Solving nonconvex problems of nonsmooth dynamics by convex relaxation

Mihai Anitescu Argonne National Laboratory

Nonsmooth multi-rigid-body dynamics

Nonsmooth rigid multibody dynamics (NRMD) methods attempt to predict the position and velocity evolution of a group of rigid particles subject to certain constraints and forces.

- non-interpenetration.
- collision.
- joint constraints
- adhesion
- Dry friction Coulomb model.
- global forces: electrostatic, gravitational.
- These we cover in our approach.

Areas that use NRMD

- granular and rock dynamics.
- masonry stability analysis.
- simulation of concrete obstacle response to explosion.
- tumbling mill design (mineral processing industry).
- interactive virtual reality.
- robot simulation and design.

Model Requirements and Notations

- MBD system: generalized positions q and velocities v. Dynamic parameters: mass M(q) (positive definite), external force k(t, q, v).
- Non interpenetration constraints: $\Phi^{(j)}(q) \ge 0$, $1 \le j \le n_{total}$ and compressive contact forces at a contact.
- Joint (bilateral) constraints: $\Theta^{(i)}(q) = 0, \ 1 \le i \le m.$
- Frictional Constraints: Coulomb friction, for friction coefficients $\mu^{(j)}$.
- Dynamical Constraints: Newton laws, conservation of impulse at collision.

Normal velocity: v_n Normal impulse: c_n

Contact Model

- Contact configuration described by the (generalized) distance function $d = \Phi(q)$, which is defined for some values of the interpenetration. Feasible set: $\Phi(q) \ge 0$.
- Contact forces are compressive, $c_n \ge 0$.
- Contact forces act only when the contact constraint is exactly satisfied, or

 $\Phi(q)$ is complementary to c_n or $\Phi(q)c_n=0$, or $\Phi(q)\perp c_n$.

Coulomb Friction Model

- Tangent space generators: $\widehat{D}(q) = \left[\widehat{d}_1(q), \widehat{d}_2(q)\right]$, tangent force multipliers: $\beta \in \mathbb{R}^2$, tangent force $D(q)\beta$.
- Conic constraints: $|\beta| \le \mu c_n$, where μ is the friction coefficient.
- Max Dissipation Constraints: $\beta = \operatorname{argmin}_{||\widehat{\beta}|| \le \mu c_n} v^T \widehat{D}(q) \widehat{\beta}$.
- v_T , the tangential velocity, satisfies $|v_T| = \lambda = -v^T \widehat{D}(q) \frac{\beta}{||\beta||}$. λ is the Lagrange multiplier of the conic constraint.
- Discretized Constraints: The set $\widehat{D}(q)\beta$ where $||\beta|| \leq \mu c_n$ is approximated by a polygonal convex subset: $D(q)\widetilde{\beta}$, $\widetilde{\beta} \geq 0$, $\left|\left|\widetilde{\beta}\right|\right|_1 \leq \mu c_n$. Here $D(q) = [d_1(q), d_2(q), \dots, d_m(q)]$.

For simplicity, we denote $\tilde{\beta}$ the vector of force multipliers by β .

Defining the friction cone

For one contact:

$$FC^{(j)}(q) = \left\{ c_n^{(j)} n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right\}$$
$$c_n^{(j)} \ge 0, \sqrt{\left(\beta_1^{(j)}\right)^2 + \left(\beta_2^{(j)}\right)^2} \le \mu^{(j)} c_n^{(j)} .$$

The total friction cone:

$$FC(q) = \left\{ \sum_{j=1,2,\dots,p} c_n^{(j)} n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right|$$

$$\sqrt{\left(\beta_1^{(j)}\right)^2 + \left(\beta_2^{(j)}\right)^2} \le \mu^{(j)} c_n^{(j)},$$

$$c_n^{(j)} \ge 0 \perp \Phi^{(j)}(q) = 0, j = 1, 2, \dots, p \right\}.$$

We have

$$FC(q) = \sum_{j=1,2,\dots,p,\ \Phi^{(j)}(q)=0} FC^{(j)}(q).$$

Acceleration Formulation

$$M(q) \frac{d^2q}{dt^2} - \sum_{i=1}^m \nu^{(i)} c_{\nu}^{(i)} - \sum_{j=1}^p \left(n^{(j)}(q) c_n^{(j)} + D^{(j)}(q) \beta^{(j)} \right) = k(t, q, \frac{dq}{dt})$$

$$\Theta^{(i)}(q) = 0, \qquad i = 1 \dots m$$

$$\Phi^{(j)}(q) \ge 0, \qquad \text{compl. to} \qquad c_n^{(j)} \ge 0, \quad j = 1 \dots p$$

$$\beta = \operatorname{argmin}_{\widehat{\beta}(j)} v^T D(q)^{(j)} \widehat{\beta}^{(j)} \qquad \text{subject to} \qquad \left| \left| \widehat{\beta}^{(j)} \right| \right|_1 \le \mu^{(j)} c_n^{(j)}, \ j = 1 \dots p$$

Here
$$\nu^{(i)} = \nabla \Theta^{(i)}$$
, $n^{(j)} = \nabla \Phi^{(j)}$.

It is known that these problems do not have a classical solution even in 2 dimensions, where the discretized cone coincides with the total cone.**Painleve's** paradox

A Painleve paradox example

$$p = r - \frac{l}{2} \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

Constraint: $\hat{n}p \geq 0$ (defined everywhere).

$$\hat{n}\ddot{p} = -g + f_N(\frac{1}{m} + \frac{l}{2I}(\cos^2(\theta) - \mu\sin(\theta)\cos(\theta)))$$

$$\hat{n}\ddot{p}_a = -g - \frac{f_N}{m}$$

Painleve Paradox: No classical solutions!

Continuous formulation in terms of friction cone

$$M \frac{dv}{dt} = f_C(q, v) + k(q, v) + \rho$$

$$\frac{dq}{dt} = v.$$

$$\rho = \sum_{j=1}^{p} \rho^{(j)}(t).$$

$$\rho^{(j)}(t) \in FC^{(j)}(q(t))$$

$$\Phi^{(j)}(q) \geq 0,$$

$$||\rho^{(j)}|| \Phi^{(j)}(q) = 0, \quad j = 1, 2, \dots, p.$$

However, we cannot expect even that the velocity is continuous!. So we must consider a weaker form of differential relationship

Measure Differential Inclusions

We must now assign a meaning to

$$M\frac{dv}{dt} - f_c(q, v) - k(t, q, v) \in FC(q).$$

Definition If ν is a measure and $K(\cdot)$ is a convex-set valued mapping, we say that v satisfies the differential inclusions

$$\frac{dv}{dt} \in K(t)$$

if, for all continuous $\phi \geq 0$ with compact support, not identically 0, we have that

$$\frac{\int \phi(t)\nu(dt)}{\int \phi(t)dt} \in \bigcup_{\tau:\phi(\tau)\neq 0} K(\tau).$$

Weaker formulation for NRMD

Find $q(\cdot), v(\cdot)$ such that

- 1. v(0) is a function of bounded variation (but may be discontinuous).
- 2. $q(\cdot)$ is a continuous, locally Lipschits function that satisfies

$$q(t) = q(0) + \int_0^t v(\tau)d\tau$$

3. The measure dv(t), which exists due to v being a bounded variation function, must satisfy, (where $f_c(q, v)$ is the Coriolis and Centripetal Force)

$$\frac{d(Mv)}{dt} - k(t,v) - f_c(q,v) \in FC(q(t))$$

4.
$$\Phi^{(j)}(q) \ge 0, \forall j = 1, 2, \dots, p.$$

Linearization method

For time-stepping scheme, the geometrical constraints are enforced by linearization.

$$\nabla \Phi(q^{(l)})^T v^{(l+1)} \ge 0 \Longrightarrow \Phi^{(j)}(q^{(l)}) + \gamma h_l \nabla \Phi(q^{(l)})^T v^{(l+1)} \ge 0.$$

$$\nabla \Theta(q^{(l)})^T v^{(l+1)} = 0 \Longrightarrow \Theta^{(j)}(q^{(l)}) + \gamma h_l \nabla \Theta(q^{(l)})^T v^{(l+1)} = 0.$$

Here $\gamma \in (0,1]$. $\gamma = 1$ corresponds to exact linearization.

Time-stepping scheme

Euler method, half-explicit in velocities, linearization for constraints. Maximum dissipation principle enforced through optimality conditions.

$$\begin{split} M(v^{l+1} - v^{(l)}) - \sum_{i=1}^{m} \nu^{(i)} c_{\nu}^{(i)} - \sum_{j \in \mathcal{A}} & (n^{(j)} c_{n}^{(j)} + D^{(j)} \beta^{(j)}) = hk \\ & \nu^{(i)^{T}} v^{l+1} = -\gamma \frac{\Theta^{(i)}}{h}, & i = 1, 2, \dots, m \\ & \rho^{(j)} = n^{(j)^{T}} v^{l+1} \geq -\gamma \frac{\Phi^{(j)}(q)}{h}, & \mathbf{compl. to} & c_{n}^{(j)} \geq 0, \quad j \in \mathcal{A} \\ & \sigma^{(j)} = \lambda^{(j)} e^{(j)} + D^{(j)T} v^{l+1} \geq 0, & \mathbf{compl. to} & \beta^{(j)} \geq 0, \quad j \in \mathcal{A} \\ & \zeta^{(j)} = \mu^{(j)} c_{n}^{(j)} - e^{(j)^{T}} \beta^{(j)} \geq 0, & \mathbf{compl. to} & \lambda^{(j)} \geq 0, \quad j \in \mathcal{A}. \end{split}$$

Here $\nu^{(i)} = \nabla \Theta^{(i)}$, $n^{(j)} = \nabla \Phi^{(j)}$. h is the time step. The set \mathcal{A} consists of the active constraints. Stewart and Trinkle, 1996, MA and Potra,1997: Scheme has a solution although the classical formulation doesn't!

Matrix Form of the Integration Step

$$\begin{bmatrix} M & -\tilde{\nu} & -\tilde{n} & -\tilde{D} & 0 \\ \tilde{\nu}^{T} & 0 & 0 & 0 & 0 \\ \tilde{n}^{T} & 0 & 0 & 0 & 0 \\ \tilde{D}^{T} & 0 & 0 & 0 & \tilde{E} \\ 0 & 0 & \tilde{\mu} & -\tilde{E}^{T} & 0 \end{bmatrix} \begin{bmatrix} v^{(l+1)} \\ \tilde{c}_{\nu} \\ \tilde{c}_{n} \\ \tilde{\lambda} \end{bmatrix} + \begin{bmatrix} -Mv^{(l)} - hk \\ \Upsilon \\ \Delta \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \tilde{\rho} \\ \tilde{\sigma} \\ \tilde{\zeta} \end{bmatrix}$$

$$\begin{bmatrix} \tilde{c}_n \\ \tilde{\beta} \\ \tilde{\lambda} \end{bmatrix}^T \begin{bmatrix} \tilde{\rho} \\ \tilde{\sigma} \\ \tilde{\zeta} \end{bmatrix} = 0, \qquad \begin{bmatrix} \tilde{c}_n \\ \tilde{\beta} \\ \tilde{\lambda} \end{bmatrix} \ge 0, \qquad \begin{bmatrix} \tilde{\rho} \\ \tilde{\sigma} \\ \tilde{\zeta} \end{bmatrix} \ge 0.$$

Regularity Conditions: Friction cone assumptions

Define ϵ cone

$$\widehat{FC}(q) = \sum_{\Phi^{(j)}(q) \le \epsilon} FC^{(j)}(q).$$

Pointed friction cone assumption: $\exists K_{\epsilon}, K_{\epsilon}^*$, and $t(q, \epsilon) \in \widehat{FC}(q)$ and $v(q, \epsilon) \in \widehat{FC}^*(q)$, such that, $\forall q \in R^n$, and $\forall \epsilon \in [0, \overline{\epsilon}]$, we have that

- $t(q, \epsilon)^T w \ge K_{\epsilon} ||t(q, \epsilon)|| ||w||, \forall w \in \widehat{FC}(q).$
- $n^{(j)^T}v(q,\epsilon) \ge \mu \sqrt{t_1^{(j)^T}v(q,\epsilon) + t_2^{(j)^T}v(q,\epsilon)} + K_{\epsilon}^* ||v(q,\epsilon)||,$ $j = 1, 2, \dots, p.$

Convergence result

(Stewart) Assume

- H1 The functions $n^{(j)}(q), t_1^{(j)}(q), t_2^{(j)}(q)$ are smooth and globally Lipschitz, and they are bounded in the 2-norm.
- H2 The mass matrix M is positive definite.
- H3 The external force increases at most linearly with the velocity and position.
- H4 The uniform pointed friction cone assumption holds.

Then there exists a subsequence $h_k \to 0$ where

- $q^{h_k}(\cdot) \to q(\cdot)$ uniformly.
- $v^{h_k}(\cdot) \to v(\cdot)$ pointwise a.e.
- $dv^{h_k}(\cdot) \to dv(\cdot)$ weak * as Borel measures. in [0,T], and every such subsequence converges to a solution $(q(\cdot), v(\cdot))$ of MDI.

Solving the LCP

Is it possible to obtain an algorithm that has modest conceptual complexity?

- Lemke's method after reduction to proper LCP works, but for larger scale problems alternatives to it are desirable. Works well for tens of bodies, most of the time.
- Interior Point methods work for the frictionless problem (since matrices are PSD), but their applicability to the problem with friction depends on the convexity of the solution set.
- Is the solution set of the complementarity problem convex?

Nonconvex solution set

Force Balance:

$$\sum_{j=1}^{6} c_n^{(j)} n^{(j)} - hmg \begin{pmatrix} n \\ \mathbf{0}_3 \end{pmatrix} = 0.$$

$$\mu c_n^{(j)} \ge 0 \quad \perp \quad \lambda^{(j)} \ge 0, \quad j = 1, 2, \dots, 6.$$

Nonconvex solution set

The following solutions

1.
$$c_n^{(1)} = c_n^{(3)} = c_n^{(5)} = \frac{hmg}{3}, c_n^{(2)} = c_n^{(4)} = c_n^{(6)} = 0,$$

 $\lambda^{(1)} = \lambda^{(3)} = \lambda^{(5)} = 0, \lambda^{(2)} = \lambda^{(4)} = \lambda^{(6)} = 1,$

2.
$$c_n^{(1)} = c_n^{(3)} = c_n^{(5)} = 0, c_n^{(2)} = c_n^{(4)} = c_n^{(6)} = \frac{hmg}{3},$$

 $\lambda^{(1)} = \lambda^{(3)} = \lambda^{(5)} = 1, \lambda^{(2)} = \lambda^{(4)} = \lambda^{(6)} = 0.$

The average of these solutions satisfies $c_n^{(j)} = \frac{hmg}{6}$, $\lambda^{(j)} = \frac{1}{2}$, for $j = 1, 2, \dots, 6$, which violate

$$\mu c_n^{(j)} \ge 0 \perp \lambda^{(j)} \ge 0, \quad j = 1, 2, \dots, 6,$$

The average of these solutions, that both induce v = 0, violates,

$$\beta_1^{(2)} \ge 0 \quad \perp \quad \lambda^{(2)} \ge 0.$$

For any $\mu > 0$ the LCP matrix is no P* matrix, polynomiality unlikely.

The convex relaxation

Define $\Theta^{(l)} = -Mv^{(l)} - hk^{(l)}$. We solve the following LCP

$$\begin{bmatrix} M & -\tilde{\nu} & -\tilde{n} & -\tilde{D} & 0 \\ \tilde{\nu}^T & 0 & 0 & 0 & 0 \\ \tilde{n}^T & 0 & 0 & 0 & -\tilde{\mu} \\ \tilde{D}^T & 0 & 0 & 0 & \tilde{E} \\ 0 & 0 & \tilde{\mu} & -\tilde{E}^T & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{v}^{(l+1)} \\ \tilde{c}_{\nu} \\ \tilde{c}_{n} \\ \tilde{\lambda} \end{bmatrix} + \begin{bmatrix} \Theta^{(l)} \\ \Upsilon \\ \Delta \\ 0 \\ \tilde{\lambda} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \tilde{\rho} \\ \tilde{\sigma} \\ \tilde{\zeta} \end{bmatrix}$$

$$\begin{bmatrix} \tilde{c}_n \\ \tilde{\beta} \\ \tilde{\lambda} \end{bmatrix}^T \begin{bmatrix} \tilde{\rho} \\ \tilde{\sigma} \\ \tilde{\zeta} \end{bmatrix} = 0, \qquad \begin{bmatrix} \tilde{c}_n \\ \tilde{\beta} \\ \tilde{\lambda} \end{bmatrix} \ge 0, \qquad \begin{bmatrix} \tilde{\rho} \\ \tilde{\sigma} \\ \tilde{\zeta} \end{bmatrix} \ge 0.$$

The LCP is actually equivalent to a strongly convex QP.

The new convergence result with convex subproblems

- H1 The functions $n^{(j)}(q)$, $t_1^{(j)}(q)$, $t_2^{(j)}(q)$ are smooth and globally Lipschitz, and they are bounded in the 2-norm.
- H2 The mass matrix M is positive definite.
- H3 The external force increases at most linearly with the velocity and position.
- H4 The uniform pointed friction cone assumption holds.

Then there exists a subsequence $h_k \to 0$ where

- $q^{h_k}(\cdot) \to q(\cdot)$ uniformly.
- $v^{h_k}(\cdot) \to v(\cdot)$ pointwise a.e.
- $dv^{h_k}(\cdot) \to dv(\cdot)$ weak * as Borel measures. in [0,T], and every such subsequence converges to a solution $(q(\cdot), v(\cdot))$ of MDI. Here q^{h_k} and v^{h_k} is produced by the relaxed algorithm.

$$h_k = \frac{0.1}{2^k}, \mu = 0.3$$

$$h_k = \frac{0.1}{2^k}, \mu = 0.75$$

Painleve example

k	$\left\ h_k \left\ y_{QP} - y_{LCP} \right\ _2 \right\ _2$
0	5.6314784e-002
1	1.7416198e-002
2	6.7389905e-003
3	2.1011170e-003
4	7.6112319e-004
5	2.6647317e-004
6	9.2498029e-005
7	3.2649217e-005

k	$\left\ h_k \left\ y_{QP} - y_{LCP} \right\ _2 \right\ _2$
0	1.5736018e+000
1	7.2176724e-001
2	1.4580267e-001
3	9.2969637e-002
4	5.5543025e-003
5	4.3982975e-003
6	3.7537593e-003
7	3.7007014e-004

No convergence, but small absolute error.

Granular matter

- Sand, Powders, Rocks, Pills are examples of granular matter.
- The range of phenomena exhibited by granular matter is tremendous. Size-based segregation, jamming in grain hoppers, but also flow-like behavior.
- There is still no accepted continuum model of granular matter.
- Direct simulation methods (discrete element method) are still the most general analysis tool, but they are also computationally costly.
- The favored approach: the penalty method which works with time-steps of microseconds for moderate size configurations.

Brazil nut effect simulation

- Time step of 100ms, for 50s. 270 bodies.
- Convex Relaxation Method. One QP/step. No collision backtrack.
- Friction is 0.5, restitution coefficient is 0.5.
- Large ball emerges after about 40 shakes. Results in the same order of magnitude as MD simulations (but with 4 orders of magnitude larger time step).

Brazil nut effect simulations performance

Conclusions and remarks

- We have shown that we find solutions to measure differential inclusions by solving quadratic programs, as opposed to LCP with possible nonconvex solution set.
- PATH is very robust for the original formulation when problem and friction is small but fails for larger problems. However, PATH is successfull in solving the QP.
- This is a major progress for solving very large scale problems, since it opens the possibility of applying a variety of algorithms, including iterative algorithms.