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Abstract

We discuss our experience in applying automatic differentiation (AD) to calculations in nu-
clear reactor applications. The document is intended as a guideline on how to apply AD to
Fortran codes with significant legacy components; it is also a part of a larger research effort in
uncertainty quantification using sampling methods augmented with derivative information. We
provide a brief theoretical description of the concept of AD,explain the necessary changes in the
code structure, and remark on possible ways to deal with non-differentiability. Numerical exper-
iments were carried out where the derivative of a functional subset of the SAS4A/SASSYS code
was computed in forward mode with several AD tools. The results are in good agreement with
both the real and complex finite-difference approximations of the derivative.

Keywords Automatic Differentiation, Fortran 77, Nuclear Engineering, Derivative, Gradient

AMS Subject Classification 58C20,56G05

1 Introduction

In this report, we discuss our ongoing work in applying automatic differentiation (AD) [14] to cal-
culations with the nuclear reactor simulation code MATWS. The MATWS computer program has
been compiled as part of an application library. It combines the point-kinetics module from the
SAS4A/SASSYS computer code with a simplified representation of a reactor heat-removal system.
A description of the underlying mathematical model is available, but the complete process of obtain-
ing the numerical solution is documented only in the code comments, and sparsely at that. MATWS
was used, in combination with another simulation tool, GoldSim, to model unprotected loss-of-heat-
sink, loss-of-flow and transient-overpower accidents [21].

This document is intended as a guideline on how to apply AD to Fortran codes that contain
legacy components. It is also part of a larger research effort in uncertainty quantification using
sampling methods augmented with derivative information [23, 24]. We provide a brief theoretical
description of the concept of AD, note what AD software is available, explain the necessary changes
in the code structure, and remark on possible ways to deal with nondifferentiability.

To date, we have resolved the basic issues of compatibility of the code with AD tools. We have
obtained derivative values using different AD tools that agree with each other, with the estimates
obtained by finite differences, and with the results given by the complex differentiation approach (a
technique closely related to forward-mode differentiation [20]).

Ideally, human participation in the automatic differentiation process should be limited to identi-
fying the dependent and independent variables of interest and to debugging the code that produces
derivatives, at its compilation stage. In practice, we cannot claim this smooth process as an opera-
tional norm, nor claim that every partial derivative of every output of interest can be easily computed
and validated. Even after significant development efforts, there may still be unresolved implemen-
tation issues related to nondifferentiability, incomplete convergence of iterative procedures, or mag-
nitudes of variables small enough to be comparable to numerical error of the AD process. We find,
however, that we can obtain derivatives for the variables of physical interest.

Currently, the differentiation of MATWS can be performed in the forward (or direct) mode, that
is, by the chain rule following the flow of the code. The reverse (or adjoint) mode of differentiation,
which constructs the chain rule by reversing the control flow, is also available. The significant differ-
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ences between the two modes will be explained in more detail in Section 3. For now, we note that
one run of the direct mode computation can produce partial derivatives of all outputs with respect
to a single input. The reverse mode computation yields derivatives of a single output with respect
to all inputs. Direct mode calculations are useful for factor importance analysis and construction of
linear approximations of the model response. For applications with many control variables, the re-
verse mode AD is significantly more economical than both finite differences and forward-mode AD.
For our existing work in uncertainty quantification of nuclear reactor simulations, computationally
inexpensive adjoint differentiation may in fact be required. This general need for adjoint derivatives,
based on our wider research interests, motivates the current stage of our project. However, our re-
cent progress in performing differentiation in the adjoint mode is not discussed here because of the
specialized and technical nature of the current work. We note only that the issues that need to be
overcome have more to do with selection of optimal programming practices than with fundamental
difficulties in applying automatic differentiation.

Because the subject of automatic differentiation is relatively new, the set of available complex
examples is limited. One can intentionally write code that deceives AD tools, and the methodology
for detecting such code is only in its development stages. Moreover, not all of the existing regularly
developed code can be passed through AD tools: some data and control structures are unacceptable
and have to be rewritten. doing so is particularly difficult with nuclear reactor simulation codes that
may be written using older programming practices, only sparsely commented, and in many senses
untouchable (i.e., modifications to the code must be minimal, and the mathematical structure cannot
be modified because of the risk of compromising validity of the results). The question of how much
code should be read and modified by a specialist implementing AD is largely open. In addition,
adjoint differentiation is always harder to implement, and not all of the available AD packages have
adjoint capability.

In view of the preceding remarks, we state that the primary goal of the work accomplished
so far was to see whether AD can be performed at all. A current goal is to see whether AD can
be performed at low computational cost. A major part of the development effort has gone into
discovering and resolving implementation issues. For the next large example, we expect greater
development efficiency, as well as a closer examination of how to achieve high numerical accuracy
and how to restructure the code for optimal AD performance.

2 Motivation

Unlike a set of physical observations of the model, with sensitivities and parameter dependencies
available only by statistical inspection, a simulation code is a sequence of analytic, explicit steps,
open to guided or automatic examination. The analysis of performance of a numerical model can be
done using a combination of statistical tools and examination of the algorithm.

Significant results with AD have been reported with fluid dynamics, aerodynamics, geophys-
ical data assimilation and computational chemistry codes [2, 4, 3, 12, 17, 27]. To the best of our
knowledge, this work is a first attempt to differentiate a nuclear reactor code with significant legacy
components. The issues that arose when differentiating, and their solution, are of interest to both
nuclear engineers and the computational scientists developing automatic differentiation software.
We are actively collaborating with the OpenAD development group, our goal being to make the next
releases of the tool applicable to a wider range of computational codes.
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Our ongoing work is also a part of a larger effort to improve on the existing practices of uncer-
tainty quantification, verification, and validation (i.e., estimation of likely variation in the numerical
model outputs, comparison of the model performance with the design and experimental data) of
numerical models of nuclear engineering, with applications to new code licensing and safety anal-
ysis. An important part of the model factor analysis is the efficient computation of model output
derivatives with respect to inputs. Obvious uses of derivative information include estimating the
model response to change in the inputs by linear approximation and ranking inputs by importance
for model complexity reduction.

In addition, derivative information was used to improve the efficiency of newly developed ap-
proach to uncertainty quantification [23, 24]. We used the fact that model response can be estimated
by a high-quality polynomial interpolation; that is, any calculation y = F(x) where F is a compli-
cated, possibly implicit procedure, can be approximated by an explicit formula y ≈ P(x), where P is
a (high-order, multivariable) polynomial function on the (selected group of) inputs. The polynomial
approximation is fitted by collocation based on a sample of inputs xi and corresponding outputs
yi = P(xi). Each sample requires a full model run. If the gradient of the output is available at a
fraction of the cost of computing the output, the approximation is also fitted to ∇xyi = ∇xP(xi),
effectively allowing the use of much fewer sample points and achieving higher quality of approxi-
mation. In our previous work, we demonstrated that for a simplified, generic model of the nuclear
reactor core, this approach to uncertainty quantification is more precise than linear approximation,
as well as computationally less expensive and providing greater analysis capacity than large-scale
Monte Carlo sampling; more details are available in [23]. Applying the approach to a more complex
simulation code is a logical next step.

The long-term goal is to be able to differentiate simulation codes of complexity close to SAS/SASSYS
[6, 22]. As far as we know, it is possible in principle but requires substantial development efforts. We
hope to develop most of the required methodology using the example of MATWS.

3 Automatic differentiation

Automatic (algorithmic) differentiation (AD) [14] is a technique to evaluate derivatives of functions
defined by computer programs. The internal workings of AD are based on the fundamental obser-
vation that any function implemented in a computed program, regardless of its complexity, can be
viewed as a finite sequence of elementary operations involving one or two arguments. Examples of
such operations are assignment, addition, division, and other nonlinear elemental functions such as
sin or exp, whose derivatives are known.

The first step in using AD is to identify the interesting inputs and outputs for the program,
namely, the control and objective variables. For example, we chose for MATWS to compute the
partial derivatives of the coolant, structure, and cladding temperatures (the objectives) with respect
to various reactivity coefficients (inputs or control variables). In the text of the code, the chosen
outputs of interest are

TCOOL, TCLAD, TSTRU, TFUEL,

representing coolant, cladding, structure, and fuel temperature, respectively. The chosen inputs
(corresponding to physically significant sources of uncertainty) are

ALFARD, ALFACR, ALFAEX, ALFADP,
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standing for radial core expansion, control rod driveline expansion, fuel axial expansion, and Doppler
reactivity feedback coefficients, respectively.

Once the controls and objectives have been identified, the AD engine parses the initial program
into a sequence of elementary operations and then computes the desired derivatives by using the
chain rule of differential calculus.

Suppose that the original program P (implementing the forward model) computes

y = F(x) , (1)

where y ∈ Rm are the objectives, x ∈ Rn represent the control variables, and F : U ⊂ Rn → V ⊂ Rm

is a differentiable function, at least on the domain of interest (the smoothness assumption).

A kwy concept in AD is that of an active variable. Any variable defined inside P that depends on
some component of x and influences some component of y is called an active variable. Conversely,
any variables that do not meet this criterion are called inactive. No derivatives are computed for
inactive variables.

AD can be implemented in two ways. One is through operator overloading, which uses specific
language features that allow the usual operators such as +, /,− to be redefined for certain vari-
able types. For every active variable x defined in P , a new variable of active type is defined that
contains both the value of x and its derivative. Both the original variable and its derivative are
propagated simultaneously with the help of the overloaded operators. The main advantage of AD
through operator overloading is that the program remains almost unchanged, since all the derivative
enhancements are done at compilation time. The only changes required in most cases are redefining
the active variables to be of the composite type and initializing the right derivative values for the
desired inputs. However, since Fortran 77 does not allow operators to be overloaded, we will not
discuss this approach here. Important drawbacks of this approach to AD are the computational
overhead of operator overloading, which increases the runtime of the program, and the fact that the
reverse mode of AD (see below) is cumbersome to implement using this approach.

Another way of implementing AD is as a source-to-source transformation process. Given P ,
AD tools such as ADIFOR [5], TAMC/TAF [9, 8, 10], OpenAD [28], and TAPENADE [18] yield
an enhanced program P ′ that computes the original values as well as their derivatives, using the
basic chain rule from differential calculus. Thus, the new program is enhanced with suitable data
structures and operations to calculate and store the derivatives of the objectives with respect to the
control variables.

Automatic differentiation has two basic modes, which refer to the directions in which the partial
derivatives are propagated in the differentiated program.

Let us first examine how AD propagates derivatives in the forward mode. If we view the original
program P as a sequence of k elementary statements (this is the viewpoint of the AD engine itself),
then we can write (1) as

y = Fk(Fk−1(Fk−2(. . . F1(x) . . .))) , (2)

where F1, . . . Fk are elementary vector functions (their components are +, sin, exp, etc.), whose
derivatives are known. Clearly

F := Fk ◦ Fk−1 ◦ . . . ◦ F1(x) .

Then, upon invocation of forward mode AD, we obtain P ′, which computes, together with (2), the
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directional derivative
ẏ =

∂Fk

∂Fk−1
· ∂Fk−1

∂Fk−2
· . . . · ∂F1

∂x
· ẋ (3)

for an arbitrary seed vector ẋ ∈ Rn.

The reverse mode (also known in the literature as the adjoint mode) of AD reverses the control flow
of the original program P . Hence, P ′ computes the directional derivative

x̄T = ȳT
(

∂F1

∂x

)T

· . . . ·
(

∂Fk−1

∂Fk−2

)T

·
(

∂Fk

∂Fk−1

)T

(4)

for a user-chosen adjoint seed vector ȳ ∈ Rm. We note that the elements of the Jacobians of the local
transformations are called elementary partial derivatives.

For the sake of concreteness, let us consider a small example and highlight the differences be-
tween the two modes of (source-to-source) AD. Suppose x ∈ R2, y = F(x) = F2 ◦ F1(x) = exp(x1 · x2)
and P reads

z = x1 · x2

y = exp(z) . (5)

Then the forward mode yields P ′:

ż =
∂z
∂x1

ẋ1 +
∂z
∂x2

ẋ2 = x2 ẋ1 + x1 ẋ2

z = x1 · x2

ẏ =
∂y
∂z

ż = exp(z) · ż

y = exp(z) . (6)

Similarly, the program produced by adjoining P looks as follows:

z = x1 · x2

y = exp(z)
z̄ + = exp(z) · ȳ

x̄1 + = x2 · z̄
x̄2 + = x1 · z̄ . (7)

It is now apparent that

ẏ =
∂F
∂x

ẋ (8)

and
x̄T = [x̄1 x̄2] = ȳ

∂F
∂x

. (9)
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3.1 Complexity of forward vs. reverse mode

A simple dimensional analysis of (3) vs. (4) reveals that forward-mode differentiation is preferable
when m � n, while the reverse mode is the better choice when the number of control variables
is much larger than that of the objectives (i.e., n � m). The latter case is found, for example, in
aerodynamic optimization [11] or in ocean modeling [19, 7], where one may consider thousands to
millions of control variables, but only a small number of objective functionals. In the case where m ≈
n, the forward mode usually proves more economical, since it avoids issues such as checkpointing
[16] or forward trajectory recomputations.

Note that, for nonlinear models (i.e., nonconstant local Jacobians), the adjoint mode requires ei-
ther the storage or the recomputation of several forward model variables. The reason is that the
control flow of P is reversed upon adjoint differentiation. For nonlinear F, the evaluation of the ele-
mentary partial derivatives in ∂Fj+1/∂Fj requires the values of intermediate variables computed by Fj
(inside P). Hence, the values of these variables must be either taped and restored (this checkpoint-
ing [14] comes at the expense of an increased memory/disk footprint for P ′) or recomputed on the
fly when needed (leading to an increased runtime for P ′). By default, OpenAD stores intermediate
values inside memory buffers (also called tapes). The default behavior of TAMC is to recompute all
forward variables and use them as needed, but this can be customized by introducing tape directives
[8].

Assuming the computational cost of a forward simulation is CF, Griewank [14] gives an encour-
aging upper bound for the cost of one adjoint simulation:

CA ≤ 5× CF . (10)

Further reductions are usually achieved in practice by judicious checkpointing and compiler
optimizations, which can lower the cost of computing a function gradient (m = 1) to around 2× CF.
The advantage over the finite-difference method, whose cost is roughly (n + 1)× CF, is evident.

3.2 Vector mode

There is also a way to efficiently compute submatrices of the Jacobian ∂F/∂x. Using the notation
in (1), one can describe the behavior of the vectorized AD modes as follows. Given a seed matrix
Ẋ ∈ Rn×k, the vector forward mode yields

Ẏ =
∂F
∂x

Ẋ , (11)

while the vector reverse mode calculates
X̄T = ȲT ∂F

∂x
, (12)

from a user-chosen seed matrix Ȳ ∈ Rm×k. Using vectorized AD can substantially reduce the overall
time needed to calculate the k directional derivatives, compared with calculating the derivatives
obtained by k runs of (3). The reason is that all forward calculations and intermediate variables
(such as the arguments of the local Jacobians) are shared and used for all derivative directions at
once.
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3.3 Higher derivatives

Apart from Jacobians or first order directional derivatives, one may wish to compute higher-order
derivatives such as Hessians or Taylor series expansions. This is achievable through multiple invo-
cations of AD on P . For example, a Hessian-vector product can be computed through a forward-
over-reverse differentiation. From these second-order directional derivatives, one can reconstruct the
whole Hessian tensor, if required. However, the cost of such a calculation can grow rapidly with
both m and n [14].

3.4 Advantages of Automatic Differentiation

Automatic Differentiation has several advantages over other numerical or symbolic differentiation
techniques. The differentiated code is generated automatically, with minimal user intervention prior
to the actual differentiation. AD is also flexible, in that it allows the user to choose any subset of
inputs and outputs from the existing set in P . The derivatives computed by AD can usually be
made as accurate as the quantities computed by the original program. Special care is needed with
derivatives of iterative solvers [1, 15], however, which usually converge at a slightly slower rate than
do the original iterations.

Another important advantage of AD over finite differences is that the AD derivatives do not
suffer from truncation errors or catastrophic cancellation. Moreover, unlike symbolic differentiation,
AD does not lead to expression blow-up [13].

Explicit and implicit Runge-Kutta integration methods of arbitrary order are known to be con-
vergent under automatic differentiation [25]. Moreover, their differentiated versions retain the order
of accuracy of their original counterparts. Linear multistep methods (LMMs) do not preserve con-
sistency under adjoining, in general. However, the discrete adjoints of LMMs do converge to the
adjoint ODE solution at the initial time, and with the same order of accuracy as the original linear
multistep method [26].

4 Code preprocessing

The MATWS source code consists of ≈ 10k lines of Fortran 77, The following programming features
make the application of AD to such code difficult.

• CPU-dependent (therefore nonportable) sections in the code

• Old, deprecated, or non-standard language constructs

– The Fortran EQUIVALENCE construct causes the automatic code analysis to be less precise in
retaining conservative correctness; consequently, the derivative code becomes less efficient.

– COMMON blocks (replaced in the newer Fortran standards by module variables) do not allow
a default initialization of active type variables that is convenient and fast for the adjoint
mode of automatic differentiation.

– Subroutines that have variable number of parameters; in the newer Fortran standards this
issue is addressed by optional dummy arguments and calls with name lists.
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– Direct memory references, variable offset computations, and memory copy operations are
difficult or impossible to address in the code analysis without leading to a significant
loss of precision while attempting to retain conservative correctness; consequently, the
derivative code will becomes less efficient.

ADIFOR requires standard Fortran 77 code, so one cannot have the aforementioned nonstandard
constructs, such as common blocks with the same name but different lengths, or subroutine calls
with variable number of arguments. Several modifications are needed before running ADIFOR:

• Remove CPU or OS dependent code sections, variable address computations, system calls, and
the like. These do not play a role when computing derivatives of output quantities, and are
used used for input and output formatting, for obtaining user names, user IDs, and so on.

• Define one subroutine for each call as needed (since subroutines with a variable number of
arguments are not supported). There remains an issue with subroutines whose stack variables
have persistent state (i.e., SAVE variables, which include all variables that are declared with
an initial value), because a duplication of the subroutines means that there is no consistent
persistent state between the subroutine duplicates. To bypass this problem, one could move all
those variables into a special common block that is shared between the subroutine duplicates
in question, but their values then would need to be initialized by some separate routine to be
called at the beginning of the program.

• Rename common blocks with inconsistent sizes between subroutines. We also enforced strong
typing in nonactive subroutine calls (e.g. call foo(x) ) through explicit casts to a temporary
variable and copying back of the value where needed and appropriate, i.e. t=DBLE(x); call
foo(t); x=INT(t). Because type mismatches are inherently unsafe and this modification is
trying to add some type safety, one has to first ascertain the intention of the call to yield the
desired effect in a type safe fashion.

4.1 Fortran EQUIVALENCE statements

An EQUIVALENCE statement is used to specify several variables that share the same memory storage.
It is a relic from the epoch before virtual memory management (some sort of memory management
technique was needed to save memory space). The AD tools support EQUIVALENCEs at varying de-
gree typically by generating the corresponding EQUIVALENCE statements for the tangent derivatives.
Thus, those derivatives will share the same memory storage, mirroring the relationship between the
forward model variables.

MATWS uses EQUIVALENCE statements for two purposes:

• I/O procedures. The EQUIVALENCEs are used to define variables that point to the beginning of
a COMMON block. Then, using the intrinsic LOC function, the program computes the length of the
common block in bytes. These length variables (NOINTC and NOFLTC) are used when reading
the input file chunk by chunk in the temporary buffers. The AD engine is oblivious to this
read-in procedure.

• Initializing constant-element arrays. Several constant element arrays of the same size share
the same memory space (thus, their contents are identical). If the variables in question are

10



active, then one should replace the EQUIVALENCEs by simple array allocations and element-wise
assignments (or vector assignments in Fortran 90).

4.2 Direct-memory copy operations

The AD engine cannot differentiate arithmetic operations (such as assignments or addition and
subtraction) which are performed through direct memory access (e.g., using something like the
nonstandard intrinsic LOC function to get the beginning address and offset of a given array). One
needs to rewrite these code sections in terms of explicit array operations, if they involve active
variables.

4.3 Fortran COMMON blocks

All the aforementioned AD tools support common blocks. Suitable common blocks will be defined
for the tangent linear and adjoint variables upon differentiation. For example, if P contains

COMMON /ABLOCK/ A
DOUBLE PRECISION A(2)

and A is an active variable, then P ′ will contain something similar to the following.

COMMON /DABLOCK/ dA
DOUBLE PRECISION dA(2)

or with OpenAD

COMMON /DABLOCK/ dA
type (active) :: dA(2)

4.4 Implicit typing and statement functions

All tools support the IMPLICIT statement. TAMC/OpenAD will define all variables explicitly in the
differentiated code P ′. ADIFOR will mirror the definitions in the original program P .

OpenAD does not yet support statement function definitions. Hence, such definitions must be
recoded into explicit function or subroutine definition before invoking the OpenAD script. For
example, MATWS contains the following statement function definition inside subroutine INIT.

DOUBLE PRECISION TSL(8)
DOUBLE PRECISION P, H

...
TSCFUN(P,H) = (TSL(1)+H*(TSL(2)+H*(TSL(3)+H*TSL(4))) + P*(TSL(5) +

H*(TSL(6)+H*(TSL(7)+H*TSL(8))))-32.D0)*(5.D0/9.D0) + 273.D0
...

TGUESS=TSCFUN(PWAVEP,HGUESS)
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Before OpenAD is run on this code, one must transform this implicit definition into a subroutine
definition.

SUBROUTINE TSCFUN(P,H,RES_TSCFUN)
DOUBLE PRECISION P
DOUBLE PRECISION H
DOUBLE PRECISION RES_TSCFUN
...
RES_TSCFUN = (TSL(1)+H*(TSL(2)+H*(TSL(3)+H*TSL(4))) + P*(TSL(5)+

H*(TSL(6)+H*(TSL(7)+H*TSL(8))))-32.D0)*(5.D0/9.D0) + 273.D0
END SUBROUTINE TSCFUN
...

Note that statement functions are deprecated in the newer Fortran standards.

4.5 Validation of the modified code

We acknowledge the concern that the changes performed on the code before the AD tools become
applicable may put the validity of the simulation in question. In many numerical simulations one
can observe numerical “jitter” caused by changing the hardware platform, the compiler, or compiler
optimization level without actually changing the source code. It is necessary to verify that the
code that has been modified according to the above description produces output that is within an
acceptable tolerance from the original. Some of the necessary modifications address programming
techniques that are considered inherently unsafe, thus increasing the portability and maintainability
of the code.

The Fortran 90 version of MATWS has been validated against the original Fortran 77 code by
comparing outputs corresponding to the nominal input values. Outputs from both programs were
found to be identical. We have not yet validated output consistency for the perturbed inputs that are
used in the finite-difference approximations. However, we expect those to be the same for both code
versions. We also note that ADIFOR was able to differentiate the original Fortran 77 code after some
minor modifications done to inactive functions. Since the ADIFOR derivatives in Table 1 agree
remarkably well with both finite differences and the rest of the AD tools, we are confident that the
results of the differentiation are indeed correct as given.

5 Code postprocessing

We have not encountered implementation issues that definitely require code postprocessing. We find
it helpful, however, to develop methodology at an abstract level.

If the model is successfully passed through the automatic differentiation tools but the deriva-
tive values and a finite-differences check do not converge, the augmented code can be analyzed for
nondifferentiable routines. Where necessary one may modify the source code to smoothen or other-
wise correct the nondifferentiability before reapplying AD. The AD-generated derivative values are
correct up to machine precision and at nondifferentiable points still can produce an element of the
generalized gradient. We note, however, that certain programming constructs have unintended side
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effects on the derivative computation. Among these are branching, table lookups, and conversion
between floating-point values and integers. The AD community has accumulated some experience
regarding these constructs and how to detect and treat them.

We formulated a few rules for manual smoothing. If an analytic expression is not smooth, a
smooth approximation should be constructed and differentiated (geometrically, the required opera-
tion is the rounding of corners in function plots). If there is no analytic expression and the function
evaluation consists of a lookup table, a smooth interpolation should be constructed and differenti-
ated (a stepwise function, made smooth by some rounding at the corners, is probably better than a
least-squares-fitted polynomial curve). If everything else fails and the procedure does not have an
adequate analytic differentiable approximation, a finite-differences approximation should be calcu-
lated for this elementary derivative.

Correspondingly, our ideas on resolving incorrect derivative information obtained by AD differ-
entiation of the complete code are as follows:

• Compute partial derivatives for some code sections through finite differences, or provide some
smooth (and valid) model approximation. This procedure is easily applicable to the forward
mode (but not quite so for the adjoint program). It involves low computational overhead, and is
simple to implement once the troublesome derivative code has been identified (e.g., can isolate
that code in a subroutine). The steps are as follows:

1. Differentiate the code in its original form.

2. Identify the sections of code that are non-smooth or contain spurious AD derivatives.

3. Isolate that piece of code in subroutines if possible (just for convenience).

4. Replace the code with a smooth approximation of the original model, or compute the
necessary partial derivatives through finite differences.

• Compute the derivative, not at the current point in parameter space, but at a number of nearby
points. Build a smooth interpolation.

• If a derivative iteration does not converge, increase the number of iterations and/or modify the
convergence criterion to explicitly take the derivatives into account. This process involves low
development cost.

• If there is a control structure switching between algebraic expressions, either ignore it, or build
a smooth interpolation based on points away from the switch.

• For derivative iterations, increase the number of iterations, and/or modify the convergence
criterion to take into account the derivatives.

6 Checking for derivative correctness

We verify the automatic differentiation results using finite differences. Recall that P computes y =
F(x). Then, for a suitably chosen step size h and any direction ẋ (assuming F is sufficiently smooth
at x), the following Taylor approximation holds:

F(x + h ẋ)− F(x− h ẋ) ≈ 2h ·
(

∂F
∂x

(x) ẋ
)

. (13)
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Table 1: Comparison of different estimates for the derivatives
Software dTCOOL

dALFARD
dTSTRU

dALFARD
dTCLAD

dALFARD
dTFUEL

dALFARD
ADIFOR 17468.4511373 17468.3752648 17639.4606974 18312.5474227
OpenAD 17468.4511372 17468.3752647 17639.4606974 18312.5474227

TAMC 17468.4511392 17468.3752667 17639.4606995 18312.5474248
Complex approximation 17468.4511372 17468.3752647 17639.4606974 18312.5474226

Finite differences 17468.4315994 17468.3557532 17639.4409493 18312.5269537

The directional derivative in the right-hand side of this expression is computed through AD; the
left-side uses a central difference scheme requiring two model runs (once the optimal perturbation h
has been found).

The derivatives can also be computed by using a complex-step derivative approximation proce-
dure. This approach is based on a simple result from complex analysis:

∂F
∂x
≈ Im [F(x + ıh)]

h
. (14)

Since there is no possibility of catastrophic cancellation, one can take h smaller than machine epsilon
and get accurate derivative approximations. In Table 1, we show a typical comparison of derivative
values, for a single input and a few outputs of interest. In general, for the previously selected inputs
and outputs of interest, the numerical tests consistently show agreement (with the relative error of
0.01% or better). Note that, before attempting (14), some preprocessing of the forward simulation
code is required (see [20] for guidance and tools).

We note that the validation process is not complete. We were able to locate one output variable
(AMPI in the code) for which the finite-differences derivative disagrees with the AD estimation (by
a factor of exactly 100, which may indicate scaling in the input, or in the output, that our finite
differences procedure does not process correctly). We hope to resolve all such issues through the use
of tracing tools; familiarity with the meaning of each variable may also help.

7 Conclusions

We conclude this report with a perspective on the future of the project and the related efforts. Much
of our understanding is based on recent discussions with the AD development community.

In an ideal situation, the tools of automatic differentiation should be applied only to structured
codes. There are strong suggestions that any new code should be developed with automatic dif-
ferentiation in mind, perhaps even simultaneously with its AD-augmented version. If that were to
become a standard, effectively all new software would be capable of outputting its own sensitivity
information, with minimal additional effort. In our field of study, however, the codes of interest are
likely to have old, unstructured, components sometimes without comprehensive documentation and
without general permissions to modify the code. The only allowed invasion into the code’s structure
is at the postprocessing stage, where we can replace the functions automatically developed to output
derivatives by smooth, or more precise forms.

Nevertheless, the significance of the widely known issues with applying automatic differentiation
to codes with significant legacy base may be exaggerated. Such commonly identified difficulties with
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Fortran program structures (flow control operators, equivalences, common blocks) are handled nicely
by the existing tools. Once we demonstrate that our complicated example may also be differentiated
in the adjoint mode, our next goal is to apply tracing tools to identify nondifferentiable segments
of the codes and to develop widely applicable methodology for constructing and debugging AD-
augmented versions of (almost) any code. In the long term, we would also like to achieve complete,
automatic validation of AD results.
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