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(Nonsmooth multi-rigid-body dynamics]

Nonsmooth rigid multibody dynamics (NRMD) methods attempt to

predict the position and velocity evolution of a group of rigid particles
subject to certain constraints and forces.

e Non-interpenetration.

collision.

joint constraints

adhesion

Dry friction — Coulomb model.

e global forces: electrostatic, gravitational.

B These we cover in our approach.




(Areas that use NRMD |

granular and rock dynamics.

masonry stability analysis.

simulation of concrete obstacle response to explosion.

tumbling mill design (mineral processing industry).

Interactive virtual reality.

robot simulation and design.




[I\/Iodel Requirements and Notations]

MBD system : generalized positions ¢ and velocities v. Dynamic
parameters: mass M (q) (positive definite), external force k(¢, q, v).

Non interpenetration constraints: ®U)(¢) > 0, 1 < j < nyopq; and
compressive contact forces at a contact.

Joint (bilateral) constraints: ©(*)(¢) =0, 1 < i < m.

Frictional Constraints: Coulomb friction, for friction coefficients
(4)
[

Dynamical Constraints: Newton laws, conservation of impulse at
collision.




Normal velocity: v,
Normal impulse: c [

(Contact Model |

e Contact configuration described by the (generalized) distance
function d = ®(q), which is defined for some values of the
Interpenetration. Feasible set: ®(¢) > 0.

e Contact forces are compressive, ¢,, > 0.

e Contact forces act only when the contact constraint is exactly
satisfied, or

®(g) is complementary to ¢,, or ®(q)c, =0, or ®(q) L ¢,.




(Coulomb Friction Model

AN

Tangent space generators: D(q) = [cﬂ(q), d>(q)

| , tangent force
multipliers: 3 € R?, tangent force D(q)s. _

Conic constraints: ||3|| < uc,, Where p is the friction coefficient.

AN

Max Dissipation Constraints: 5 = argminHBH<Mc vl D(q)5.

v, the tangential velocity, satisfies |[vr| = A = —vT D(q)
the Lagrange multiplier of the conic constraint.

Discretized Constraints: The set D(q)3 where ||3|| < uc, is

~

approximated by a polygonal convex subset: D(q) 83, 5 > 0,
HBHl < ey, Here D(q) = [di(q), d2(q), - - - dm(q)]

For simplicity, we denote 3 the vector of force multipliers by /3.




 Defining the friction cone]

For one contact:

FCW(q) = {cff)n(j)+ﬁ§j)t§j>+ﬂ§j>t§j)

) AN\ 2 A\ 2 )
o 50,/ (5)" + (58) <u(~7>c§3>}.

The total friction cone:

{Cmi pen@ 4+ BED 4 B4

J(50) + (5) < w00l

C'I(/I',j) ZOL®(3)(Q):O7]:]‘727"'7p}'

FC(q) = > FCY)(g).

§=1,2,...,p, &) (q)=0




(Acceleration Formulation)

p

f: ()C,(f) - Z (n(j)(q)cgzj) D(J)( )5(3))

j=1
0 (q) =0, i=1...m
(

() >0, compl.to ¥ >0, j=1...p

B = argming ;v TD(q)P3Y)  subject to Hﬁm‘ <D =1

Hererv) = veW, nl) = vol),

It is known that these problems do not have a classical solution evenin 2
dimensions, where the discretized cone coincides with the total cone.Painleve’'s
paradox




A Painleve paradox example)

|= m |=2 (Baraﬁ)
16
B=72

2
16(cos 6 - pcos Bsin 6) = -2
u=0.75

cos(6)

sin(0)

Constraint: np > 0 (defined everywhere).
np=—g+ fN(% + QZ—I(COS2(9) — psin(f) cos(0)))
Py, = —g — 1

— 1L
pP=T—3

Painleve Paradox: No classica solutions!




(Continuous formulation in terms of friction cone)

M% fC(QaU)+k(Q7U)+IO

dq
dt

P () FCOW(q(t))
o) (q) 0,
PP ][@V(q) = 0, j=12,....p.

V.

However, we cannot expect even that the velocity is continuous!. So we
must consider a weaker form of differential relationship




(Measure Differential Inclusions)

We must now assign a meaning to

M~ flq.v) ~ k(t.q.v) € FO(q).

Definition If v is a measure and K (+) is a convex-set valued mapping, we
say that v satisfies the differential inclusions

dv
— e K(t

If, for all continuous ¢ > 0 with compact support, not identically 0, we
have that




(Weaker formulation for NRMD |
Find ¢(-), v(-) such that

1. v(0) is a function of bounded variation (but may be discontinuous).

2. q(-) is a continuous, locally Lipschits function that satisfies

. The measure dv(t), which exists due to v being a bounded variation
function, must satisfy, (where f.(q,v) is the Coriolis and Centripetal
Force)

— fe(q,v) € FC(q(t))

. dU(g)>0,Vj=1,2,...




(Linearization method )

For time-stepping scheme, the geometrical constraints are enforced by
linearization.

V(¢TI > 0 = 3 (¢ + yh, VB (¢D)TuHD > 0.

V@(q(l))TU<H_1) — ) — @(j)<q(l)) 4+ 7;le(9<(](l))TU(l4r1) —0.

Here v € (0, 1]. v = 1 corresponds to exact linearization.




 Time-stepping scheme |

Euler method, half-explicit in velocities, linearization for constraints.
Maximum dissipation principle enforced through optimality conditions.

M(vl—f—l o U(l)) _ Zy(i)cl(/i) _ Z (n(j)cg)+ D(j)ﬁ(j)) — hEk
) jeA

T O ()
(7) I+1
1% v = — P

o) = DT i > 2Y)(g)

> —y—=—, compl.to V) >0, jeA

(]) — )\(9) (4) + D(J)T [+1 > 0 CompL to 6(3) Z 0, ] cA
C’(]) — ,LL( 7) (3) _ 6(‘7) ﬁ(ﬂ) > O Compll to A(J) Z O’ ] = A
Here v() = vOW nl) = vdU), h is the time step. The set A consists

of the active constraints. Stewart and Trinkle, 1996, MA and Potra,1997:
Scheme has a solution although the classical formulation doesn’t!




(Matrix Form of the Integration Step)

[ D) | [ ~Mv® — hk |
T

A
0
0




[Regularity Conditions: Friction cone assumptions]

Define € cone

‘FC(g)= Y.  FcYg).
) (q)<e

Pointed friction cone assumption: 3 K, K*, and t(q, €) €€ F/’E'(q) and
v(q,€) €° @*(q), such that, Vg € R™, and Ve € |0, €], we have that

o t(q,6)Tw > K. |[t(q,e)|||lwl]], vw € FC(q).

o n(j)T’U(q,e) > ,u\/t(lj) v(q, €) +t§j) v(gq,€) + K ||v(g, )|,
17=12,...,p.




Convergence result]

(Stewart) Assume

H1 The functions n¥)(q),t\" (¢), 5 (¢) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix M is positive definite.

H3 The external force increases at most linearly with the velocity and
position.

H4 The uniform pointed friction cone assumption holds.
Then there exists a subsequence h; — 0 where

o ¢"*(-) — q(-) uniformly.

e v (.) — v(-) pointwise a.e.

o dv"(-) — dv(-) weak * as Borel measures. in [0,T], and every such
subsequence converges to a solution (¢(-), v(-)) of MDI.




Solving the LCP|

Is it possible to obtain an algorithm that has modest conceptual
complexity?

e Lemke’s method after reduction to proper LCP works, but for larger
scale problems alternatives to it are desirable. Works well for tens of

bodies, most of the time.

e Interior Point methods work for the frictionless problem ( since
matrices are PSD), but their applicability to the problem with friction
depends on the convexity of the solution set.

e |s the solution set of the complementarity problem convex?




(Nonconvex solution set)

Force Balance:

S ) (9)

ucg) >0




(Nonconvex solution set |

The following solutions
1 = =) = %, oD = =9 =,
AL = 2\B) = \6B) =, A\2) = \(4) = \6) =1
(1) _ (3 _ .(5) _ (2) _ (49) _ (6) _ hm
2. ¢cp,'  =cn =cn’ =0,¢," =c¢y = cp —Tg,

AL = \GB) = \6B) =1 N2 = \&) = \(6) —

The average of these solutions satisfies ¢\/) = g A0 = 1 for
j=1,2,...,6,which violate

ued) >0 L AU >0, j=1,2,...,6,

The average of these solutions, that both induce v = 0, violates,
3 >0 L A®>o.

For any 1 > 0 the LCP matrix is no Px matrix, polynomiality unlikely.




(The convex relaxation |

Define ©) = — My — hEW) . We solve the following LCP

RS D . R-YO
T

A
0
0

The LCP is actually equivalent to a strongly convex QP.




[The new convergence result with convex subproblems]

H1 The functions n9)(q), tgj) (q), t;j) (q) are smooth and globally
Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix M is positive definite.

H3 The external force increases at most linearly with the velocity and
position.

H4 The uniform pointed friction cone assumption holds.
Then there exists a subsequence h; — 0 where

o ¢"*(-) — q(-) uniformly.

e v (.) — v(-) pointwise a.e.

o dv"(-) — dv(-) weak * as Borel measures. in [0,T], and every such
subsequence converges to a solution (g(-), v(-)) of MDI. Here ¢
and v™* is produced by the relaxed algorithm.




Comparison between methods

T
* LCP method
Optimization method

LCP algorithm versus optimization-based algorithm

—— LCP method
Optimization method

Painleve example

Sliding particle

h, = 91 , —0.75
k ok F‘

hi

hg llvQrp —YLCP

5.6314784e-002

1.5736018e+000

1.7416198e-002

7.2176724e-001

6.7389905e-003

1.4580267e-001

2.1011170e-003

9.2969637e-002

7.6112319e-004

5.5543025e-003

2.6647317e-004

4.3982975e-003

9.2498029e-005

3.7537593e-003

N~Njfojoa|b~AlW[IN|FP|O| X

3.2649217e-005

N~Njfojo|bd~AlW[IN|FR|O| X

3.7007014e-004

No convergence, but
small absolute error.




(Granular matter

Sand, Powders, Rocks, Pills are examples of granular matter.

The range of phenomena exhibited by granular matter is tremendous.
Size-based segregation, jamming in grain hoppers, but also flow-like
behavior.

There is still no accepted continuum model of granular matter.

Direct simulation methods (discrete element method) are still the
most general analysis tool, but they are also computationally costly.

The favored approach: the penalty method which works with
time-steps of microseconds for moderate size configurations.




(Brazil nut effect simulation |
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Time step of 100ms, for 50s. 270 bodies.

Convex Relaxation Method. One QP/step. No collision backtrack.

Friction i1s 0.5, restitution coefficient is 0.5.

Large ball emerges after about 40 shakes. Results in the same order
of magnitude as MD simulations (but with 4 orders of magnitude

larger time step).




[Brazil nut effect simulations performance]

Time spent solving QPs

20 25 30
time

Number of active contacts




(Conclusions and remarks)

e \We have shown that we find solutions to measure differential

Inclusions by solving quadratic programs, as opposed to LCP with
possible nonconvex solution set.

e PATH is very robust for the original formulation when problem and
friction is small but fails for larger problems. However, PATH is
successfull in solving the QP.

e This is a major progress for solving very large scale problems, since
It opens the possibility of applying a variety of algorithms, including
iterative algorithms.




