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A LOW-MEMORY APPROACH FOR BEST-STATE ESTIMATION OF
HIDDEN MARKOV MODELS WITH MODEL ERROR∗
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Abstract. We present a low-memory approach for the best-state estimate (data assimilation) of
hidden Markov models where model error is considered. In particular, our findings apply to the 4D-
Var framework. The novelty of our approach resides in the fact that the storage needed by our estima-
tion framework, while including model error, is dramatically reduced from O(number of time steps)
to O(1). The main insight is that we can restate the objective function of the state estimation (the
likelihood function) from a function of all states to a function of the initial state only. We do so
by restricting the other states by recursively enforcing the optimality conditions. This results in a
regular nonlinear equation or an optimization problem for which a descent direction can be computed
using only a forward sweep. In turn, the best estimate can be obtained locally by limited-memory
quasi-Newton algorithms that need only O(1) storage with respect to the time steps. Our findings
are demonstrated by numerical experiments on Burgers’ equations.
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1. Introduction. Data assimilation is the process of computing the best es-
timate of the trajectory of a dynamical system with observational data [6, 9, 10].
This technique is used extensively in meteorology and hydrology in order to make
accurate predictions about the state of the atmosphere and oceans [9, 14]. However,
recent applications have called for explicit inclusion of model error such as from sub-
grid modeling, boundary conditions, and forcings. All these modeling uncertainties
are aggregated into a component that is generically called model error [8, 16, 18],
which in turn results in the following best-fit 4D-Var-with-model-error functional
[12, 13, 24, 25, 28, 26]:

J (xt0 , xt1 , . . . , xtN ) =
1

2
(xt0 − xB)

TQ−1
B (xt0 − xB)(1.1)

+
1

2

N∑
k=0

(Hk(xtk)− yk)
TR−1

k (Hk(xtk)− yk)

+
1

2

N−1∑
k=0

(xtk+1
−Mk(xtk))

TQ−1
k (xtk+1

−Mk(xtk)).
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All the quantities of interest are indexed by k, k = 0, 1, . . . , N , where tk is the time
instant. Here, the variables xtk are the states of the model at times ti that need to
be identified by minimizing the functional J . The data of the problem are as follows.
The quantities xB and QB are the background state and the background covariance
matrix, respectively. The vectors yk represent the observations, whereas the nonlinear
mapping H(·) is the observation operator that maps states into observables. The
matrix Rk is the covariance error for the observations. The mapping Mk(·) describes
the evolution of the physical model, whereas the matrix Qk quantifies the covariance
of the model error. The functional J is the minus log likelihood of the hidden Markov
model [21, 22]:

xtk+1
=M(xtk) + ηk, yk = H(xtk) + εk, ηk ∼ N (0, Qk) εk ∼ N (0, Rk).

For this reason, we call the minimization of J , which is equivalent to the maximum
likelihood calculation for the hidden Markov model, the state estimation of hidden
Markov models with model error.

In the limiting case of 0 model error, that is, Q−1
k → ∞, we obtain the so-called

strongly constrained model [5, 9, 20], which is the one most commonly used in today’s
applications. Because it now includes the recursive constraints xtk+1

= Mk(xtk), it
can effectively be thought of as a function only of the initial condition xt0 , which is
the only variable that needs to be stored, with all the others being obtained by the
recursion.

Unfortunately, this reduction does not apply to the case including model error,
also called weakly constrained, which is now a function of N +1 times more variables
and thus requires substantially more memory to store the result of the minimization
of (1.1). As we move to even higher spatial resolution such as global cloud resolving
models that require a horizontal resolution of 1–3 Km2, the amount of memory and
storage space in the case of considering model error would make such computations out
of practical reach. We focus on memory requirements because we are entering a phase
in computational science where power considerations lead us to reduced available
memory per unit of computational power (see [7]).

In this study we introduce a numerical method that reduces the memory require-
ments of running the weakly constrained 4D-Var. The method is based on a shooting
philosophy constrained by the optimality conditions for the likelihood function. Burg-
ers’ equation is used to illustrate the technique and compare it with a derivative-free or
full memory-intensive implementation. While this will be done in a 1+1D-Var (in the
sense that the spatial dimension is only 1), our example has the same time-dependence
structure as full 4D-Var approaches. Therefore, we expect that conclusions about the
dependence of the storage requirements of the method on the number of time steps—
the main investigation topic here—will carry through to the actual 4D-Var case.

The rest of the paper is structured as follows. In section 2 we present our al-
gorithm in an abstract framework, and we analyze its well-posedness. In section 3
we discuss the stability and conditions and considerations for our low-memory algo-
rithms. Numerical experiments to validate our findings are presented in section 5. In
section 6 we summarize our conclusions.

2. A low-memory approach for data assimilation with model error. We
introduce an abstraction of the data assimilation with the model error problem, the
4D-Var problem (1.1). The abstraction will be useful in understanding the fundamen-
tals of our approach, reducing the notation burden, and providing a framework for
the extension of these results.
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2.1. Abstraction of the problem. We assume that we are trying to recover
the states xi, i = 0, 1, . . . , N , of a system that evolves over N time steps with x0 as
an initial state and xN as a final state.

We assume that this optimal state is recovered by minimizing a cost functional
with several components. These components are of the following two types:

• Evolution components, which constrain the relative evolution of two consec-
utive components, φi (xi,xi+1), i = 0, 1, . . . , N − 1.

• Observational components, which constrain each state either by means of
observations or by means of a background prior, γi, i = 0, 1, . . . , N .

We define the scaled cost functional Γ as

(2.1) Γ(x0:N) :=
1

N

(
N−1∑
i=0

[γi(xi) + φi(xi,xi+1)] + γN (xN )

)
.

Minimizing this functional Γ will result in the best estimate according to the Γ cri-
terion. The rescaling will not affect the solution of the problem, but it is useful in
comparing residuals for increasing N . We will ignore the rescaling in the theoretical
derivations, but we will use it when comparing the numerical results.

A key element in proving our results is the following assumption.
Assumption 1. Assume that φi(xi,xi+1) and γi(xi) are twice continuously differ-

entiable and that the mixed differentiation function ∇2
xi+1xi

φi(xi,xi+1) is invertible
in the neighborhood of the minimum x∗0:N .

2.2. Illustration of the abstraction in the case of 4D-Var. In the case of
the 4D-Var approach (1.1), we have that, for i = 0, . . . , N − 1,

(2.2) φi(xi,xi+1) =
1

2

(
xi+1 −Mi(xi)

)T
Q−1

i

(
xi+1 −Mi(xi)

)
corresponds to the model error. Also, for i = 1, . . . , N ,

(2.3) γi(xi) =
1

2
(yi −Hi(xi))

T
R−1

i (yi −Hi(xi))

corresponds to the difference between observations and its model counterparts. For
i = 0, γ0 includes the background error measurement for the current value of x0 and
is formulated as

γ0(x0) =
1

2
(x0 − xB)

TQ−1
B (x0 − xB) +

1

2
(y0 −H0(x0))

T
R−1

0 (y0 −H0(x0)) .(2.4)

Here xi = xti denotes a state in the ith step. We use x0:N to represent [x0, . . . ,xN ]T

for shorthand.
Concerning Assumption 1, we note that for the weakly constrained 4D-Var ap-

proach defined in (2.1), (2.2), (2.3), and (2.4) we know that

∇xi+1
∇xi

φi(xi,xi+1) = −(∇xi
Mi(xi))

TQ−1.

Therefore the matrix on the left is invertible if and only if ∇xi
Mi(xi) is invertible.

In addition, for satisfying Assumption 1 completely, Mi, Hi must be continuously
differentiable.

Since in most applications Mi represents the solution flow of a regular ordinary
differential equation, the assumption that Mi is smooth and invertible holds. Since
the observation operator Hi can indeed be assumed to be continuously differentiable,
we conclude that Assumption 1 holds in this case.
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2.3. Reduced-memory algorithm. In this section, our goal is to define an
algorithm to minimize functional Γ as in (2.1), while storing at any time only a small
number of {xi}.

We define a sequence of functions as follows:

θ0(x0,x1) := ∇x0
φ0 +∇x0

γ0,(2.5a)

θi(xi−1,xi,xi+1) := ∇xi
φi +∇xi

φi−1 +∇xi
γi, i = 1, . . . , N − 1,(2.5b)

θN(xN−1,xN ) := ∇xNφN−1 +∇xNγN .(2.5c)

It immediately follows from (2.1) that the following relationships hold for the
partial derivatives of Γ:

∇x0Γ(x0:N ) =
1

N
θ0(x0,x1),(2.6a)

∇xiΓ(x0:N ) =
1

N
θi(xi−1,xi,xi+1), i = 1, . . . , N − 1,(2.6b)

∇xN
Γ(x0:N ) =

1

N
θN (xN−1,xN ) .(2.6c)

The core of our method is based on the following observation.
Theorem 1. Under Assumption 1, there exist continuously differentiable map-

pings λi(x0), i = 1, 2, . . . , N , such that

θ0(x0, λ1(x0)) = 0 ,(2.7)

θi(λi−1(x0), λi(x0), λi+1(x0)) = 0, i = 1, 2, . . . , N − 1.(2.8)

Moreover, for any x0, {λi(x0)}i=1,2,...,N are the unique vectors with this property.
Proof. We have from the definition of θi (while temporarily dropping the obvious

dependence on x0) that

(2.9) ∇xi+1
θi(xi−1,xi,xi+1) = ∇xi+1

∇xi
φi(λi, λi+1).

From Assumption 1 we have that∇2
xi+1xi

φi(λi, λi+1) is invertible in the neighborhood
of x∗0:N , which in turn makes the Jacobian of the associated nonlinear equation in
(2.9) invertible in xi+1, i = 1, 2, . . . , N − 1 (with a similar conclusion for i = 0).
The conclusion follows from application of the implicit function theorem recursively
in (2.9).

In the case of the 4D-Var functional (1.1), the mappings λi(x0) can explicitly be
computed as follows. Because of the quasi-quadratic form of φi (2.2) and γi (2.3), for
a fixed initial state x0, we get x1 by solving the θ0(x0,x1) = 0 as

x1 = M0(x0) +Q0(∇x0
M0(x0))

−TQ−1
B (x0 − xB)(2.10)

+Q0(∇x0
M0(x0))

−T (∇x0
H0(x0))

TR−1
0 (H0(x0)− y0) ,

and we get xi+1 by solving θi(xi−1,xi,xi+1) = 0 for i = 1, . . . , N − 1 as

xi+1 = Mi(xi) +Qi(∇xi
Mi(xi))

−T (∇xi
Hi(xi))

TR−1
i (Hi(xi)− yi)(2.11)

+Qi(∇xiMi(xi))
−TQ−1

i−1 (xi −Mi−1(xi−1)) .

Based on Theorem 1, we can rewrite Γ as a function of x0 as follows:

Γ̂(x0) =
1

N

[
N−1∑
i=0

γi
(
λi(x0)

)
+ φi

(
λi(x0), λi+1(x0)

)
+ γN

(
λN (x0)

)]
,(2.12)
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with λ0(x0) = x0. By transferring the cost function (2.1) into (2.12), a function of
initial state, considerable storage space is saved during computation since we reduce
the multistate function to a single-state function. The main vehicle for this reduction
is the explicit enforcement of the optimality conditions at each of the time steps
other than the initial one; however, these lead to a local minimizer only when x0

is the same as the first component of the minimizer. In some sense, the optimality
conditions become the strong constraint in the approach, replacing the perfect model
assumption from current 4D-Var data assimilation procedures, that is, of course, if we
can manipulate the function Γ̂ as required by the optimization algorithms in a way
that maintains an O(1) storage.

To that end, we need more theoretical support to verify that the optimum solution
of (2.12) is the same as the initial state of the original problem’s optimum solution.
It is well known that for a twice continuously differentiable function f , if x is a local
minimizer of f , then the following two necessary conditions must be satisfied: f ′(x)
equals 0 (first-order necessary condition; x here is called a stationary point) and f ′′(x)
is positive semidefinite (second-order necessary condition). The sufficient conditions
needed for x to be a local minimizer of f are that x is a stationary point and f ′′(x) is
positive definite (second-order sufficient condition). Hence we need to figure out the
derivatives first.

The gradient of Γ̂ is calculated as

∇x0
Γ̂ = θ0(λ0, λ1) + (∇x0

λN )T θN (λN−1, λN ) +

N−1∑
i=1

(∇x0
λi)

T θi(λi−1, λi, λi+1).

Because of the way λi, i = 1, . . . , N , are computed from the recursion (2.9), which
implies that θ0(λ0, λ1) ≡ 0 and θi(λi−1, λi, λi+1) ≡ 0, i = 1, . . . , N −1, we have that,
in the neighborhood of x∗

0,

(2.13) ∇x0
Γ̂ = (∇x0

λN )T θN (λN−1, λN ).

Define Li := ∇x0
λi. The second-order derivative of Γ̂ at x∗

0 is calculated by product
rule as

∇2
x0x0

Γ̂ = ∇λ0θ0 + LT
1 ∇λ1θ0 +

(
LT
N−1∇λN−1θN + LT

N∇λN θN
)
LN

+

N−1∑
i=1

(
LT
i−1∇λi−1θi + LT

i ∇λiθi + LT
i+1∇λi+1θi

)
Li

+
N−1∑
i=1

(
(θi)

T ⊗ Is
)∇x0

vec(Li) +
(
(θN )T ⊗ Is

)∇x0
vec(LN ),(2.14)

where Is is an s× s identity matrix with s being the dimension of xi and ⊗ denotes
Kronecker product. To prove (2.14), we need only prove that the first derivative
matrix of s× s matrix M and s× 1 vector u, with respect to s× 1 vector x, i.e.,

∇x(Mu) =
(
uT ⊗ Is

)∇xvec(M) +M∇xu.

Here the Kronecker product is uT ⊗ Is = ( u1Is · · · usIs ), and vec(M) is an
s2 × 1 vector stacking the columns of the matrix M on top of one another; that is,

vec(M) =
(
m11 · · · ms,1 · · · m1s · · · ms,s

)T
. The first derivative matrix
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of vec(M) is

∇xvec(M) =

⎛⎜⎝
∂m11

∂x1
· · · ∂m11

∂xs

...
...

...
∂mss

∂x1
· · · ∂mss

∂xs

⎞⎟⎠ .

Hence the ith-row-and-jth-column element of
(
uT ⊗ Is

)∇xvec(M) is
∑s

k=1
∂mik

∂xj
uk.

The ith-row-and-jth-column element of M∇xu is
∑s

k=1mi,k
∂uk

∂xj
. The ith-row el-

ement of Mu =
∑s

k=1mikuk, and hence the ith-row-and-jth-column element of

∇x(Mu), is
∑s

k=1mik
∂uk

∂xj
+
∑s

k=1
∂mik

∂xj
uk. Hence (2.14) is verified.

From Theorem 1, the last line of (2.14) is zero. Then (2.14) can be simplified at
x∗
0 to

∇2
x0x0

Γ̂ = ∇λ0θ0 + LT
1 ∇λ1θ0 +

(
LT
N−1∇λN−1θN + LT

N∇λN θN
)
LN

+
N−1∑
i=1

(
LT
i−1∇λi−1θi + LT

i ∇λiθi + LT
i+1∇λi+1θi

)
LT
i .

Because ∇λjθi = ∇xj∇xiΓ|xj=λj , j = i− 1, i, i+ 1, one can easily verify that

(2.15) ∇2
x0x0

Γ̂ = ΛT
(∇2

x0:N
Γ(x0, λ1:N )

)
Λ,

where

(2.16) ΛT =
[
I, (∇x0

λ1)
T , . . . , (∇x0

λN )T
]
.

From (2.6) and (2.13), as well as the definition of the mappings θi, it immediately
follows that the component x∗

0 of a stationary point x∗
0,x

∗
1, . . . ,x

∗
N of (2.1) also sat-

isfies ∇x0Γ̂(x
∗
0) = 0. Therefore, it is a stationary point of Γ̂. In the following result,

we show that the reciprocal is also true under some mild assumptions.
Theorem 2. If x∗

0 is a local minimizer of Γ̂(x0) and ∇x0
λN (x0) is invertible,

then
(
x∗
0, λ1(x

∗
0), . . . , λN (x∗

0)
)
is a stationary point of Γ(x0:N ).

Proof. From the definition of the mapping λi(·) in Theorem 1, we have that for
i = 1, . . . , N − 1,

θ0(x
∗
0, λ1(x

∗
0)) = 0, θi(λi−1(x

∗
0), λi(x

∗
0), λi+1(x

∗
0)) = 0.

Furthermore, according to the condition that x∗
0 is a local minimizer of Γ̂(x0), it

follows that the derivative of Γ̂ with respect to x∗
0 is zero. That is, according to

(2.13),

(∇x0
λN )T θN (λN−1, λN ) = 0.

Because ∇x0
λN is invertible, it follows that θN (λN−1, λN ) = 0. Let x∗

i = λi(x
∗
0). It

is then immediate that x∗
0:N satisfies (2.6) and is thus a stationary point of Γ(x0:N ).

The proof is complete.
According to (2.15), the Hessian of Γ̂ at its local minimizer is only a lower-

dimensional projection of the Hessian of Γ at a corresponding point. Hence it is not
necessary for the local minimum of Γ̂ to be the local minimum of Γ. Let us take a
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simple one-dimensional problem for a counterexample. Let Γ(x0, x1) = x0x1 − 1
2x

3
0 +

7
2x

2
0 − 6x0 − 3x1. Here N = 1, φ0(x0, x1) = x0x1, γ0(x0) = − 1

2x
3
0 +

7
2x

2
0 − 6x0, and

γ1(x1) = −3x1. It easy to show that x1 = 3
2x

2
0 − 7x0 + 6 solves ∂Γ(x0,x1)

∂x0
= 0. By

replacing x1 in Γ by 3
2x

2
0−7x0+6, we can get Γ̂(x0) = x30−8x20+21x0−18. Obviously,

∂̂Γ
∂x0

|x0=3 = 0 and ∂2
̂Γ

∂x2
0
|x0=3 = 2 > 0; therefore, x0 = 3 is the local minimizer of Γ̂.

However, when x0 = 3, the Hessian of Γ satisfies

(2.17) ∇2
x0,x1

Γ(x0, x1) =

[ −3x0 + 7 1
1 0

]
and is indefinite with eigenvalues −2.4142 and 0.4142.

We can prove that the initial state of the local minimizer of (2.1) is also the
local minimizer of (2.12). Moreover, and perhaps more important, we can now prove
that the minimization of (2.12) is equivalent to a nonlinear equation with nonsingular
Jacobian, whose residual can be computed by doing forward sweeps only.

Theorem 3. Let x∗
0 be the first component of a local minimizer of Γ(x0:N) that

satisfies the second-order sufficient condition. Then the following hold:
[i] x∗

0 is a local minimizer of Γ̂(x0) that satisfies the second-order sufficient con-
ditions in x0.

[ii] The matrix ∇x0λN (x0) is invertible at x∗
0, where λN (x0) is one of the map-

pings from Theorem 1.
[iii] In a neighborhood of x∗

0, we have that
[iii-a] ∇x0

θN (λN−1(x0), λN (x0)) is invertible, x∗
0,

[iii-b] θN (λN−1(x0), λN (x0)) = 0 ⇒ x0 = x∗
0, and

[iii-c] there exists Cθ such that

||θN (λN−1(x0)λN (x0))|| ≥ Cθ

∣∣∣∣∣∣∇x0Γ̂(x0)
∣∣∣∣∣∣ .

Proof. If x∗
0:N is a local minimizer of Γ(x0:N ), then x∗

0:N satisfies (2.9), and

θN (xN−1,xN) = 0. Then, λi(x
∗
0) = x∗

i and ∇x0
Γ̂(x∗

0) = 0.
Furthermore the second-order sufficient condition is satisfied by x∗

0:N for Γ; in

other words, ∇2
x0:Nx0:N

Γ(x∗
0:N) is positive definite. Then, ∇2

x0x0
Γ̂(x∗

0) is also positive
definite from (2.15) and the fact that the matrix Λ in that equation is full rank because
of the inclusion of an identity block.

To sum up, x∗
0 is a stationary point of Γ̂(x∗

0) that satisfies the second-order

sufficient condition. Then, it is also a local minimizer of Γ̂, and part [i] of the Theorem
is proved.

For part [ii], we use (2.13) to obtain that (where we drop the dependence of λi
on x0 to simplify notation)

∇2
x0x0

Γ̂(x∗
0) = (∇x0

λN )T∇λN−1θN (λN−1, λN )∇x0
λN−1

+ (∇x0
λN )T∇λN θN (λN−1, λN )∇x0

λN .(2.18)

Note that the component of the Hessian involving the second-derivative λN disappears
since θN (λN−1, λN ) = 0 at x∗

0. Also note that the above formula for ∇2
x0x0

Γ̂(x∗
0) does

not imply that it is nonsymmetric (which would be a contradiction). The symmetry
of the matrix would eventually unfold after using the recursion for λi and, implicitly,
their Jacobians. Nevertheless, the form presented is sufficient for us to reach our
conclusions.
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Assume now that ∇x0
λN are not invertible. Then, there must be a vector u 
= 0

such that ∇x0
λNu = 0. Using (2.18), we obtain that uT∇2

x0x0
Γ̂(x∗

0)u = 0, which
contradicts the conclusion reached in part [i]. This proves part [ii] of the theorem.

For part [iii], we use (2.13) to obtain

(2.19) (∇x0
λN )−T∇x0

Γ̂(x0) = θN (λN−1, λN ),

which in turn, with ∇x0
Γ̂(x∗

0) = 0, results in

∇x0
θN (λN−1(x

∗
0), λN (x∗

0)) = (∇x0
λN )−T (x∗

0)∇2
x0x0

Γ̂(x∗
0).

Since the latter relationship—following parts [i] and [ii]—is a multiplication be-
tween two nonsingular matrices, it follows that ∇x0

θN (λN−1(x
∗
0), λN (x∗

0)) is nonsin-
gular, which proves [iii-a]. From Assumption 1, ∇x0

θN (·, ·) is a continuous function,
whereas from Theorem 1 we have that λN (·) and λN−1(·) are continuous functions,
which implies that the mapping ∇x0

θN (λN−1(x0), λN (x0)) is continuous in a neigh-
borhood of x∗

0. From [iii-a] the mapping is nonsingular at x∗
0 and, since it is contin-

uous, it is nonsingular in a neighborhood of x∗
0, which implies local uniqueness and

thus [iii-b]. From (2.19) and part [ii], the conclusion of [iii-c] follows as well, as ∇x0
λN

is continuous and thus invertible in a neighborhood of x∗
0.

This completes the proof of part [iii] and of the theorem.

2.4. Second-order sufficient conditions for the weakly constrained 4D-
Var problem. We now investigate under what circumstances the 4D-Var problem
satisfies the second-order sufficient conditions that are the main requirement of the
key result, Theorem 3. We first find the Hessian matrix of Γ. Define

Wi :=
(∇xiHi(xi)

)T
R−1

i ∇xiHi(xi)

+
((

(xi+1 −Mi(xi))
TQ−T

i

)⊗
Is

)
∇xi

vec
(
(∇xi

Mi(xi))
T
)

+
((

(yi −Hi(xi))
TR−T

i

)⊗
Im

)
∇xi

vec
(
(∇xi

Hi(xi))
T
)

for i = 0, . . . , N . Define S to be a symmetric block tridiagonal matrix with Vi,
i = 0, . . . , N , as diagonal and −Ui, i = 0, . . . , N − 1, as subdiagonal, and

S :=

⎛⎜⎜⎜⎜⎜⎝
V0 −U0

−UT
0 V1 −U1

. . .
. . .

. . .

−UT
N−2 VN−1 −UN−1

−UT
N−1 VN

⎞⎟⎟⎟⎟⎟⎠ ,(2.20)

where

Ui :=
(∇xi

Mi(xi)
)T
Q−1

i , i = 0, . . . , N − 1,(2.21)

Vi := Q−1
i−1 +

(∇xi
Mi(xi)

)T
Q−1

i ∇xi
Mi(xi), i = 0, . . . , N − 1,(2.22)

V0 := Q−1
B +

(∇x0
M0(x0)

)T
Q−1

0 ∇x0
M0(x0), VN := Q−1

N−1.(2.23)

Because Γ takes the special form as in (2.1)–(2.4), its Hessian matrix is a block tridiag-
onal matrix. We can verify that Ui = −N∇xi

∇xi+1
Γ(x0:N ), Vi+Wi = N∇2

xi
Γ(x0:N )
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as follows:

∇2
x0:N

Γ(x0:N ) =
1

N
(S + diag(W0, . . . ,WN )),(2.24)

where S is defined by (2.20) and (2.23).
Lemma 1. Suppose that the first- and second-order derivatives of Mi and Hi

are bounded; ∇xMi is nonsingular; Qi, Ri, QB are positive definite (all of which are
standard 4D-Var conditions); and Wi are positive semidefinite at the solution x∗

0:N ,
i = 0, 1, . . . , N . Then ∇2

x0:N
Γ(x0:N ) is positive definite at that solution.

The significance of this result is that the optimization problem of the weakly
constrained 4D-Var satisfies the second-order sufficient condition. Therefore, Theorem
3[iii] applies to ensure that the solution of the 4D-Var problem satisfies a nonlinear
equation defined by θN and the mappings λ, a fact which we will exploit in section 2.5
to create a low-memory method to find a local minimum of (1.1).

Of all the conditions invoked, only the one concerning the positive definiteness
of Wi is nonstandard. They hold, for example, for linear systems or for the case
where the model and observation error is 0 at the solution. Note, however, that
these conditions are sufficient but not necessary for well-posedness of the nonlinear
equation (2.25). The only necessary condition is the second-order condition, though
it is of course difficult to ensure a priori in all nonlinear problems for any variational
approach, including ours.

Proof. If Z 
= 0, then

ZTSZ = zT
0 Q

−1
B z0 +

N−1∑
i=0

(∇xi
Mi(xi)zi − zi+1)

T Q−1
i (∇xi

Mi(xi)zi − zi+1) > 0.

The inequality holds because if the right-hand side is 0, then zi+1 =
(∇xi

Mi(xi)
)
zi

and z0 = 0, which in turn implies Z = 0, a contradiction. If Wi is positive semi-
definite, then the Hessian matrix of Γ, (2.24), is positive definite, and the proof is
complete.

2.5. Our low-memory approach. The essence of our approach follows from
Theorems 1 and 3. From these theorems, the minimizer x∗0 of (2.12) and, implicitly,
the first component of the minimizer of the target function (2.1), can be obtained by
solving the nonlinear systems of equations in x0:

(2.25) θN (λN−1(x0), λN (x0)) = 0 .

In the case of the 4D-Var functional (1.1), using (2.5c) with the definition (2.2),
with xN−1,xN computed by recurrence (2.11), we have that

θN (xN−1,xN ) = 2Q−1
N−1(xN −MN−1(xN−1))(2.26)

− 2(∇xNHN (xN ))TR−1
N (yN −HN (xN )).

For given x0, the function on the left of (2.25) is evaluated by computing λi(x0)
recursively using Theorem 1. In turn, the nonlinear equation (2.25) is well-posed
from Theorem 3[iii]. The resulting nonlinear equation can now be solved by limited-
memory quasi-Newton nonlinear equation methods such as limited-memory Broyden
methods [27, 4]. Alternatively, under some conditions, the same recursion can be
used to compute the objective function (2.12) and a descent direction for it, as we
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will illustrate in section 2.7. In turn, this can be used in a limited-memory quasi-
Newton optimization approach such as limited-memory BFGS (L-BFGS) [4, 15].

Therefore, in principle, (2.25) can be solved by using only O(1) stored vectors.
The only vectors that need to be stored are the current x0, the vectors at the current
recursion step (xi and xi+1 at the ith step of the recursion in Theorem 1), and the
vectors needed by the limited-memory Broyden (L-Broyden) method. Once the con-
vergence criterion is satisfied, the sought-after quantity (typically, the best estimate
of the last state x∗N ) can be output after one more recursion.

In any case, our approach compares favorably with a brute-force minimization
of (2.1) where, in principle, all vectors xi need to be stored, i = 0, 1, 2, . . . , N . For
high-fidelity simulations in memory-starved environments, as the emerging high-end
computing facilities appear to be, this can be a major handicap.

2.6. Comparison with the strong constraint case. Some of the difficulties
in the direct approach to (2.1) appear in the case with strong constraints:

(2.27)
minΓ(x0:N ) :=

1

N

(
N−1∑
i=0

[γi(xi) + φi(xi,xi+1)] + γN (xN )

)
,

xi+1 =Mi(xi), i = 0, 1, 2, . . . , N − 1.

Note that, because of the constraints, this new problem has only 1 vector degree of
freedom, whereas the problem of minimizing (2.1) had N + 1 degrees of freedom. In
the 4D-Var case with strong constraints, as applied operationally, the terms φi do not
appear, but we preserve them for generality; they will not change our approach.

The optimality conditions for (2.27) can be obtained by introducing Lagrange
multipliers mi, i = 0, 1, . . . , N − 1, and the Lagrangian function

(2.28) L(x0:N ,m0:N−1) = Γ(x0:N ) +

N−1∑
i=0

(xi+1 −Mi(xi))
T
mi.

The optimality-feasibility conditions become ∇xi
L = 0, i = 0, 1, . . . , N , ∇mi

L = 0,
i = 0, 1, . . . , N − 1. That is,

0 = ∇x0
γ(x0) +∇x0

φ0(x0,x1)−∇x0
MT

0 (x0)m0,(2.29a)

0 = ∇xi
γ(xi) +∇xi

φi−1(xi−1,xi) +∇xi
φi(xi,xi+1)(2.29b)

+mi−1 −∇xi
MT

i mi, i = 1, 2, . . . , N − 1,

0 = ∇xN
γ(xN ) +∇xN

φN−1(xN−1,xN ) +mN−1,(2.29c)

0 = xi+1 −Mi(xi), i = 0, 1, . . . , N − 1.(2.29d)

We are now faced with two options. The first is the classical adjoint approach,
which can be thought to follow from Pontryagin’s principle of optimal control. That
is, one can think of x0 as the only (vector) degree of freedom.

Indeed, this setup is identical to the optimal discrete nonlinear control setup [3,
Proposition 3.2]. It can be seen from that reference that the situation described here
corresponds to the case in which the control over the first time stage is the initial state
variable, x0, and the dynamics and the objective function for the other variables do
not depend on the control. Following the maximum principle in this setup, at a given
x0, one computes the states by carrying out the forward recursion (2.29d) and stores
them. Subsequently, the Lagrange multiplier mN−1 is computed from (2.29c). Then,
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all other Lagrange multipliers (the “adjoint variables”) are computed recursively from
(2.29b) backward all the way to m0. Next, the quantity

∇x0
L = ∇x0

γ(x0) +∇x0
φ0(x0,x1)−∇x0

MT
0 (x0)m0

is evaluated. This is simply the derivative of the objective function restricted on the
feasible manifold defined by (2.29d) but unrestricted in x0.

Subsequently, since the gradient is available, one has the option of carrying out
a quasi-Newton optimization approach or, similar to the weakly constrained case
described before, of solving the nonlinear equation resulting from setting the gradient
to zero, that is, (2.29a). Nevertheless, note that to carry out the backward recursion,
as is the case with all adjoint approaches, one needs to store at some point all vectors
x0:N , which may be a significant cost.

Alternatively, and related to the approach in this work, one can look at the
optimality-feasibility conditions (2.29) as the nonlinear equation

(2.30) ∇xN
γ(xN (x0)) +∇xN

φN−1(xN−1(x0),xN (x0)) +mN−1(x0) = 0.

Here, the component functions of x0 are defined recursively as follows. From a pre-
scribed x0, (2.29d) is solved for i = 0, and x1(x0) is obtained. Subsequently, (2.29a)
is solved for m0(x0), which exists uniquely if ∇xM0(x0) is invertible (which is the
case for all time resolvents). Then a recursion is carried out through (2.29b) and
(2.29d), obtaining at each step xi+1(x0) and mi(x0) up to i = N − 1. At that point,
all the elements needed to evaluate the left-hand side of (2.30) are computed, and
that quantity can be evaluated. At this point, one can apply the L-Broyden method
and carry out the solution of the optimality system with O(1) vector storage as in
the weakly constrained session.

On the other hand, the case for using the nonlinear equation—limited-memory
method for the strongly constrained case—is less compelling, since for the adjoint
case, O(logN) vector storage schemes exist by using checkpointing on the adjoint
calculation while regenerating the x vectors as needed from (2.29d). While this results
in substantial additional computational expense, the approach is well understood and
has the advantage of leading to an optimization problem and guarantees of global
convergence to stationary points. Moreover, one does not need an extra solve with
∇xM(x) at every step. Otherwise, in terms of conceptual complexity, the limited-
memory quasi-Newton approach for the adjoint-optimization approach seems to be
comparable to the limited-memory quasi-Newton approaches proposed in this work.

In the weakly constrained case considered here (2.1), however, the backward re-
cursion option does not seem to exist. The reason is that the problem is now truly
a problem over an (N + 1)d-dimensional space defined by x0:N , as opposed to over
a d-dimensional case defined by x0 in the strongly constrained case. Therefore there
is no projected gradient to speak of, which is an important concept in adjoint cal-
culations. One could consider the optimality conditions of Theorem 1 as constraints
on (2.1) and then apply the approach described through (2.29). Doing so, however,
would require second derivatives of Mi(x), which seems a steep price to pay for a
first-order algorithm insofar as optimization properties are concerned. Therefore our
approach in section 2.3, while related to Pontryagin’s maximum principle, cannot
be really inferred from it. We will thus concentrate on the algorithm described in
section 2.3.

The comparison with the strongly constrained case reveals another interesting
insight. In the control literature, the forward-nonlinear equation approach is thought
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of as a shooting approach for a boundary value problem. We can thus think of the
approach from this work as a shooting approach for the nonlinear equation of the
optimality conditions of (2.1) combined with a quasi-Newton method.

2.7. Optimization-based low-memory approach. Here we investigate the
possibility of obtaining a descent direction for Γ̂ by doing forward sweeps only. The
advantage of such an approach compared to an adjoint one is that no information
needs to be stored for a reverse sweep, which ensures a low-memory behavior. The
aim is to find a vector which is guaranteed to have a positive inner product with
∇x0

Γ̂. In turn, this would provide a theoretical basis for using optimization algorithms
using line search and positive definite approximations of the Hessian matrix, as is the
case for limited-memory, optimization-based quasi-Newton methods such as L-BFGS
methods [15].

We prove the main results for optimization-based approaches below.
Lemma 2. Suppose that Assumption [A] in section 3 holds and that the sequence

xi, i = 1, . . . , N , is derived by the recurrence formula (2.11), and θN is computed
by (2.26). Then there exist a Tδ and an N0 such that ∇x0

xN is positive definite for
T < Tδ and N ≥ N0.

Proof. We use the same notations as in the proof of Theorem 5. Following
(3.12) and invoking Lemma 7 we obtain that GN = ∇x0xN satisfies ||GN − Is|| →
||exp(PT )− Is||. Choose now Tδ such that ||exp(PT )− Is|| ≤ 1

4 for all T ≤ Tδ. Then,
from the preceding limit, there exists N0 such that ||GN − Is|| ≤ 1

3 for all N ≥ N0.

Since this implies that
∣∣∣∣GT

N − Is
∣∣∣∣ ≤ 1

3 , it follows that
∣∣∣∣GT

N+GN

2 − Is
∣∣∣∣ ≤ 1

3 , and
thus GT

N + GN is symmetric and positive definite, and so is GN . This proves the
claim.

Theorem 4. Suppose Assumption [A] holds and the sequence xi, i = 1, 2, . . . , N ,
is derived by the recurrence formula (2.11), and θN is computed by (2.26). Then there

exists a Tδ such that (∇x0
Γ̂)T θN is positive for T < Tδ.

Proof. From (2.13), we have

(∇x0Γ̂)
T θN = (θN )T (∇x0xN )θN .(2.31)

According to Lemma 2, there exists a Tδ such that ∇x0
xN is positive definite for

T < Tδ. Hence the proof is complete.
The significance of the result of Theorem 4 is that scaling the vector θN obtained

from the forward recursion (2.9) will now provide a descent direction for Γ̂(x0) when
the time interval is small enough under the conditions described in the theorem.

Of course, the condition T ≤ Tδ may be quite limiting. On the other hand, as
proved in Theorem 3[iii-c] we have that θN will be proportional with the distance
from the current point to the solution. Therefore its size is proportional to that of
the gradient, and while we cannot ensure it will provide a descent direction, it is quite
likely that either it or its reciprocal will provide a substantial descent. So we will use
it even for T larger than Theorem 4, with the expectation that it could work well,
even though this cannot be generally proved.

3. Stability issues. The advantage of our method is most evident at large N
values. On the other hand, in that regime the recursive nature of the solution opens
the door to having an unstable scheme that, even if formally well defined, results in
quantities too large to be practical. These difficulties are not by themselves unique to
our method; the recurrence in the maximum principle approach (adjoint approach) in
the case of strong constraints is also susceptible to instability if the number of steps
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considered is too large in relationship to the size of the eigenvalues of ∇xM(x) [3,
equation (3.38)].

Therefore, the stability of the recurrence (2.11) needs to be studied. We are
particularly interested in the limit case N → ∞. For a dynamical system such as
Burgers’ equation, given a fixed time interval, it is desirable that when the time step
goes to zero (i.e., the iteration number N increases to infinite) and the time interval
T is fixed, the solution of (2.11) remains bounded.

Since a complete analysis is difficult for nonlinear systems, we will carry out this
analysis for linear time-invariant systems. That is, we will investigate only the case
of linear Mi in (2.2) and Hi from (2.3):

Mi(xi) = Axi,(3.1)

Hi(xi) = Bxi.(3.2)

By replacing (3.1) and (3.2) in (2.11), the recurrence formula for computing xi+1,
i = 1, . . . , N − 1, becomes

xi+1 =−QA−TBTR−1yi −QA−TQ−1Axi−1(3.3)

+ (QA−TQ−1 +A+QA−TBTR−1B)xi,

and

x1 =−QA−T (BTR−1y0 +Q−1
B xB) + (QA−TQ−1

B +A+QA−TBTR−1B)x0.(3.4)

We want to allow for an asymptotic analysis with h = T
N → 0, and with T fixed.

We thus discuss how the various quantities of interest should behave with h. In the
following we use the Landau notation: a = O(h) and, respectively, a = o(h) indicate
that ||a/h|| is bounded and, respectively, converges to 0 as h→ 0.

To mimic the discretization of a continuous dynamical system, the propagator of
the dynamical system should satisfy A = I+O(h) = I+O ( T

N

)
. Since the covariance

matrix R models instrument error, it is reasonable to assume that it is independent
of the time step, and we will thus take it to be constant. About the numerical error
model, consistency requires that the error be no larger than O(h) = O( T

N ), the size
of the time step, and thus its variance to be no larger than the square of it. We make
a marginally stronger assumption below.

Assumption [A]. We assume that A = A(h) = I + hP + O(h2), Q = Q(h) =
ψ(h)(Q0 +O(h)), R = O(1), QB = O(1) for h → 0. Here Q0 is a constant invertible
covariance matrix, and ψ(h) = o(h2). Here h = T/N , and N is the number of time
intervals considered in the system.

To carry out the stability analysis under these circumstances, we first prove the
following lemma. Note that A and Q depend on h.

Lemma 3. Under Assumption [A], ||QA−TQ−1||N , ||QATQ−1||N , and ||A||N are
bounded for all h sufficiently small.

Proof. See section A.1.
Note that the second-order recurrence in (3.3) can be written in a matrix-vector

form as

(3.5)

(
xi+1

xi

)
= L

(
xi

xi−1

)
+ S

(
yi

0

)
,

where

(3.6) L :=

(
D −E
Is 0

)
,
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E := QA−TQ−1A, Is is the s × s identity matrix, and D := QA−TQ−1 + A +
QA−TBTR−1B. Clearly L is a matrix with special form, and we can derive LN with
some extra effort. Our first attempt is made in the following lemma.

Lemma 4. Let U and V be s× s square matrices, and

L :=

(
U + V −UV
Is 0

)
.

Then

(3.7) Ln =

(
gn −gn−1UV
gn−1 gn − gn−1(U + V )

)
,

where gn =
∑n

i=0 V
iUn−i.

Proof. See section A.2.
However, the matrix L in Lemma 4 is still a bit different in our case, which we

begin to investigate with the following lemma.
Lemma 5. Let U , V , and C be s× s square matrices, and

L :=

(
U + V + C −UV

Is 0

)
.

Then

(3.8) Ln =

(
fn −fn−1UV
fn−1 −fn−2UV

)
,

where fn(U + V + C)− fn−1UV = fn+1, with f−1 = 0s, f0 = Is.
Proof. See section A.3.
The difficulty with Lemma 5 is that the term C makes a general solution for fn

very complicated algebraically. To reduce the calculation of fn to the calculation of
gn, we prove the following.

Lemma 6. Let J1(h), J2(h) ∈ R
s×s be matrices satisfying J1(h) = J0

1 + O(h),
J2(h) = J0

2 + O(h) such that J0
1 and −J0

2 have no common eigenvalues and C(h) ∈
R

s×s, C(h) = o(h2). Define the matrices U(h) = Is + hJ1(h), V (h) = Is − hJ2(h).

There exists h0 such that for all 0 ≤ h ≤ h0 there exist the matrices Û(h) and V̂ (h)
satisfying

(3.9) Û(h) + V̂ (h) = C(h) + U(h) + V (h), Û(h)V̂ (h) = U(h)V (h)

and

(3.10)
∣∣∣∣∣∣Û(h)− U(h)

∣∣∣∣∣∣ = o(h),
∣∣∣∣∣∣V̂ (h)− V (h)

∣∣∣∣∣∣ = o(h).

Proof. See section A.4.
The key bounding calculation is now provided by the following lemma.
Lemma 7. Let fn be the sequence from Lemma 5 as applied to (3.5)–(3.6). To

this end, we use the identifications U = QA−TQ−1, V = A, and C = QA−TBTR−1B.
Assume that Assumption [A] holds and that PT and −P have no common eigenvalues.
Then the following hold:

[i] 1
N ||fn|| is bounded for all N and 1 ≤ n ≤ N .

[ii] For any ε there exists N0 such that for all N ≥ N0, we have that∣∣∣∣fN − fN−1QA
−TQ−1

∣∣∣∣ < ∣∣∣∣ePT − Is
∣∣∣∣+ ε.

Note that Q,A depend on h = T
N as defined in Assumption [A].
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Proof. See section A.5.
Remark. The only assumption we made beyond Assumption [A] is that P and

−PT have no common eigenvalues. This is the case, for example, if A is the propagator
of the dynamical system dx

dt = Px, where P is a stable matrix. Therefore, the condition
is satisfied if the target system is stable.

Theorem 5. Suppose that the sequence xi, i = 1, . . . , N , is derived by recurrence
formula (2.11), and θN is computed by (2.26). Then ||∇x0

xN || is bounded as N → ∞,
and thus the recurrence (3.3) is stable.

Proof. We first prove that

∇x0
xN = fN + fN−1

(−QA−TQ−1 +QA−TQ−1
B

)
,

where fn is defined as in Lemma 5.
The second-order recurrence (3.3) can be written as (3.5) with L defined as in

(3.6). Let LN
1 , LN

2 , LN
3 , and LN

4 denote the upper left block, upper right block,
bottom left block, and bottom right block of LN , respectively. According to (3.5), we
will have

∇x0
xN = LN

3

∂x1

x0
+ LN

4 = LN
3

(
QA−TQ−1

B +A+QA−TBTR−1B
)
+ LN

4 .(3.11)

Let E, D be as in (3.6). According to Lemma 5, LN
3 = fN−1, L

N
4 = −fN−2E, and

fnD − fn−1E = fn+1. Moreover, we have that

∇x0xN = fN−1D − fN−2E + fN−1

(
QA−TQ−1

B −QA−TQ
)

= fN + fN−1

(
QA−TQ−1

B −QA−TQ−1
)
.

In turn, this leads to the inequality

(3.12) ||∇x0
xN || ≤ ∣∣∣∣fN − fN−1QA

−TQ−1
∣∣∣∣+ ||fN−1||

∣∣∣∣QA−TQ−1
B

∣∣∣∣ .
From Lemma 7[ii] the first term is bounded, whereas the second term can be written

as fN−1

N

∣∣∣∣NQA−TQ−1
B

∣∣∣∣, of which the first factor is bounded from Lemma 7[i] and
the second factor is o(h) from Assumption [A]. Consequently ||∇x0

xN || is bounded,
which proves the claim.

This result proves that even as N → ∞, the essential components of our algorithm
will stay bounded. In that regime, as our algorithm stores O(1) vectors, our storage
will be O(1/N) relative to a classical approach which stores all vectors xi, a large and
increasing storing efficiency.

4. Effect of numerical error. The computational core of our method is the
recurrence equation (2.11). While Theorem 5 elucidates the stability effects in the
linear case for the situation where that equation is computed exactly, an important
practical issue is the effect of numerical error when evaluating (2.11). For moderate-
sized systems, all linear solves in that equation can be carried out directly, and that
error is primarily of finite arithmetic type. For larger systems, some of the linear
solves, particularly involving the matrix ∇xiM(xi)

−T , may have to be carried out
iteratively and, thus, will be inexact. This will yield another source of error that at
most times is larger than the finite arithmetic one. The question thus becomes, How
sensitive is this iteration to numerical error?

To have a comparable reference case, we compare the effect of numerical error
against that for the forward equation (2.29d) in the strongly constrained 4D-Var case,
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to which (2.11) is to a large extent analogous in this case. If one uses implicit methods
to compute xi =Mi(xi) in the strongly constrained case, then one of the components
of the error is likely to be in the solution of linear equations with matrices derived
from ∇xiM(xi)

−T , so the errors would have a comparable source. As models of the
error, we use

(4.1) esi+1 = Aesi + εsi+1, i = 0, 1, 2, . . . , N − 1,

for the strong case and

(4.2) ẽwi+1 =

(
ewi+1

ewi

)
= L

(
ewi
ewi−1

)
+ ε̃wi+1 = Lẽwi + ε̃si+1, i = 1, 2, . . . , N − 1,

for the weak 4D-Var case. In the weak case, ewi is the error in the state variable xi,
but for algebraic simplicity we focus on the joined successive states error ẽwi ; the two
can easily be transformed into each other. Also, ε̃si and, respectively, ε̃

w
i are the errors

in evaluating the right-hand side of the recursion equations—the sources of error in
this analysis.

These model equations one would obtain from (2.29d) and, respectively, (3.5)—
the latter derived from (2.11)—assuming a linear system of equations such as (3.1)
and then subtracting the exact solution from the one affected by numerical error.
From these models, we obtain

(4.3) esN =
N∑

n=0

AnεsN−n → ||esN || ≤
N∑

n=0

||A||n ∣∣∣∣εsN−n

∣∣∣∣
for the strong case, where εs0 is the error in the initial condition. Here we use the
triangle inequality and properties of matrix norms. Similarly, one obtains

(4.4) ẽwN =

N−1∑
n=0

LnεwN−n → ||ẽwN || ≤
N−1∑
n=0

||L||n ∣∣∣∣εwN−n

∣∣∣∣ ,
where εw0 is the error from the initial iterate.

Under Assumption [A], we have that A ∼ I + O(h). Moreover, this is the case
from the classical stability analysis where the standard assumption is that A is diag-
onalizable [2]. Under this assumption, it follows that An is bounded. On the other
hand, under Assumption [A], the matrix L, (3.6), with entries identified in Lemma 7
will tend in the limit to the matrix [2Is, − Is; Is, 0] that has nontrivial 2× 2 Jordan
blocks. Therefore, as n → ∞, it follows that Ln → ∞. This is the main reason that
the analysis from section 3 is so intricate. On the other hand, Ln does not grow to
∞ faster than linearly, as follows from Lemma 7.

1. If we have that ||ε||si and ||ε̃wi || are bounded below, then the upper bounds on
both ewN in (4.3) and esN in (4.4) are going to ∞ as N → ∞. Such is the case
when the source of error cannot be reduced by the user, as is the case with
truncation error.

2. If we can control the tolerance, then ||ε||si ≤ 1
N is sufficient to ensure that

the error in (4.3) stays bounded in the strong case. The weak case, however,
requires ||ε̃||wi ≤ 1

N2 under the same considerations.
A conclusion for upper bounds is weaker than consequences for errors themselves,
though this is a fairly standard practice in numerical analysis, and in the absence of
further structure assumptions, these bounds are quite indicative of the behaviors of
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the numerical methods [2]. Moreover, results for accuracy of the gradient may be
of interest; however, noting the expression of the functional (2.1), we see that upper
bounds on errors in x naturally extend to upper bounds on Γ and its gradients using
Lipschitz-type inequalities, so the conclusions would be largely similar.

We conclude that, under most scenarios, since LN is unbounded and AN is
bounded, the recurrence we proposed for weak 4D-Var (2.11) will require more ac-
curacy than the recurrence of the state in the strongly constrained case (2.29d) for
the accumulation of error to not overwhelm the calculation. We note, however, that
(1) both recurrences must have to this end an error in their evaluation that goes to
0 as N → ∞ (although (2.11) requires on the order of N faster convergence to 0),
and (2) in low-memory environments we are not aware of any alternatives for weak
4D-Var to the recursive approached we propose here.

5. Numerical experiments. We now present numerical experiments that il-
lustrate the theoretical findings discussed in section 2. We solve both the nonlinear
formulation (2.25), which we expect to be regular based on Theorem 3, and the opti-
mization formulation with the objective (2.12), where a descent direction is obtained
based on Theorem 4. To solve the nonlinear equation (2.25) in a low-memory fashion
we use the L-Broyden method defined in [27], whereas for the optimization approach
we use L-BFGS [15]. Such methods used a fixed number of stored vectors p, which will
be specified in numerical experiments. Moreover, we perform a comparison between
the low-memory approach and the weakly constrained 4D-Var.

5.1. Model problem. In this study we focus on Burgers’ equation (see [1, 11,
26, 19]), which describes the interaction between nonlinear advection and turbulent
dissipation. This equation is a fundamental problem in fluid mechanics and has been
used extensively as a benchmark in meteorology (see [11] and references therein).
The inviscid form (μ = 0) is also important because it captures the essence of the
large-scale transient waves of mid-latitudes. Variational data assimilation for Burgers’
equation is discussed in [1].

Burgers’ equation has the following definition:

∂u

∂t
+

1

2

∂(u2)

∂x
= μ

∂2u

∂x2
, x ∈ (0, 1)× (0, T ), μ > 0,(5.1a)

u(0, t) = u(1, t) = 0,(5.1b)

u(x, 0) = u0(x).(5.1c)

Here μ is the viscosity coefficient. The solution of Burgers’ equation with viscosity
coefficient μ = 0.01, 0.1, 0.5, 1 is shown in Figure 5.1.

As seen in Figure 5.1, the function value drops sharply when the viscosity co-
efficient is larger than 0.5. In such cases, the information content is limited, and
therefore, we choose the cases when μ is small.

In terms of the numerical discretization of the problem, we let umj denote the
function value u(j
x,m
t). According to [1], a centered finite-difference scheme for
Burgers’ equation is

um+1
j − umj


t +
(umj+1)

2 − (umj−1)
2

4
x − μ

(
x)2 (u
m+1
j+1 − 2um+1

j + um+1
j−1 ) = 0.(5.2)

Let Um denote the vector determined by umj , j = 0, . . . , N . The scheme in (5.2)

results in a discrete dynamical system that can be written compactly as PUm+1 =
S(Um). Here, P is a symmetric tridiagonal matrix with (1 + 2μ(
t)/(
x)2) on
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Fig. 5.1. Burgers’ equation with viscosity
coefficient μ = 0.01, 0.1, 0.5, 1 with initial con-
dition u(x, 0) = sin(πx).

Fig. 5.2. Numerical solutions for low-
memory implementation with L-BFGS (bottom
left) and L-Broyden (bottom right) methods
and the solution of the Burgers’ equation (top)
for μ = 0.01, Δt = Δx/1000, and N = 700.

the diagonal and −μ(
t)/(
x)2 on the sub- and superdiagonals. This defines the
discrete dynamical mapping M(·) discussed in section 2. Specifically, we have that
Mi(U

i) = P−1S(U i) and ∇Mi(U
i) = P−1∇S(U i). Obviously, P = I + T

NB
0, B0 is

a tridiagonal matrix, with 2μ
(�x)2 on the diagonal and − μ

(�x)2 above and below, and

∇S(U i) = I − T
N (B1), where B1 is the tridiagonal matrix with zero on the diagonal,

Ui
2:N

2�x on the superdiagonal, and −Ui
1:N−1

2�x on the subdiagonal. Hence ∇Mi(U
i) =

I + T
NB

3 + · · · with B3 = B1 − B0. Therefore M(·) satisfies all the conditions
required of it for the theoretical developments in section 2.

However, not every finite-difference scheme has this property. A counterexample
is the implicit Lax–Friedrichs scheme discussed by [1]. This scheme uses the average
of umj+1 and u

m
j−1 in place of uij. Doing so leads to ∇Mi(U

i) violating Assumption [A].

5.2. Numerical results. We now describe in detail the numerical experiments,
the objective being the minimization of (2.12). The function Mi in (2.2) is derived
from the centered finite-difference scheme applied to Burgers’ equation. We consider

x = 1/501 and U0 = sin(πx) to generate the data set G := {U0,Mi(U

i), i =
1, . . . , N}. We use xB = U0 as the background vector. The observation data are
computed by applying Hi(G) and perturbed by normal random noise times with
standard deviation 0.1 to mimic the action of a noisy nonlinear operator. In particular,
we select H(◦) = sin(◦). To be closer to a real situation, the observations are taken
every 10 steps in space-time (i.e., at time node i10
t and space node i10
x).

We use the L-BFGS algorithm to compute the minimizer of (2.12) (but with
search direction ΘN as indicated by Theorem 4). We also use the L-Broyden al-
gorithm to compute the solution of (2.25). We choose Q to be a diagonal matrix
(
t)2[2, 1, . . . , 1, 2] on the diagonal and Q−1

B and R−1 to be 100I. The initial solution
U0 is perturbed with normal random noise times with standard deviation 0.1 and
used as the initial guess for this algorithm. Note that only the y-axis of each plot of
results is set to be log scaled. Also note that all numerical results are scaled by the
corresponding values of the initial guess.

5.2.1. Results for Burgers’ equation. In Figures 5.3 and 5.4, we plot function
values of Γ̂ as in (2.12) at each iteration of the L-BFGS algorithm. We compare the
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Fig. 5.3. Scaled function value of (2.12)
at each iteration of L-BFGS for μ = 0.01, �t =
�x/1000, N = 700, and p = 2, 4, 6, 8 stored
vectors.
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Fig. 5.4. Scaled function value of (2.12)
at each iteration of L-BFGS for μ = 0.01,
�t = �x/1000, p = 6 stored vectors, and
N = 800, 900, 1000, 1100.

0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

p=2
p=4
p=6
p=8

Fig. 5.5. Scaled function values of ̂Γ as in
(2.12) at each iteration of L-Broyden algorithm
for p = 2, 4, 6, 8, stored vectors, μ = 0.01, �t =
�x/1000, and N = 700.
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Fig. 5.6. Scaled norms of residuals of
(2.26) at each iteration of L-Broyden algorithm
for p = 2, 4, 6, 8, stored vectors, μ = 0.01,
�t = �x/1000, and N = 700.

results obtained by using different numbers of stored vectors p = 2, 4, 6, 8 for N = 700
in Figure 5.3. Note that the convergence rates depend highly on the number of stored
vectors, p. In Figure 5.4, we plot the results of N = 800, 900, 1000, 1100. In Figures
5.5 and 5.6, we plot function values of (2.12) at each iteration of the L-Broyden
algorithm. In Figures 5.7 and 5.8 we show the norms of residuals of (2.26) at each
iteration of the L-Broyden algorithm. In Figures 5.5 and 5.6 we compare the results
obtained when using the L-Broyden method for different numbers of stored vectors
p = 2, 4, 6, 8 when N = 700, where we see again the same dependence on p. The
results for L-Broyden with N = 800, 900, 1000, 1100 for p = 4 are shown in Figures
5.7 and 5.8. We see from our numerical simulations that the objective function is
significantly reduced (by 2–5 orders of magnitude).

Though the problems are not solved to high accuracy, the solution does approach
a perturbed version of the original solution, as can be seen in Figures 5.2, 5.9, and
5.10. There, we illustrate the numerical solutions of L-BFGS (Figure 5.2, bottom left)
and L-Broyden (Figure 5.2, bottom right) methods together with the solution of the
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Fig. 5.7. Scaled function values of ̂Γ as in
(2.12) at each iteration of L-Broyden algorithm
for N = 800, 900, 1000, 1100, p = 4 stored vec-
tors, μ = 0.01, and �t = �x/1000.
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Fig. 5.8. Scaled norms of residuals of
(2.26) at each iteration of L-Broyden algorithm
for N = 800, 900, 1000, 1100, p = 4 stored vec-
tors, μ = 0.01, and �t = �x/1000.
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Fig. 5.9. Numerical solutions of the low-
memory implementation and 4D-Var methods
and the solution of the Burgers’ equation at
fixed time nodes for μ = 0.01, Δt = Δx/1000,
and N = 700.
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Fig. 5.10. Numerical solutions of the low-
memory implementation and 4D-Var methods
and the solution of the Burgers’ equation at
fixed space nodes for μ = 0.01, Δt = Δx/1000,
and N = 700.

Burgers’ equation (Figure 5.2, top) for μ = 0.01, 
t = 
x/1000, and N = 700. We
conclude that the findings of Theorem 3 are valid in this case.

Certainly, this is a limited set of experiments, for example, 
t is much smaller
than would be used in practical problems, and for large 
t we have definitely seen
the instability that we analyze in section 3 and which we can guarantee to not occur
only for fixed T and 
t sufficiently small. Also, we do not find in the experiments a
large dependence with p which is uncommon for quasi-Newton methods, which also
indicates that the circumstances here are quite particular.

Nevertheless, in these limited circumstances (which are the only ones in which
we can guarantee at the moment that the method works for large and increasing
N , where the method would be practically interesting) we observe that p can stay
essentially O(1) and still achieve convergence. We can see from the results described
above that the L-BFGS method using only forward sweeps converges faster than
L-Broyden, though our theory here through Theorem 4 applies only in the regime
of small T . Overall, we find that the numerical experiments validate the findings
expressed in Theorems 3 and 4 from section 2, that the nonlinear equation obtained
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Fig. 5.11. Scaled function values of ̂Γ as
in (2.12) at each iteration of L-Broyden algo-
rithm for modified Burgers’ equation for p = 6
stored vectors, μ = 0.01, and �t = �x/1000.
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Fig. 5.12. Comparison of function values
between 4D-Var method and reduced-memory
method for N = 700, p = 6, μ = 0.01, and
�t = �x/1000.

by our reduction procedure (2.12) is well-posed and can be solved both by using the
L-Broyden method or L-BFGS method with forward sweeps only even though p is
much smaller than the dimension of x.

5.2.2. Augmented Burgers’ equation. In order to replicate effects found in
higher-dimensional geophysical problems we consider adding a skew-symmetric term
that accounts for rotational effects. To this end, we augment the Burgers’ equation
(5.1) with κ∂u/∂x:

∂u

∂t
+

1

2

∂(u2)

∂x
=

(
μ
∂2

∂x2
+ κ

∂

∂x

)
u.(5.3)

If discretized with central differences, the constant advective term becomes skew-
symmetric. In Figure 5.11, we illustrate the function values of the cost function (2.12)
at each iteration of the L-Broyden algorithm with p = 6 for the modified Burgers’
equation with κ = 0.1. We observe the same convergence behavior as in the case of
the Burgers’ equation in section 5.2.1. We conclude that the findings of Theorem 3
are valid in this case as well.

5.2.3. Linear PDE. For completeness we also include results with a simple
linear PDE (linear advection),

∂u

∂t
= μ

∂u

∂x
, x ∈ (0, 1)× (0, T ), μ > 0,(5.4a)

u(0, t) = u(1, t) = 0,(5.4b)

u(x, 0) = sin(πx) ,(5.4c)

using the same setup as above. The results showing a fast convergence are illustrated
in Figure 5.13. We conclude that the findings of Theorem 4 are valid in this case as
well.

5.2.4. Comparison between reduced-memory and weakly constrained
4D-Var. In Figure 5.12, we show the cost function values of (2.12) and that of
(2.1) using the 4D-Var algorithm at each iteration of the L-BFGS algorithm with
p = 6 stored vectors at N = 700. We note that the search space for the reduced-
memory algorithm is N -fold smaller than in the 4D-Var case, and therefore, the
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Fig. 5.13. Scaled objective function value and gradient vs. iteration number results for (5.4)
with Δt = Δx/1000, using the L-BFGS method with p = 6 stored vectors.

reduced-memory algorithm may converge faster than the weakly constrained 4D-Var
algorithm. We compare quasi-Newton methods on the reduced problem with quasi-
Newton methods for weakly constrained 4D-Var using the same number of stored
vectors p. As the latter problem has a state space that is N times larger, where N is
the number of time steps considered, it follows that our algorithm uses N times less
memory. We thus achieved significant memory savings: as we have solved problems
with N = 700, the reduction in memory usage is also a factor of 700. In Figures 5.9
and 5.10 we also compare the quality of the predictions of the two methods and we
note that the results are similar.

We conclude that our theoretical findings are valid and that the method proposed
in this study has the potential for large memory savings as well as faster convergence.

5.2.5. Exploring wider parameter ranges. We next consider two cases that
have parameter ranges closer to those of the intended application target. In the
first case we investigate the effects of larger model errors on the performance of our
approach. Here, we reduce the number of observations that are now taken every
11 steps in time (i.e., at time node i11Δt) and every 100 steps in space (i.e., at
space node i100Δx) and use covariance matrices Q = R = 0.001I, Qb = 0.01I, with
Δt = Δx/1000, Δx = 1/500, and N = 110. The resulting cost function decrease is
shown in Figure 5.14(a).

In the second case we investigate the effects of larger observation time intervals.
To this end, we increase the time step length to Δt = 1/23, 834, Δx = 1/700; the
observations are taken every 31 steps in time (i.e., at 30iΔt = 1/768) and every 200
steps in space (i.e., at i200Δx). The resulting observation time interval is larger
but comparable to the decaying time of the smallest scale processes as estimated
by a Fourier analysis. The total observation time interval is N = 32. We selected
Q = 10−8I, R = 10−2I, Qb = 10−3I, and p = 6. The result is shown in Figure 5.14(b).

In both cases we used an L-BFGS optimization algorithm around our reduced
low-memory approach and we compare it with the L-BFGS approach applied to the
weakly constrained 4D-Var problem. For N larger than described above, our approach
does cause difficulties. In particular, negative rank-one BFGS updates are obtained
and the standard definition of L-BFGS methods [15, section 7.2] breaks down in
these situations. While exploring more robust versions of L-BFGS approaches is an
important aim for future research, we also note that the results in Theorems 3 and 4
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(a) Δt = 1/500, 000. (b) Δt = 1/23, 834.

Fig. 5.14. Comparison between low-memory and weak-constrained 4D-Var when using Q =
R = 10−3I, Qb = 10−2I, (a) Δt = 1/500, 000, p = 6, N = 110, and (b) Δt = 1/23, 834 and
observation gap in time of 1/768 Q = 10−8I, R = 10−2I, Qb = 10−3I, p = 6, N = 32.

are local in nature, and the result in Theorem 4 also requires a sufficiently small
horizon, and therefore they do not preclude such an outcome away from the solution.
In both cases, the memory savings, though smaller than in section 5.2.4, are still
significant: since N = 110 in the first case and N = 32 in the second, so are the
memory reduction factors.

In the second case, the L-BFGS is terminated at iteration 43 due to encountering a
negative BFGS update; however, it made good progress up to that point. In addition,
the problem setup is at the stability limit of the method: increasing the error matrix
Q or the time step Δt beyond our choices makes the computation fail due to rapid
divergence of the recursion. This is also indicated by the large initial value of the
objective function. This is not entirely unexpected from the discussion in section 3.
In the end, this suggests that the method works for Δt small enough, which for
practical applications also means an observation time interval small enough.

We conclude that in these cases where we increase the model error level and the
observational time interval the memory savings can still be significant; however, this
finding is mitigated by the fact that several technical difficulties do appear such as
negative updates for L-BFGS and instability. Eventually, it seems clear from these
experiments that with the method at this stage of development, increasing the model
error level or the observational time interval will result in numerical difficulties. This is
particularly true in the second case illustrated above, where in practice the observation
time interval is comparable to the decaying time of the smallest scale processes. We
anticipate that these issues can be alleviated with robust L-BFGS implementations
and multiple shooting ideas that trade memory for stability. This will be pursued in
future studies.

6. Conclusions. Hidden Markov models with physical model error pose new
challenges to data assimilation. One of these challenges is the fact that, being weakly
constrained, the model can no longer be used to reduce the storage needs by deriving
one state from another state. Instead, the entire estimated trajectory must be stored.
This challenge is particularly burdensome with the emergence of new architectures
where less memory will be available per node.

We addressed this challenge by using a new approach, which constrains the prob-
lem with the optimality conditions at the states other than initial. In turn, this results
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in a nonlinear equation whose residual vector can be computed by forward sweeps only,
or an optimization problem where an approximation to the gradient can be computed
with forward sweeps only. In turn, no intermediate states need to be stored for ad-
vancing the best estimate algorithm. In conjunction with limited-memory algorithms
(Broyden or BFGS) we can solve such a problem with low or even O(1) storage. We
validated these findings in the low model error and small observation time interval
regime on numerical experiments with Burgers’ equations, augmented Burgers’ equa-
tion, and a linear advection problem. Moreover, we carried out a comparison of the
L-BFGS version of our approach with L-BFGS applied to the full weakly constrained
4D-Var experiment using Burgers’ equation, and memory savings with a factor of 700
were obtained.

On the other hand, the approach poses other issues; in particular, it is prone
to instability problems; for example, a simplified error analysis indicates that our
recurrence requires more accuracy in its evaluation than the strongly constrained
4D-Var forward sweep. Our proofs in the interesting case—that of a large number
of time steps N—work only in the limit of small time step Δt, and the numerical
demonstrations are also done in this regime. We have also investigated numerical
cases with larger model errors and larger observation time intervals, the latter on
the order of the decaying time of the smallest scale processes. In both cases, the
memory savings, though smaller than in the previous examples, are still significant:
reduction factors of 110 were obtained for one case and 32 for the other. In both
cases, larger N resulted in negative updates for the L-BFGS methods applied to the
reduced problems. The second case was also interrupted by negative updates after
good progress, and increasing Δt and the model error beyond our choices displayed
instability of the recursion. We conclude that a larger model error and larger time
steps pose challenges to our approach and require further investigation.

To bring the method closer to a practical regime for its target applications, we
will pursue several other avenues such as more robust versions of L-BFGS methods,
multiple shooting to address stability concerns, and preconditioning based on a coarser
or reduced system. Nevertheless, we believe that algorithms reducing storage (and
implicitly, communication) are important issues that this method helps to address
and for which few other options seem to exist.

Appendix A. Proofs of lemmas in section 3.

A.1. Proof of Lemma 3. Let A = I +hP1, with P1 := P1(h) = P +O(h). For
h sufficiently small the series expansion of (I + hP1) in h holds to give

∣∣∣∣QA−TQ−1
∣∣∣∣N =

∣∣∣∣∣
∣∣∣∣∣
∞∑
i=0

(−hQPT
1 Q

−1
)i∣∣∣∣∣
∣∣∣∣∣
N

≤
( ∞∑

i=0

(
h ||Q|| ∣∣∣∣PT

1

∣∣∣∣ ∣∣∣∣Q−1
∣∣∣∣)i)N
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1− h ||Q|| ∣∣∣∣PT

1

∣∣∣∣ ∣∣∣∣Q−1
∣∣∣∣)−N

.

When N → ∞,
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∣∣∣∣N ≤ ∣∣∣∣I + hQPT

1 Q
−1
∣∣∣∣N ≤ (1 + h ||Q|| ∣∣∣∣Q−1

∣∣∣∣ ∣∣∣∣PT
1

∣∣∣∣)N
and ||A||N = ||I + hP1||N ≤ (1 + h ||P1||)N . When N → ∞, we have that(
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and (1 + h ||P1||)N → exp(T ||P ||). Hence the boundedness of the quantities in the
statement follow since sequences admitting limits are bounded.

A.2. Proof of Lemma 4. It is easy to verify that (3.7) holds for L1 because
g0 = Is, U + V = g1, −UV = −g0UV , and g1 − g0(U + V ) = 0. Assume that (3.7)
holds for Ln:

Ln+1 =

(
gn −gn−1UV
gn−1 gn − gn−1(U + V )

)(
U + V −UV
Is 0

)
=

(
gn(U + V )− gn−1UV −gnUV

gn −gn−1UV

)
.(A.1)

We also have that

gn(U + V )− gn−1UV =

n∑
i=0

V iUn−iU +

n∑
i=0

V iUn−iV −
n−1∑
i=0

V iUn−1−iUV

=

n∑
i=0

V iUn+1−i +

n∑
i=0

V iUn−iV −
n−1∑
i=0

V iUn−iV

=

n+1∑
i=0

V iUn+1−i = gn+1.

This proves the induction hypothesis for the upper left corner element of Ln+1. By
rearranging the above equality we obtain gn+1 − gn(U + V ) = −gn−1UV , which
demonstrates the induction hypothesis for the lower right element. Since the other
elements of Ln+1 are in the algebraic form required by the induction hypothesis, the
proof is complete.

A.3. Proof of Lemma 5. Let fn be defined by the above recursion and ini-
tial conditions. The case n = 1 immediately holds, and the recursion relation can
immediately be verified by inspection.

A.4. Proof of Lemma 6. We write (3.9) in an equivalent form by introducing

the matrix-valued mappings Ψ1(h), Ψ2(h) satisfying Û(h) = Is + hJ1(h) + hΨ1(h)

and V̂ (h) = Is − hJ2(h) − hΨ2(h). It immediately follows that the first equation in
(3.9) is equivalent to

(A.2) h (Ψ1(h)−Ψ2(h)) = C(h).

Replacing the same ansatz in the second equation of (3.9), we obtain that

(Is + hJ1(h) + hΨ1(h)) (Is − hJ2(h)− hΨ2(h)) = (Is + hJ1(h)) (Is − hJ2(h))

+ hΨ1(h) (Is − hJ2(h)) − (Is + hJ1(h)) hΨ2(h)− h2Ψ1(h)Ψ2(h) = 0.

Replacing now Ψ2(h) from (A.2) in the last relationship, and dividing by h2, we obtain
that (3.9) holds if and only if there exists Ψ = Ψ1(h) such that

(A.3) Θ(h; Ψ) := −Ψ

(
J2(h) +

C(h)

h

)
− J1(h)Ψ +

C(h)

h2
+ J1(h)

C(h)

h
+Ψ2 = 0.

By our assumptions, the mapping Θ(h; Ψ) is continuous in h and infinitely differen-
tiable in Ψ (in effect, polynomial), and so are all its derivatives with respect to Ψ.
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It also satisfies Θ(0,0s) = 0. The action of its Ψ derivative at the point (0,0s)
along a direction Ψd (which can be seen as a matrix in R

s×s, making the derivative
a four-dimensional tensor) satisfies

(A.4) ∇ΨΘ(0,0s)Ψd = −ΨdJ
0
1 − J0

2Ψd.

The right-hand side of (A.4) is closely connected to Sylvester’s equation: AX+XB =
C, where A,B,C ∈ R

s×s and X is an unknown matrix in R
s×s. If A and −B have

no common eigenvalues, then Sylvester’s equation has a unique solution X for every
C [23, Theorem 1.16]. As J0

1 and −J0
2 have no common eigenvalues, it follows from

the properties of Sylvester’s equation that the mapping ∇ΨΘ(0,0s)Ψd is one-to-one
and onto on R

s×s, and thus invertible with an inverse we denote by ∇ΨΘ
−1. This

makes the equation (A.3), Θ(h,Ψ) = 0, regular at (0,0s), and thus defines locally Ψ
uniquely as a function of h.

Since all the derivatives with Ψ of Θ are continuous in h, it follows that there exists
a neighborhood of (0,0s) in which Θ, ∇ΨΘ, and ∇Ψ(Θ)−1 exist and are continuous
and their norms are bounded by Cθ. Moreover, ∇ΨΘ is uniformly Lipschitz in Ψ with
respect to h (as it is differentiable, and its derivative is continuous in h and Ψ). We
assume without loss of generality that the Lipschitz constant is upper bounded by Cθ.

We also have from (A.3) that Θ(h;0s) =
C
h2 + C

hΨ1(h) = β(h), with ||β(h)|| → 0
as h → 0. It then follow that there exists an h0 such as α(h) = η(h)C2

θ ≤ 1
2 for all

0 ≤ h ≤ h0, where

(A.5) η(h) =
∣∣∣∣∇ΨΘ(h,0s)

−1Θ(h,0s)
∣∣∣∣ ≤ Cf ||β(h)|| .

As a result, the conditions for Kantorovich’s theorem [17, section 12.6.2] are met.
There exists a solution of the equation Θ(h,Ψ1(h)) = 0 satisfying ||Ψ1(h)|| ≤ CΨβ(h)
for some CΨ > 0 and all h ≤ h0.

From the equivalence of (A.3) with (3.9) it follows that Û(h) and V̂ (h) exist and

satisfy Û(h)−U(h) = hΨ1(h) = o(h) and V̂ (h)−V (h) = hΨ2(h) = C−hΨ1(h) = o(h).
This proves (3.10) and the claim.

A.5. Proof of Lemma 7. We first verify that the conditions needed to use
Lemma 6 apply. With the definition of U we have that U(h) = Q(h)A−T (h)Q(h)−1 =
I+hQ0P

TQ−1
0 +O(h2), V (h) = A(h) = I+hP+O(h2), and C(h) = o(h2). Moreover,

Q0P
TQ−1

0 has the same eigenvalues as PT and P . Therefore Q0P
TQ−1

0 has common
eigenvalues with −P if and only if PT and−P do, which is excluded by our hypothesis.

Therefore the conclusions of Lemma 6 apply to give matrices Û and V̂ satisfying
(3.9) and (3.10). It then follows that the matrix L in (3.6) has the same form as in
Lemma 4, and application of that result in conjunction with the definition of fn in
Lemma 5 results in

(A.6) fn =

n∑
i=0

V̂ iÛn−i.

In turn, this implies that

||fn||
N + 1

≤ max

{∣∣∣∣∣∣V̂ ∣∣∣∣∣∣N ,
∣∣∣∣∣∣Û ∣∣∣∣∣∣N} .

From the fact that h = T
N and (3.10) it follows that ||V̂ ||N ≤ (1 + h ||P ||+ o(h))N →

exp{(||P ||T )}, and the sequence is thus bounded. From similar arguments, so is ||V̂ ||,
which proves part [i] of the claim.



494 M. ANITESCU, X. ZENG, AND E. M. CONSTANTINESCU

For part [ii] we notice from (A.6) that

(A.7) fn − fn−1Û =
n∑

i=0

V̂ iÛn−i −
n−1∑
i=0

V̂ iÛn−i = V̂ n.

Using QA−TQ−1 = Û + o(h) from (3.10), we obtain that∣∣∣∣fN − fN−1QA
−TQ−1 − Is

∣∣∣∣ ≤ ∣∣∣∣∣∣fN − fN−1Û − Is

∣∣∣∣∣∣+ ||fN−1|| o(h)

=
∣∣∣∣∣∣V̂ N − Is

∣∣∣∣∣∣+ ||fn−1||
N

(No(h)) → ||exp{PT } − Is|| .

The last relationship follows from the fact that ||fn−1||
N is bounded from part [i],

whereas No(h) = o(h)
h → 0, as well as the fact that V̂ = I + hP + o(h). From the

properties of the limit the proof is complete.

Acknowledgments. We are grateful to Jorge Moré for advice and assistance
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