve NLP Indirectly Through EDPF Problem:
mi}\n P(z,\,a,8)s.t. 2 >0
w?



Conclusions

= Complex energy systems pose an enormous number of modeling and simulation
challenges.

= Computational Power will help, but it will not alone address many of the
challenges.

= This research requires sustained, multi-area, integrative thinking in mathematics.

= Increases focus on area of mathematics that were not explored up to this point
and creates opportunities for FUNDAMENTAL math advances:

= Examples: resampling in stoch prog for expensive scenarios; stochastic
preconditioning, fast nonlinear programming.

=  We expect many more such challenges, as embodied in our MACS center.
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