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Application of Multi Rigid Body Dynamics

Application of Rigid Multi Body Dynamics

RMBD in diverse areas
? rock dynamics ? human motion
? robotic simulations ? nuclear reactors
? virtual reality ? haptics

VR or Virtual reality exposure (VRE) therapy
? fear of heights ? fear of public speaking
? telerehabilitation ? PTSD



Introduction Ratio Metric Differentiability Constraints and Model Algorithm Numerical Results ’Comps

Previous Approaches

Some Previous Approaches

Integrate-detect-restart simulation a natural choice
Classical solution may not exist
Collisions can cause small stepsizes

Differential algebraic equations (DAE) for joint constraints
Specialized techniques because non-smooth
noninterpenetration and friction constraints.

Optimization based animation technique solving a
quadratic program at each step to avoid stiffness.

Collision detection still present, hence small stepsizes

Penalty Barrier Methods are most popular.
Easy set up, even for DAEs, but problem may be stiff and
requires a priori smoothing parameters
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Previous Approaches

Hard Constraint Approaches

Advantage:

Results are same order of magnitude as penalty method

Same dynamics using 4 orders of magnitude larger time
step

We use a velocity impulse LCP based approach avoiding
the lack of a solution and introducing artificial stiffness

Disadvantage:

LCP model yields inequality constraints from contact and
friction, treated computationally as hard constraints.
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Previous Approaches

Need to Define and Compute Depth of Penetration

To avoid infinitely small time steps, say from collisions,
then minimum stepsize must exist

For methods with minimum time step, interpenetration may
be unavoidable, thus it needs to be quantified (to limit
amount of interpenetration)

Minimum Euclidean distance good for distance between
objects, but not for penetration

Note that for convex polyhedra, calculation of PD using
Minkowski sums, are computationally expensive
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Previous Approaches

Constraint Stabilization

Constraint stabilization in a complementarity setting.
Tackled by previous authors using

nonlinear complementarity problems an LCP
nonlinear projection (nonlinear inequality constraints)
post-processing method (uses potentially non-convex LCP)
convex LCP for constraint stabilization.

Unlike ours, these methods need computation after solving
basic LCP subproblem to achieve constraint stabilization
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Previous Approaches

Goals

The goals of this thesis are to

define a new computationally efficient measure that
detects collision and computes penetration of two convex
bodies, which is metrically equivalent to the signed
Euclidean distance when close to a contact,

develop an algorithm which efficiently models the system
and solves the resulting LCP while achieving constraint
stabilization, and

implement the algorithm to simulate polyhedral multibody
contact problems with friction.
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Ratio Metric

We need a new measure that defines distance and
quantifies depth of penetration between convex bodies.

We start by introducing and analyzing a new measure
between two convex bodies.

Then we extend the analysis to produce our new measure
of penetration depth.

We will see that it is metrically equivalent to the Minkowski
Penetration Depth measure, but has lower computational
complexity.
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Expansion/Contraction Map

Polyhedra and Expansion/Contraction Maps

Definition

We define CP(A, b, xo) to be the convex polyhedron P defined
by the linear inequalities Ax ≤ b with an interior point xo. We
will often just write P = CP(A, b, xo).

Definition
Let P = CP(A, b, xo). Then for any nonnegative real number t,
the expansion (contraction) of P with respect to the point xo is
defined to be

P(xo, t) = {x |Ax ≤ tb + (1− t)Axo}

and has an associated mapping

Γ(x , xo, t) = tx + (1− t)xo.
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Polyhedral Ratio Metric

Minkowski Penetration Depth

Definition
Let Pi = CP(Ai , bi , xi) be a convex polyhedron for i = 1,2. The
Minkowski Penetration Depth (MPD) between the two bodies
P1 and P2 is defined formally as

PD(P1, P2) = min{||d || |interior(P1 + d)
⋂

P2 = ∅}. (1)
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Polyhedral Ratio Metric
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Polyhedral Ratio Metric

Ratio Metric Penetration Depth

Definition

Let Pi = CP(Ai , bi , xi) be a convex polyhedron for i = 1,2. Then
the Ratio Metric between the two sets is given by

r(P1, P2) = min{t |P1(x1, t)
⋂

P2(x2, t) 6= ∅}, (2)

and the corresponding Ratio Metric Penetration Depth (RPD) is
given by

ρ(P1, P2, r) =
r(P1, P2)− 1

r(P1, P2)
. (3)
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Polyhedral Ratio Metric

Expansion/Contraction Again

Figure: Visual representation of double expansion or contraction
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Metric Equivalence Theorem

Metric Equivalence Theorem

Theorem (Metric Equivalence)

Let Pi = CP(Ai , bi , xi) be a convex polyhedron for i = 1,2, s be
the MPD between the two bodies, D be the distance between
x1 and x2, ε be the maximum allowable Minkowski penetration
between any two bodies. Then the ratio metric penetration
depth between the two sets satisfies the relationship

s
D
≤ ρ(P1, P2, r) ≤ s

ε
, (4)

if P1 and P2 have disjoint interiors, and

− s
ε
≤ ρ(P1, P2, r) ≤ − s

D
(5)

if the interiors of P1 and P2 are not disjoint.
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Metric Equivalence Theorem

Significance of the Metric Equivalence Theorem

Let number of facets of two polyhedra be m1 and m2

Computing PD by using the Minkowski sums: O(m2
1 + m2

2)

Fast approximation to PD with stochastic method:
O(m3/4+ε

1 m3/4+ε
2 ) for any ε > 0

Solving linear programming problem: O(m1 + m2)

∴ our metric provide us with a simple way to detect
collision and measure penetration of two convex polyhedral
bodies bodies with lower complexity and is equivalent, for
small penetration, to the classical measure

∴ for time step h, if the MPD is O(h2) then so is the RPD
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Basic Contact Unit

Perfect Contact

Definition
Two convex polyhedra are in perfect contact when there is a
nonempty intersection without interpenetration.

Definition
In n-dimensional space, a Basic Contact Unit (BCU) occurs
when

two convex polyhedra are in perfect contact,
the contact region attached to a BCU is a point, and
exactly n+1 facets are involved at the contact.

The point where the contact occurs is called an event point, or
more simply, an event.
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Basic Contact Unit

Basic Contact Unit

A CoF is always a BCU

In 2D: CoF In 3D: CoF, (nonparallel) EoE

In n-dim space, there are exactly
[n+1

2

]
distinct BCUs

Figure:
Corner-on-Face

Figure:
Edge-on-Edge

Figure:
Face-on-Face
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Basic Contact Unit

Convex Hull of BCUs

Theorem

The intersection of two convex polyhedra in perfect contact is
the convex hull of the event points.

=> +

Figure: 2D Example: Contact Region Is Convex Hull of BCUs.
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Basic Contact Unit

Convex Hull of BCUs

Theorem

The intersection of two convex polyhedra in perfect contact is
the convex hull of the event points.
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Figure: 2D Example: Contact Region Is Convex Hull of BCUs.



Introduction Ratio Metric Differentiability Constraints and Model Algorithm Numerical Results ’Comps

Differentiability at an Event

Nondifferentiability

Figure: Nondifferentiability of Euclidean distance function

In Calculus, we learn when functions are not differentiable

Consider piecewise smooth distance function
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Differentiability at an Event

Local/Global Coordinates

Suppose that we have PLi = CP(ALi , bLi , 0) as the local
representation for a convex polyhedron for i = 1, 2. The
transformation from local coordinates xLi to world coordinates x
is given by

x = xi + RixLi ,

which can be rewritten into the form

xLi = RT
i (x − xi).

Here the matrices R1 and R2 are rotation matrices.
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Differentiability at an Event

Infinite Differentiability at an Event

If E is an event at perfect contact of convex polyhedra P1
and P2, then PE(xi , t), the restrictions of Pi(xi , t) to E, is
the convex body defined by the facets of P(xi , t) which
involve E.

If E is an event at perfect contact of P1 and P2, then

r(PE(x1, t), PE(x2, t)) = min
t≥0

{
ÂL1RT

1 x − b̂1t ≤ ÂL1RT
1 x1

ÂL2RT
2 x − b̂2t ≤ ÂL2RT

2 x2

(6)
where the sum of the rows of ÂL1 and ÂL2 totals n+1.

Theorem: At any event E of perfect contact,
r(PE(x1, t), PE(x2, t)) is infinitely differentiable with respect
to the translation vectors and rotation angles.
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Differentiability at an Event

Component Functions

Associate mth event E (m) with component function Φ̂(m)

We use the restrictions PE (m)(x1, t) and PE (m)(x2, t)
Φ̂(m) = f (rm), where f (t) = (t − 1)/t and

rm = min
t≥0

{
Âm1RT

1 x − bm1 t ≤ Âm1RT
1 x1

Âm2RT
2 x − bm2 t ≤ Âm2RT

2 x2
(7)

and sum of numbers of rows of Âm1 and Âm2 is n+1.

A

B

CD

E

F
G

Body 1

Body 2
!1

!2 H

Figure: Uniqueness and Two Component Signed Distance Functions
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Differentiability at an Event

Max of Component Functions

RPD is the maximum of component distance functions.

Theorem

Suppose x1 6= x2 and let Pi = CP(ALi R
T
i , bLi + ALi R

T
i xi , xi) be

convex polyhedra for i = 1, 2 and let
{

E (1), E (2), · · · , E (N)
}

be
the list of all possible events with corresponding component
distance functions

{
Φ̂(1), Φ̂(2), · · · , Φ̂(N)

}
. Then

ρ(P1, P2, r) = max
{

Φ̂(1), Φ̂(2), · · · , Φ̂(N)
}

,

where ρ(P1, P2, r) is defined by (3).
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Physical Constraints

Polyhedral Bodies

For the ji th body, we define Pji = CP(Ajj , bji , 0) to be the
polyhedron defined by the linear inequalities

Aji x ≤ bji

which contains the origin.

Normalize this system such that all entries of vector bji are
equal to 1.

This approach is very relevant and more robust since any
body can be approximated using convex polyhedra, the
prevalent representation in computer graphics.
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Physical Constraints

Noninterpenetration Constraints

Model noninterpenetration constraints by continuous
piecewise differentiable signed distance functions:

Φ(j)(q) ≥ 0, j = 1, 2, · · · , p. (8)

We will use RPD to compute Φ(j)

Figure: Noninterpenetration Constraint: Constraint not enforced
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Physical Constraints

Joint Constraints

Model joint constraints by sufficiently smooth
Θ(i)(q) = 0, i = 1, 2, · · · , nJ

Define ν(i)(q) = ∇qΘ(i)(q), i = 1, 2, · · · , nJ

Figure: Joint Constraint: Fixed distance between wheels
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Model

Active Events E

For two bodies in contact at position q, Φ(j)(q) = Φ
(j)
k (q) = 0

and hence Φ̂(m)(q) = 0 for some m, 1 ≤ m ≤ po.

Include set of imminently active events in dynamical resolution.
Determine Set E by choosing parameters ε̂t and ε̂x :

E1(q) =
{

m | Φ(j) ≤ ε̂t , j = Bod(E (m))
}

E2(q) =
{

m | 0 ≤ Φ̂(m) − Φ(j) ≤ ε̂t , j = Bod(E (m))
}

E3(q) =
{

m | E (m)
x ∈ CP(ALm1

RT
m2

, bLm1
+ ALm1

RT
m1

xm1 , xm1) + ε̂x

}
E4(q) =

{
m | E (m)

x ∈ CP(ALm2
RT

m2
, bLm2

+ ALm2
RT

m2
xm2 , xm2) + ε̂x

}
(9)

and
E(q) = E1(q)

⋂
E2(q)

⋂
E3(q)

⋂
E4(q). (10)
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Model

ActiveEvents

Define computationally active set (or nearly active set) by

A(q) =
{

j | Φ(j)(q) ≤ εt , j = 1, · · · , p
}

, (11)

where εt > 0 is a given parameter.

For a given position q, then A(q) = ∅ ⇐⇒ E(q) = ∅
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Model

Contact Model

Normal at an event (m) : n(m)(q) = ∇qΦ̂(m)(q), m ∈ E
If one BCU per contact, complementarity of contact and
compression impulse: Φ̂(m)(q) ≥ 0 ⊥ c(m)

n ≥ 0, m ∈ E

Figure: Contact Model in the case of one BCU per contact
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Model

Linear Complementarity Model

Euler discretization of the equations of motion:

M(q(l))
(
v (l+1) − v (l)) = hlk

(
t(l), q(l), v (l)) +

∑nJ
i=1 c(i)

ν ν(i)(q(l))

+
∑
m∈E

c(m)
n n(m)(q(l)) +

M(m)
C∑

i=1

β
(m)
i d (m)

i (q(l))

 .

(12)

Modified linearization of geometrical and noninterpenetration
constraints:

γΘ(i)(q(l)) + hlν
(i)T

(q(l))v (l+1) = 0, i = 1, 2, · · · , nJ ,

n(m)T
(q(l))v (l+1) + γ

hl
Φ(j)(q(l)) ≥ 0 ⊥ c(m)

n ≥ 0, m ∈ E .

(13)
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Model

Friction Model

Friction model (usual classical pyramid approximation of friction
cone, see Stewart & Trinkle 1995 or Anitescu & Hart 2004):

D(m)T
(q)v + λ(m)e(m) ≥ 0 ⊥ β(m) ≥ 0,

µc(m)
n − e(m)T

β(m) ≥ 0 ⊥ λ(m) ≥ 0.
(14)

Figure: Approximation of Friction Cone
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Model

Mixed Complementarity and QP Formulation

M(l)v −ñc̃n −D̃β̃ = −q(l)

ν̃T v = −Υ
ñT v −µ̃λ ≥ −Γ−∆ ⊥ cn ≥ 0
D̃T v +Ẽλ ≥ 0 ⊥ β̃ ≥ 0

µ̃cn −ẼT β̃ ≥ 0 ⊥ λ ≥ 0

(15)

Note (15) constitutes 1st -order optimality conditions of QP

min
v ,λ

1
2vT M(l)v + q(l)T

v

s.t. n(m)T
v − µ(m)λ(m) ≥ −Γ(m) −∆(m), m ∈ E

D(m)T
v + λ(m)e(m) ≥ 0, m ∈ E

νT
i v = −Υi , 1 ≤ i ≤ nJ

λ(m) ≥ 0 m ∈ E
(16)
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ñT v −µ̃λ ≥ −Γ−∆ ⊥ cn ≥ 0
D̃T v +Ẽλ ≥ 0 ⊥ β̃ ≥ 0
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Active Events

Algorithm for Nearly Active Events

Algorithm

Step 1: Solve the dual problem.
Step 2: List the active hyperplanes H1i , i = 1, . . . , n1 and

H2j , j = 1, . . . , n2 .
Step 3: Choose appropriate parameter ε,

Step 4a: Check H1i with the list of ε adjacent points of H2j .
Step 4b: Check H2j with the list of ε adjacent points of H1i .
Step 4c: Check ε adjacent edges of H1i and H2j .

Because we do not stop nor reduce time steps, we need to
include events that would be active at the next step, thus
we use “nearly active” events
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Infeasibility

Definition of Measure of Infeasibility

Set of allowable positions for some ε > 0, the sets

ΩΦ
ε = {q ∈ Q | Φ(j)(q) ≥ −ε, 1 ≤ m ≤ p}

ΩΘ
ε = {q ∈ Q |

∣∣Θ(i)(q)
∣∣ ≥ −ε, i = 1, 2, · · · , nJ}

Ωε = ΩΦ
ε ∩ ΩΘ

ε

Measure of infeasibility
I(q) = max

1≤j≤p,1≤i≤nJ

{
Φ

(j)
− (q),

∣∣∣Θ(i)(q)
∣∣∣}
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Assumptions

Assumption A1

A1: There exists εo > 0, Cd
1 > 0, and Cd

2 > 0 such that

Φ(j) for 1 ≤ j ≤ nB are piecewise continuous on their
domains Ωε, with piecewise components Φ̂(m)(q) which are
twice continuously differentiable in their respective open
domains with first and second derivatives uniformly
bounded by Cd

1 > 0 and Cd
2 > 0, respectively, and

Θ(i)(q) for i = 1, 2, · · · , m are twice continuously
differentiable in Ωε with first and second derivatives
uniformly bounded by Cd

1 > 0 and Cd
2 > 0, respectively.
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Assumptions

Using Assumption A1

Lemma

If Assumption A1 holds, then Φ(j) for 1 ≤ j ≤ nB is everywhere
directionally differentiable. Moreover, the generalized gradient
of Φ(j) is contained in the convex cover of the gradients of its
component functions which are active at q evaluated at q.

Note: We use Φ(j)o
(q; v) = lim sup

p→q,t↓0

Φ(j)(p + tv)− Φ(j)(p)

t

Lemma
If Assumption A1 holds, then for any j such that 1 ≤ j ≤ nB,
then Φ(j) satisfies a Lipschitz condition.

Note: We use Lebourg’s Mean Value Theorem in the proof
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Assumptions

Assumptions D1 - D3

D1: The mass matrix is constant. That is, M
(
q(l)) = M(l) = M.

D2: The norm growth parameter is constant: c(·, ·, ·) ≤ co

D3: The external force is continuous and increases at most
linearly with the pos. and vel., and unif. bdd in time:

k(t , v , q) = ko(t , v , q) + fc(v , q) + k1(v) + k2(q)

and there is some constant cK ≥ 0 such that

||ko(t , v , q)|| ≤ cK
||k1(v)|| ≤ cK ||v ||
||k2(q)|| ≤ cK ||q|| .

Also assume
vT fc(v , q) = 0 ∀v , q.
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Main Algorithm

Algorithm for Piecewise Smooth RMBD

Algorithm

Algorithm for piecewise smooth multibody dynamics
Step 1: Given q(l). v (l). and hl , calculate the active set

A
(
q(l)) and active events E

(
q(l)).

Step 2: Compute v (l+1), the velocity solution of our mixed
LCP .

Step 3: Compute q(l+1) = q(l) + hlv (l+1).
Step 4: IF finished, THEN stop ELSE set l = l + 1 and

restart.
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Proof that Algorithm works

Main Result

Theorem

Consider the time-stepping algorithm defined above and
applied over a finite time interval [0, T]. Assume that

The active set A(q) is defined by (11)
The active events E(q) are defined by (10)
The time steps hl > 0 satisfy
N−1∑
l=0

hl = T and
hl−1

hl
= ch, l = 1, 2, · · · , N − 1

The system satisfies Assumptions (A1) and (D1) - (D3)
The system is initially feasible. That is, I(q(0)) = 0

Then, there exist H > 0, V > 0, and Cc > 0 such that∣∣∣∣v (l)
∣∣∣∣ ≤ V and I (q(l)) ≤ Cc

∣∣∣∣v (l)
∣∣∣∣2 h2

l−1, ∀l , 1 ≤ l ≤ N
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Proof that Algorithm works

From of Proof

Proof proceeds similarly to proof in Anitescu & Hart 2004
and used a Theorem in the same paper

We use Lebourg’s Mean Value Theorem which states that
given q1 and q2 in the domain of Φ(j), there exists qo on the
line segment between q1 and q2 that satisfies

Φ(j)(q1)− Φ(j)(q2) ∈
〈
∂Φ(j)(qo), q1 − q2

〉
.

This means that there is some Γ ∈ ∂Φ(j) such that

Φ(j)(q1)− Φ(j)(q2) = Γ(q1 − q2).

Here ∂Φ(j) is the generalized gradient.
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Consequences

Consequences of the Theorem

Algorithm achieves constraint stabilization because the
infeasibility is bounded above by the size of the solution. In
particular, v (l+1) = 0 ⇒ I(q(l+1)) = 0

Linear O(h) method yields quadratic O(h2) infeasibility

Velocity remains bounded

No need to change the step size to control infeasibility

Solve one linear complementarity problem per step
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Parameters

Explanation of Parameters

We successfully implement our algorithm for numerous
examples, and in all simulations, we define the following
parameters:

h is the constant stepsize,
µ is the Coulomb friction coefficient,
γ is the constraint stabilization parameter.
εx is an event detection parameter,
εt is an event detection parameter,
ε0 is an event detection parameter, and

δmax is the maximum allowable determinant.



Introduction Ratio Metric Differentiability Constraints and Model Algorithm Numerical Results ’Comps

Balance2

Six successive frames from Balance2
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Balance2

Smaller stepsize ⇒ smaller average infeasibility
Constraint stabilization ⇒ smaller average infeasibility
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Balance2

Average infeasibility shows quadratic O(h2) nature
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Pyramid1

Six successive frames from Pyramid1
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Pyramid1

Quadratic convergence of average infeasibility
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Dice3

Four successive frames from Dice3
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Dice3

Average infeasibility demonstrates O(h2) nature
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Setup6

Four successive frames from Setup6
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Setup6

Once again, an indication of O(h2) convergence
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Research Accomplishments

Accomplishments from This Thesis

Successfully developed a computationally efficient signed
distance function, Ratio Metric

Successfully shown equivalence of RPM to MPD

Successfully calculated generalized gradients and showed
that infeasibility at step l is upper bounded by
O(||hl−1||2

∣∣∣∣v (l)
∣∣∣∣2)

Successfully developed and analyzed algorithm that
achieves constraint stabilization solving one LCP per step

Successfully implemented this algorithm for several
problems with good results
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Research Accomplishments

List of Publications

M. Anitescu and G. D. Hart, Solving nonconvex problems of multibody dynamics with joints, contact, and
small friction by successive convex relaxation, Mechanics Based Design of Structures and Machines, 31
(2003), pp. 335-356.

M. Anitescu and G. D. Hart„ A constraint-stabilized time-stepping approach for rigid multibody dynamics with
joints, contact and friction, International Journal for Numerical Methods in Engineering, 60 (2004), pp.
2335-2371.

M. Anitescu and G. D. Hart, A fixed-point iteration approach for multibody dynamics with contact and small
friction, Mathematical Programming, 101 (2004), pp. 3-32.

M. Anitescu, A. Miller, and G. D. Hart, Constraint stabilization for time-stepping approaches for rigid
multibody dynamics with joints, contact and friction, in Proceedings of the 2003 ASME International Design
Engineering Technical Conferences, Chicago, Illinois, 2003, American Society for Mechanical Engineering.
ANL/MCS-P1023-0403.

G. D. Hart and M. Anitescu, A hard-constraint time-stepping approach for rigid multibody dynamics with
joints, contact, and friction, in Proceedings of the Richard Tapia Celebration of Diversity in Computing
Conference 2003, J. Meza and B. York, eds., New York, NY, USA, 2003, ACM Press, pp. 34-41.

Publications in preparation: One dealing with Depth of Penetration by Linear Programming, the other
dealing with Constraint Stabilization for Nonsmooth Shapes.
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Research Accomplishments

Future Research

I plan to demonstrate that computation of RPD is faster
than computation of MPD

I plan to optimize the algorithm. For example, I need to find
a rigorous way to reduce the number of active gradients

I plan to evaluate the bounds of constraint stabilization,
because it would be interesting to explore the possibility of
constraint stabilization results being useful for values of
γ ≥ 1

I plan to increase the library of successfully solved
examples, including the famous Brazil Nut problem
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Dr. Mihai Anitescu, Department of Mathematics

Dr. William J. Layton, Department of Mathematics

Dr. Beatrice M. Riviere, Department of Mathematics

Dr. Andrew J. Schaefer, Department of Ind. Engineering

Dr. Ivan P. Yotov, Department of Mathematics

Department of Mathematics, University of Pittsburgh
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