Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	'Comps 0000

A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

> Gary D. Hart Department of Mathematics University of Pittsburgh

> > April 4, 2007

Introduction **Ratio Metric** Differentiability Constraints and Model Algorithm Numerical Results 00000

Application of Multi Rigid Body Dynamics

Application of Rigid Multi Body Dynamics

BMBD in diverse areas

- rock dynamics *
- robotic simulations * nuclear reactors *
- virtual reality *

- human motion
- haptics *
- VR or Virtual reality exposure (VRE) therapy
 - fear of heights * *
 - telerehabilitation *
- fear of public speaking
- PTSD *

Introduction oecoco	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Previous Appro	baches				
Some P	revious A	Approache	S		

- Integrate-detect-restart simulation a natural choice
 - Classical solution may not exist
 - Collisions can cause small stepsizes
- Differential algebraic equations (DAE) for joint constraints
 - Specialized techniques because non-smooth noninterpenetration and friction constraints.
- Optimization based animation technique solving a quadratic program at each step to avoid stiffness.
 - Collision detection still present, hence small stepsizes
- Penalty Barrier Methods are most popular.
 - Easy set up, even for DAEs, but problem may be stiff and requires *a priori* smoothing parameters

Hard Co	nstraint	Approache	es		
Previous Approa	aches				
Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000

- Advantage:
 - Results are same order of magnitude as penalty method
 - Same dynamics using 4 orders of magnitude larger time step
 - We use a velocity impulse LCP based approach avoiding the lack of a solution and introducing artificial stiffness
- Disadvantage:
 - LCP model yields inequality constraints from contact and friction, treated computationally as hard constraints.

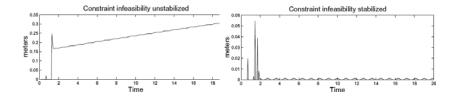
Introduction	Ratio Metric	Constraints and Model	Numerical Results	' Comps 0000

Need to Define and Compute Depth of Penetration

- To avoid infinitely small time steps, say from collisions, then minimum stepsize must exist
- For methods with minimum time step, interpenetration may be unavoidable, thus it needs to be quantified (to limit amount of interpenetration)
- Minimum Euclidean distance good for distance between objects, but not for penetration
- Note that for convex polyhedra, calculation of PD using Minkowski sums, are computationally expensive

Introduction 0000e0	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000			
Previous Approaches									
Constraint Stabilization									

- Constraint stabilization in a complementarity setting. Tackled by previous authors using
 - nonlinear complementarity problems an LCP
 - nonlinear projection (nonlinear inequality constraints)
 - post-processing method (uses potentially non-convex LCP)
 - convex LCP for constraint stabilization.
- Unlike ours, these methods need computation after solving basic LCP subproblem to achieve constraint stabilization



Introduction ○○○○○●	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Previous Appro	aches					
Goals						

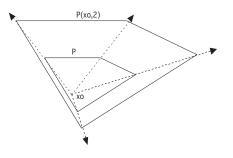
The goals of this thesis are to

- define a new computationally efficient measure that detects collision and computes penetration of two convex bodies, which is metrically equivalent to the signed Euclidean distance when close to a contact,
- develop an algorithm which efficiently models the system and solves the resulting LCP while achieving constraint stabilization, and
- implement the algorithm to simulate polyhedral multibody contact problems with friction.

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps

A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Accomplishments



Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Ratio M	etric				

- We need a new measure that defines distance and quantifies depth of penetration between convex bodies.
- We start by introducing and analyzing a new measure between two convex bodies.
- Then we extend the analysis to produce our new measure of penetration depth.
- We will see that it is metrically equivalent to the Minkowski Penetration Depth measure, but has lower computational complexity.

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps
	00000					

Expansion/Contraction Map

Polyhedra and Expansion/Contraction Maps

Definition

We define CP(A, b, x_o) to be the convex polyhedron P defined by the linear inequalities $Ax \le b$ with an interior point x_o . We will often just write P = CP(A, b, x_o).

Definition

Let $P = CP(A, b, x_o)$. Then for any nonnegative real number t, the expansion (contraction) of P with respect to the point x_o is defined to be

$$P(x_o, t) = \{x | Ax \leq tb + (1 - t)Ax_o\}$$

and has an associated mapping

$$\Gamma(x, x_o, t) = tx + (1-t)x_o.$$

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Polyhodrol Datio	Motrio				

Polyhedral Ratio Metric

Minkowski Penetration Depth

Definition

Let $P_i = CP(A_i, b_i, x_i)$ be a convex polyhedron for i = 1,2. The Minkowski Penetration Depth (MPD) between the two bodies P_1 and P_2 is defined formally as

$$PD(P_1, P_2) = \min\{||d|| | interior(P_1 + d) \bigcap P_2 = \emptyset\}.$$
 (1)

Introduction	Ratio Metric	Differentiability		Numerical Results	' Comps 0000
Polyhodrol Datio	Motrio				

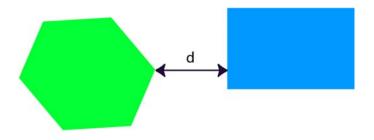
Polyhedral Ratio Metric

Minkowski Penetration Depth

Definition

Let $P_i = CP(A_i, b_i, x_i)$ be a convex polyhedron for i = 1,2. The Minkowski Penetration Depth (MPD) between the two bodies P_1 and P_2 is defined formally as

$$PD(P_1, P_2) = \min\{||d|| | interior(P_1 + d) \bigcap P_2 = \emptyset\}.$$
 (1)



Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Delukedvel Detie	Matria				

Ratio Metric Penetration Depth

Definition

Let $P_i = CP(A_i, b_i, x_i)$ be a convex polyhedron for i = 1,2. Then the Ratio Metric between the two sets is given by

$$r(P_1, P_2) = \min\{t | P_1(x_1, t) \bigcap P_2(x_2, t) \neq \emptyset\},$$
(2)

and the corresponding Ratio Metric Penetration Depth (RPD) is given by

$$\rho(P_1, P_2, r) = \frac{r(P_1, P_2) - 1}{r(P_1, P_2)}.$$
(3)

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Polyhodral Datio	a Matria					

Polyhedral Ratio Metric

Expansion/Contraction Again

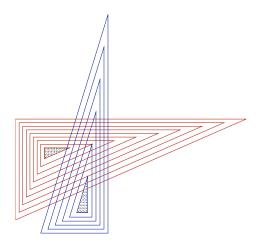


Figure: Visual representation of double expansion or contraction

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Metric Equival	ence Theorem				

Metric Equivalence Theorem

Theorem (Metric Equivalence)

Let $P_i = CP(A_i, b_i, x_i)$ be a convex polyhedron for i = 1, 2, s be the MPD between the two bodies, D be the distance between x_1 and x_2 , ϵ be the maximum allowable Minkowski penetration between any two bodies. Then the ratio metric penetration depth between the two sets satisfies the relationship

$$\frac{s}{D} \le \rho(P_1, P_2, r) \le \frac{s}{\epsilon},\tag{4}$$

if P1 and P2 have disjoint interiors, and

$$-\frac{s}{\epsilon} \leq
ho(P_1, P_2, r) \leq -\frac{s}{D}$$
 (5)

if the interiors of P_1 and P_2 are not disjoint.

00000 0000000 0000000 0000000 0000000 0000	Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps
		00000					

Metric Equivalence Theorem

Significance of the Metric Equivalence Theorem

- Let number of facets of two polyhedra be m₁ and m₂
 - Computing PD by using the Minkowski sums: $O(m_1^2 + m_2^2)$
 - Fast approximation to PD with stochastic method: $O(m_1^{3/4+\epsilon}m_2^{3/4+\epsilon})$ for any $\epsilon > 0$
 - Solving linear programming problem: $O(m_1 + m_2)$
- ... our metric provide us with a simple way to detect collision and measure penetration of two convex polyhedral bodies bodies with lower complexity and is equivalent, for small penetration, to the classical measure
- \therefore for time step *h*, if the MPD is $O(h^2)$ then so is the RPD

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps

A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

 $\frac{d}{dx}(\mathbf{x}\circ\mathbf{v})=\frac{d\mathbf{v}}{dx}\left(\frac{d\mathbf{x}}{dx}\circ\mathbf{v}\right)$

- - Accomplishments

Introduction	Ratio Metric	Differentiability ●OOOOOOO	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Basic Contact	Unit					
Perfect	Contact					

Definition

Two convex polyhedra are in perfect contact when there is a nonempty intersection without interpenetration.

Introduction	Ratio Metric	Differentiability ●000000	Constraints and Model	Numerical Results	' Comps 0000
Basic Contact	Unit				
Perfect	Contact				

Definition

Two convex polyhedra are in perfect contact when there is a nonempty intersection without interpenetration.

Definition

In n-dimensional space, a Basic Contact Unit (BCU) occurs when

- two convex polyhedra are in perfect contact,
- the contact region attached to a BCU is a point, and
- exactly n+1 facets are involved at the contact.

The point where the contact occurs is called an event point, or more simply, an event.

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Basic Contact	Unit				
Basic C	ontact U	nit			

- A CoF is always a BCU
- In 2D: CoF In 3D: CoF, (nonparallel) EoE
- In n-dim space, there are exactly $\left[\frac{n+1}{2}\right]$ distinct BCUs

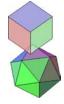


Figure: Edge-on-Edge

Figure: Face-on-Face

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Basic Contact	Unit				
Convex	Hull of B	CUs			

Theorem

The intersection of two convex polyhedra in perfect contact is the convex hull of the event points.

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000			
Basic Contact	Unit								
Convex Hull of BCUs									

Theorem

The intersection of two convex polyhedra in perfect contact is the convex hull of the event points.

Figure: 2D Example: Contact Region Is Convex Hull of BCUs.

Introduction 000000	Ratio Metric	Differentiability ○○○●○○○○	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Differentiability	v at an Event					
Nondiff	erentiabi	lity				
				-		

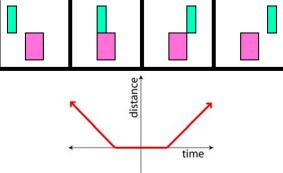


Figure: Nondifferentiability of Euclidean distance function

- In Calculus, we learn when functions are not differentiable
- Consider piecewise smooth distance function

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Differentiability	at an Event				
Local/G	lobal Co	ordinates			

Suppose that we have $P_{L_i} = CP(A_{L_i}, b_{L_i}, 0)$ as the local representation for a convex polyhedron for i = 1, 2. The transformation from local coordinates x_{L_i} to world coordinates x is given by

$$x=x_i+R_ix_{L_i},$$

which can be rewritten into the form

$$\mathbf{x}_{L_i} = \mathbf{R}_i^T (\mathbf{x} - \mathbf{x}_i).$$

Here the matrices R_1 and R_2 are rotation matrices.

Introduction	Ratio Metric	Differentiability ○○○○●○○	Constraints and Model	Numerical Results	' Comps 0000
Differentiability	at an Event				

Infinite Differentiability at an Event

- If E is an event at perfect contact of convex polyhedra P₁ and P₂, then P_E(x_i, t), the restrictions of P_i(x_i, t) to E, is the convex body defined by the facets of P(x_i, t) which involve E.
- If E is an event at perfect contact of P₁ and P₂, then

$$r(P_{E}(x_{1},t),P_{E}(x_{2},t)) = \min_{t\geq 0} \begin{cases} \hat{A}_{L_{1}}R_{1}^{T}x - \hat{b}_{1}t \leq \hat{A}_{L_{1}}R_{1}^{T}x_{1} \\ \hat{A}_{L_{2}}R_{2}^{T}x - \hat{b}_{2}t \leq \hat{A}_{L_{2}}R_{2}^{T}x_{2} \end{cases}$$
(6)

where the sum of the rows of \hat{A}_{L_1} and \hat{A}_{L_2} totals n+1.

Theorem: At any event E of perfect contact,
 r(P_E(x₁, t), P_E(x₂, t)) is infinitely differentiable with respect to the translation vectors and rotation angles.

Introduction	Ratio Metric	Differentiability ○○○○○●○	Constraints and Model	Numerical Results	' Comps 0000
Differentiability	at an Event				
		_			

Component Functions

- Associate m^{th} event $E^{(m)}$ with component function $\widehat{\Phi}^{(m)}$
- We use the restrictions $P_{E^{(m)}}(x_1, t)$ and $P_{E^{(m)}}(x_2, t)$
- $\widehat{\Phi}^{(m)} = f(r_m)$, where f(t) = (t 1)/t and

$$r_{m} = \min_{t \ge 0} \begin{cases} \hat{A}_{m_{1}} R_{1}^{T} x - b_{m_{1}} t \le \hat{A}_{m_{1}} R_{1}^{T} x_{1} \\ \hat{A}_{m_{2}} R_{2}^{T} x - b_{m_{2}} t \le \hat{A}_{m_{2}} R_{2}^{T} x_{2} \end{cases}$$

7)

and sum of numbers of rows of \hat{A}_{m_1} and \hat{A}_{m_2} is n+1.

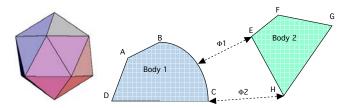


Figure: Uniqueness and Two Component Signed Distance Functions

Introduction	Ratio Metric	Differentiability ○○○○○○●	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Differentiability	at an Event					

Max of Component Functions

RPD is the maximum of component distance functions.

Theorem

Suppose $x_1 \neq x_2$ and let $P_i = CP(A_{L_i}R_i^T, b_{L_i} + A_{L_i}R_i^Tx_i, x_i)$ be convex polyhedra for i = 1, 2 and let $\{E^{(1)}, E^{(2)}, \dots, E^{(N)}\}$ be the list of all possible events with corresponding component distance functions $\{\widehat{\Phi}^{(1)}, \widehat{\Phi}^{(2)}, \dots, \widehat{\Phi}^{(N)}\}$. Then

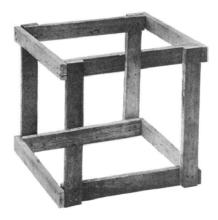
$$\rho(\mathbf{P}_1, \mathbf{P}_2, r) = \max\left\{\widehat{\Phi}^{(1)}, \widehat{\Phi}^{(2)}, \cdots, \widehat{\Phi}^{(N)}\right\}$$

where $\rho(P_1, P_2, r)$ is defined by (3).

		'Comp

A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Accomplishments



Polyhedral Bodies									
Physical Constraints									
Introduction	Ratio Metric	Differentiability	Constraints and Model		Numerical Results	' Comps 0000			

• For the j_i^{th} body, we define $P_{j_i} = CP(A_{j_j}, b_{j_i}, 0)$ to be the polyhedron defined by the linear inequalities

$$A_{j_i}x \leq b_{j_i}$$

which contains the origin.

 Normalize this system such that all entries of vector b_{ji} are equal to 1.

• This approach is very relevant and more robust since any body can be approximated using convex polyhedra, the prevalent representation in computer graphics.

Noninte	rpenetra	tion Const	raints		
Physical Constr	raints				
Introduction 000000	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000

 Model noninterpenetration constraints by continuous piecewise differentiable signed distance functions:

$$\Phi^{(j)}(q) \ge 0, \quad j = 1, 2, \cdots, p.$$
 (8)

• We will use RPD to compute Φ^(j)

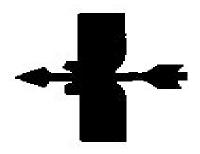


Figure: Noninterpenetration Constraint: Constraint not enforced

Joint Co	onstraint	S			
Physical Const	raints				
Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	'Comps

• Model joint constraints by sufficiently smooth $\Theta^{(i)}(q) = 0, \ i = 1, 2, \cdots, n_J$

• Define $u^{(i)}(q) =
abla_q \Theta^{(i)}(q), \quad i = 1, 2, \cdots, n_J$

Introduction 000000	Ratio Metric	Differentiability 0000000	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Physical Const	traints					
Joint C	onstraint	s				

• Model joint constraints by sufficiently smooth $\Theta^{(i)}(q) = 0, \ i = 1, 2, \cdots, n_J$

• Define $\nu^{(i)}(q) = \nabla_q \Theta^{(i)}(q), \quad i = 1, 2, \cdots, n_J$

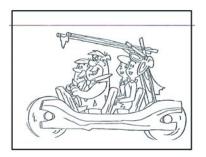


Figure: Joint Constraint: Fixed distance between wheels

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Model					
Active I	Events <i>E</i>				

For two bodies in contact at position q, $\Phi^{(j)}(q) = \Phi^{(j)}_k(q) = 0$ and hence $\widehat{\Phi}^{(m)}(q) = 0$ for some m, $1 \le m \le p_o$.

Include set of imminently active events in dynamical resolution. Determine Set \mathcal{E} by choosing parameters $\hat{\epsilon}_t$ and $\hat{\epsilon}_x$:

$$\begin{aligned} \mathcal{E}_{1}(q) &= \left\{ m \mid \Phi^{(j)} \leq \hat{\epsilon}_{t}, \ j = Bod(E^{(m)}) \right\} \\ \mathcal{E}_{2}(q) &= \left\{ m \mid 0 \leq \widehat{\Phi}^{(m)} - \Phi^{(j)} \leq \hat{\epsilon}_{t}, \ j = Bod(E^{(m)}) \right\} \\ \mathcal{E}_{3}(q) &= \left\{ m \mid E_{x}^{(m)} \in CP(A_{L_{m_{1}}}R_{m_{2}}^{T}, b_{L_{m_{1}}} + A_{L_{m_{1}}}R_{m_{1}}^{T}x_{m_{1}}, x_{m_{1}}) + \hat{\epsilon}_{x} \right\} \\ \mathcal{E}_{4}(q) &= \left\{ m \mid E_{x}^{(m)} \in CP(A_{L_{m_{2}}}R_{m_{2}}^{T}, b_{L_{m_{2}}} + A_{L_{m_{2}}}R_{m_{2}}^{T}x_{m_{2}}, x_{m_{2}}) + \hat{\epsilon}_{x} \right\} \end{aligned}$$

$$\end{aligned}$$

and

$$\mathcal{E}(q) = \mathcal{E}_1(q) \bigcap \mathcal{E}_2(q) \bigcap \mathcal{E}_3(q) \bigcap \mathcal{E}_4(q). \tag{10}$$

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Model						
ActiveE	vents					

• Define computationally active set (or nearly active set) by

$$\mathcal{A}(\boldsymbol{q}) = \left\{ j \mid \Phi^{(j)}(\boldsymbol{q}) \leq \epsilon_t, j = 1, \cdots, p \right\}, \quad (11)$$

where $\epsilon_t > 0$ is a given parameter.

• For a given position q, then $\mathcal{A}(q) = \emptyset \iff \mathcal{E}(q) = \emptyset$

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Model					
Contool	Model				

- Normal at an event (m) : $n^{(m)}(q) = \nabla_q \widehat{\Phi}^{(m)}(q), \quad m \in \mathcal{E}$
- If one BCU per contact, complementarity of contact and compression impulse: \$\hfrac{\Phi^{(m)}}{q}\$ ≥ 0 ⊥ c^(m)_n ≥ 0, m ∈ \$\mathcal{E}\$

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Model						
Contact	t Model					

- Normal at an event (m) : $n^{(m)}(q) = \nabla_q \widehat{\Phi}^{(m)}(q), \quad m \in \mathcal{E}$
- If one BCU per contact, complementarity of contact and compression impulse: \$\hfrac{\Phi^{(m)}}{q}\$ ≥ 0 ⊥ c_n^{(m)} ≥ 0, m ∈ \$\mathcal{E}\$

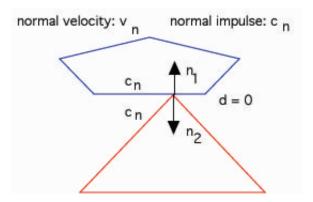


Figure: Contact Model in the case of one BCU per contact

Introduction 000000	Ratio Metric	Differentiability	Constraints and Model		Numerical Results	' Comps 0000			
Model									
Linear (Linear Complementarity Model								

Euler discretization of the equations of motion:

$$M(q^{(l)}) (v^{(l+1)} - v^{(l)}) = h_l k (t^{(l)}, q^{(l)}, v^{(l)}) + \sum_{i=1}^{n_J} c_{\nu}^{(i)} \nu^{(i)}(q^{(l)}) + \sum_{m \in \mathcal{E}} \left(c_n^{(m)} n^{(m)}(q^{(l)}) + \sum_{i=1}^{M_C} \beta_i^{(m)} d_i^{(m)}(q^{(l)}) \right)$$
(12)

Modified linearization of geometrical and noninterpenetration constraints:

$$\begin{split} \gamma \Theta^{(i)}(\boldsymbol{q}^{(l)}) + h_{l} \nu^{(i)^{T}}(\boldsymbol{q}^{(l)}) \nu^{(l+1)} &= 0, \quad i = 1, 2, \cdots, n_{J}, \\ n^{(m)^{T}}(\boldsymbol{q}^{(l)}) \nu^{(l+1)} + \frac{\gamma}{h_{l}} \Phi^{(j)}(\boldsymbol{q}^{(l)}) &\geq 0 \quad \perp c_{n}^{(m)} \geq 0, \qquad m \in \mathcal{E}. \end{split}$$
(13)

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Model					
Friction	Model				

Friction model (usual classical pyramid approximation of friction cone, see Stewart & Trinkle 1995 or Anitescu & Hart 2004):

$$D^{(m)^{T}}(q)\boldsymbol{v} + \lambda^{(m)}\boldsymbol{e}^{(m)} \geq 0 \quad \perp \quad \beta^{(m)} \geq 0, \\ \mu \boldsymbol{c}_{n}^{(m)} - \boldsymbol{e}^{(m)^{T}}\beta^{(m)} \geq 0 \quad \perp \quad \lambda^{(m)} \geq 0.$$
(14)

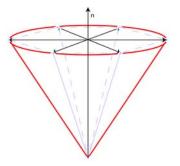


Figure: Approximation of Friction Cone

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps
			00000000			

Model

Mixed Complementarity and QP Formulation

$$\begin{array}{llll}
\boldsymbol{M}^{(l)}\boldsymbol{v} & -\widetilde{n}\widetilde{c}_{n} & -\widetilde{D}\widetilde{\beta} & = -\boldsymbol{q}^{(l)} \\
\widetilde{\nu}^{T}\boldsymbol{v} & = -\Upsilon \\
\widetilde{n}^{T}\boldsymbol{v} & -\widetilde{\mu}\lambda & \geq -\Gamma-\Delta & \perp & \boldsymbol{c}_{n} \geq 0 \\
\widetilde{D}^{T}\boldsymbol{v} & +\widetilde{E}\lambda & \geq 0 & \perp & \widetilde{\beta} \geq 0 \\
& \widetilde{\mu}\boldsymbol{c}_{n} & -\widetilde{E}^{T}\widetilde{\beta} & \geq 0 & \perp & \lambda \geq 0
\end{array} \tag{15}$$

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000

Model

Mixed Complementarity and QP Formulation

$$\begin{array}{llll}
\boldsymbol{M}^{(l)}\boldsymbol{v} & -\widetilde{\boldsymbol{n}}\widetilde{\boldsymbol{c}_{n}} & -\widetilde{\boldsymbol{D}}\widetilde{\boldsymbol{\beta}} & = -\boldsymbol{q}^{(l)} \\
\widetilde{\boldsymbol{\nu}}^{T}\boldsymbol{v} & = -\widehat{\boldsymbol{\gamma}} \\
\widetilde{\boldsymbol{n}}^{T}\boldsymbol{v} & -\widetilde{\boldsymbol{\mu}}\lambda & \geq -\overline{\boldsymbol{\Gamma}}-\Delta & \perp & \boldsymbol{c}_{n} \geq \boldsymbol{0} \\
\widetilde{\boldsymbol{D}}^{T}\boldsymbol{v} & +\widetilde{\boldsymbol{E}}\lambda & \geq \boldsymbol{0} & \perp & \widetilde{\boldsymbol{\beta}} \geq \boldsymbol{0} \\
& \widetilde{\boldsymbol{\mu}}\boldsymbol{c}_{n} & -\widetilde{\boldsymbol{E}}^{T}\widetilde{\boldsymbol{\beta}} & \geq \boldsymbol{0} & \perp & \lambda \geq \boldsymbol{0}
\end{array} \tag{15}$$

Note (15) constitutes 1st-order optimality conditions of QP

$$\min_{\boldsymbol{v},\lambda} \quad \frac{1}{2} \boldsymbol{v}^{T} \boldsymbol{M}^{(l)} \boldsymbol{v} + \boldsymbol{q}^{(l)^{T}} \boldsymbol{v}$$
s.t.
$$\boldsymbol{n}^{(m)^{T}} \boldsymbol{v} - \boldsymbol{\mu}^{(m)} \boldsymbol{\lambda}^{(m)} \geq -\boldsymbol{\Gamma}^{(m)} - \boldsymbol{\Delta}^{(m)}, \quad \boldsymbol{m} \in \mathcal{E}$$

$$\boldsymbol{D}^{(m)^{T}} \boldsymbol{v} + \boldsymbol{\lambda}^{(m)} \boldsymbol{e}^{(m)} \geq \boldsymbol{0}, \quad \boldsymbol{m} \in \mathcal{E}$$

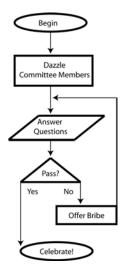
$$\boldsymbol{\nu}_{i}^{T} \boldsymbol{v} = -\boldsymbol{\Upsilon}_{i}, \quad \boldsymbol{1} \leq i \leq n_{J}$$

$$\boldsymbol{\lambda}^{(m)} \geq \boldsymbol{0} \quad \boldsymbol{m} \in \mathcal{E}$$

$$(16)$$

A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Accomplishments



Introduction	Ratio Metric	Differentiability	Constraints and Model	3	Numerical Results	' Comps 0000
Asting Engels						

Algorithm for Nearly Active Events

Algorithm

- Step 1: Solve the dual problem.
- Step 2: List the active hyperplanes H_{1i} , $i = 1, ..., n_1$ and H_{2j} , $j = 1, ..., n_2$.
- **Step 3:** Choose appropriate parameter ϵ ,

Step 4a: Check H_{1i} with the list of ϵ adjacent points of H_{2i} .

Step 4b: Check H_{2j} with the list of ϵ adjacent points of H_{1j} .

Step 4c: Check ϵ adjacent edges of H_{1i} and H_{2i} .

Introduction	Ratio Metric	Differentiability	Constraints and Model	3	Numerical Results	' Comps 0000
Activo Evento						

Algorithm for Nearly Active Events

Algorithm

Step 1: Solve the dual problem.

Step 2: List the active hyperplanes H_{1i} , $i = 1, ..., n_1$ and H_{2j} , $j = 1, ..., n_2$.

Step 3: Choose appropriate parameter ϵ ,

Step 4a: Check H_{1i} with the list of ϵ adjacent points of H_{2i} .

Step 4b: Check H_{2j} with the list of ϵ adjacent points of H_{1j} .

Step 4c: Check ϵ adjacent edges of H_{1i} and H_{2i} .

 Because we do not stop nor reduce time steps, we need to include events that would be active at the next step, thus we use "nearly active" events

Introduction	Ratio Metric	Differentiability	Constraints and Model	3	Numerical Results	' Comps 0000		
Infeasibility								
Definition of Measure of Infeasibility								

• Set of allowable positions for some $\epsilon > 0$, the sets

•
$$\Omega^{\Phi}_{\epsilon} = \{ \boldsymbol{q} \in \boldsymbol{Q} \mid \Phi^{(j)}(\boldsymbol{q}) \geq -\epsilon, 1 \leq \boldsymbol{m} \leq \boldsymbol{p} \}$$

•
$$\Omega_{\epsilon}^{\Theta} = \{ \boldsymbol{q} \in \boldsymbol{Q} \mid |\Theta^{(i)}(\boldsymbol{q})| \geq -\epsilon, i = 1, 2, \cdots, n_J \}$$

•
$$\Omega_{\epsilon} = \Omega^{\Phi}_{\epsilon} \cap \Omega^{\Theta}_{\epsilon}$$

Measure of infeasibility

•
$$I(q) = \max_{1 \le j \le p, 1 \le i \le n_J} \left\{ \Phi^{(j)}_{-}(q), \left| \Theta^{(i)}(q) \right| \right\}$$

A1: There exists $\epsilon_o > 0$, $C_1^d > 0$, and $C_2^d > 0$ such that

- $\Phi^{(j)}$ for $1 \le j \le n_B$ are piecewise continuous on their domains Ω_{ϵ} , with piecewise components $\widehat{\Phi}^{(m)}(q)$ which are twice continuously differentiable in their respective open domains with first and second derivatives uniformly bounded by $C_1^d > 0$ and $C_2^d > 0$, respectively, and
- $\Theta^{(i)}(q)$ for $i = 1, 2, \dots, m$ are twice continuously differentiable in Ω_{ϵ} with first and second derivatives uniformly bounded by $C_1^d > 0$ and $C_2^d > 0$, respectively.

Introduction	Ratio Metric	Differentiability	Constraints and Model	3	Numerical Results	' Comps 0000		
Assumptions								
Lising Assumption A1								

Lemma

If Assumption A1 holds, then $\Phi^{(j)}$ for $1 \le j \le n_B$ is everywhere directionally differentiable. Moreover, the generalized gradient of $\Phi^{(j)}$ is contained in the convex cover of the gradients of its component functions which are active at q evaluated at q.

Note: We use
$$\Phi^{(j)}{}^{o}(q; v) = \limsup_{p \to q, t \downarrow 0} \frac{\Phi^{(j)}(p + tv) - \Phi^{(j)}(p)}{t}$$

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Assumptions					
	eeumntid	$n \Lambda 1$			

Lemma

If Assumption A1 holds, then $\Phi^{(j)}$ for $1 \le j \le n_B$ is everywhere directionally differentiable. Moreover, the generalized gradient of $\Phi^{(j)}$ is contained in the convex cover of the gradients of its component functions which are active at q evaluated at q.

Note: We use
$$\Phi^{(j)}{}^o(q; v) = \limsup_{p \to q, t \downarrow 0} \frac{\Phi^{(j)}(p + tv) - \Phi^{(j)}(p)}{t}$$

Lemma

If Assumption A1 holds, then for any j such that $1 \le j \le n_B$, then $\Phi^{(j)}$ satisfies a Lipschitz condition.

Note: We use Lebourg's Mean Value Theorem in the proof

Introduction	Ratio Metric	Differentiability	Constraints and Model	3	Numerical Results	' Comps 0000				
Assumptions										
Assum	Assumptions D1 - D3									

- **D1:** The mass matrix is constant. That is, $M(q^{(l)}) = M^{(l)} = M$.
- **D2:** The norm growth parameter is constant: $c(\cdot, \cdot, \cdot) \leq c_o$
- D3: The external force is continuous and increases at most linearly with the pos. and vel., and unif. bdd in time:

$$k(t, v, q) = k_o(t, v, q) + f_c(v, q) + k_1(v) + k_2(q)$$

and there is some constant $c_{\mathcal{K}} \geq 0$ such that

$$egin{array}{rcl} ||k_o(t, v, q)|| &\leq & c_{\mathcal{K}} \ ||k_1(v)|| &\leq & c_{\mathcal{K}} \, ||v|| \ ||k_2(q)|| &\leq & c_{\mathcal{K}} \, ||q|| \end{array}$$

Also assume

$$v^T f_c(v,q) = 0 \quad \forall v,q.$$

Introduction	Ratio Metric	Differentiability	Constraints and Model	3	Numerical Results	' Comps 0000

Main Algorithm

Algorithm for Piecewise Smooth RMBD

Algorithm

Algorithm for piecewise smooth multibody dynamics

- **Step 1:** Given $q^{(l)}$. $v^{(l)}$. and h_l , calculate the active set $\mathcal{A}(q^{(l)})$ and active events $\mathcal{E}(q^{(l)})$.
- **Step 2:** Compute $v^{(l+1)}$, the velocity solution of our mixed LCP.
- **Step 3:** Compute $q^{(l+1)} = q^{(l)} + h_l v^{(l+1)}$.
- **Step 4:** IF finished, THEN stop ELSE set I = I + 1 and restart.

Introduction 000000	Ratio Metric	Differentiability	Constraints and Model	Algorithm 0000000000	Numerical Results	' Comps 0000		
Proof that Algorithm works								
Main Re	esult							

Theorem

Consider the time-stepping algorithm defined above and applied over a finite time interval [0, T]. Assume that

- The active set A(q) is defined by (11)
- The active events $\mathcal{E}(q)$ are defined by (10)

• The time steps
$$h_l > 0$$
 satisfy

$$\sum_{l=0}^{N-1} h_l = T \text{ and } \frac{h_{l-1}}{h_l} = c_h, \quad l = 1, 2, \cdots, N-1$$

- The system satisfies Assumptions (A1) and (D1) (D3)
- The system is initially feasible. That is, $I(q^{(0)}) = 0$

Then, there exist H > 0, V > 0, and $C_c > 0$ such that $||v^{(l)}|| \le V$ and $l(q(l)) \le C_c ||v^{(l)}||^2 h_{l-1}^2, \quad \forall l, \ 1 \le l \le N$

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm ○○○○○○●○	Numerical Results	' Comps 0000
Proof that Algo	rithm works					
From of	Proof					

 Proof proceeds similarly to proof in Anitescu & Hart 2004 and used a Theorem in the same paper

 We use Lebourg's Mean Value Theorem which states that given q₁ and q₂ in the domain of Φ^(j), there exists q_o on the line segment between q₁ and q₂ that satisfies

$$\Phi^{(j)}(q_1)-\Phi^{(j)}(q_2)\in \left\langle \partial\Phi^{(j)}(q_o),q_1-q_2
ight
angle.$$

This means that there is some $\Gamma \in \partial \Phi^{(j)}$ such that

$$\Phi^{(j)}(q_1) - \Phi^{(j)}(q_2) = \Gamma(q_1 - q_2).$$

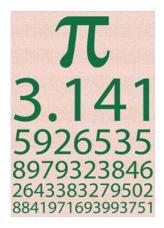
Here $\partial \Phi^{(j)}$ is the generalized gradient.

- Algorithm achieves constraint stabilization because the infeasibility is bounded above by the size of the solution. In particular, $v^{(l+1)} = 0 \Rightarrow l(q^{(l+1)}) = 0$
- Linear O(h) method yields quadratic $O(h^2)$ infeasibility
- Velocity remains bounded
- No need to change the step size to control infeasibility
- Solve one linear complementarity problem per step

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Com

A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Accomplishments



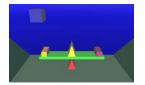
Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Parameters						
Explana	ation of P	arameters				

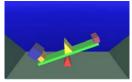
We successfully implement our algorithm for numerous examples, and in all simulations, we define the following parameters:

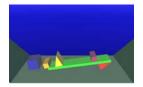
- *h* is the constant stepsize,
- μ is the Coulomb friction coefficient,
- γ is the constraint stabilization parameter.
- ϵ_X is an event detection parameter,
- ϵ_t is an event detection parameter,
- ϵ_0 is an event detection parameter, and
- δ_{max} is the maximum allowable determinant.

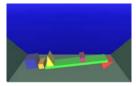
Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Balance2					

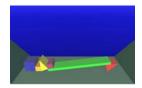
Six successive frames from Balance2





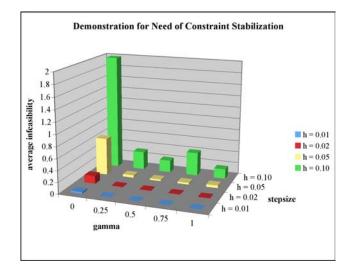






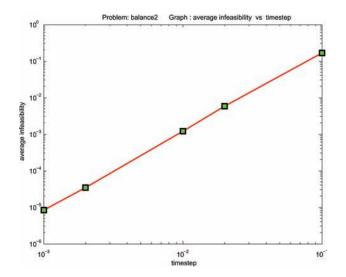
Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps
					000000000	

Balance2



Smaller stepsize \Rightarrow smaller average infeasibility Constraint stabilization \Rightarrow smaller average infeasibility

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Balance2					

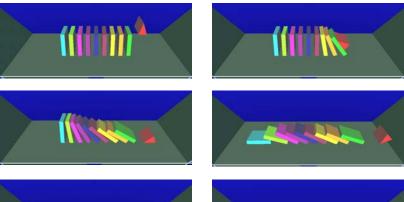


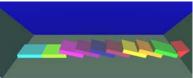
Average infeasibility shows quadratic $O(h^2)$ nature

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps
					0000000000	

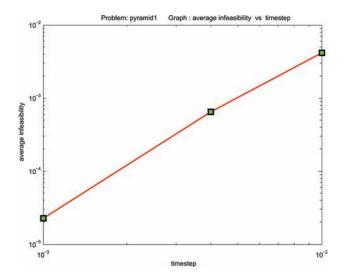
Pyramid1

Six successive frames from Pyramid1





Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	' Comps 0000
Duramid1					

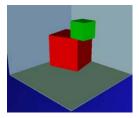


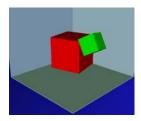
Quadratic convergence of average infeasibility

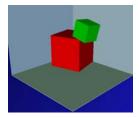
00000 0000000 00000000 00000000 0000000	Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm	Numerical Results	'Comps
						000000000000000000000000000000000000000	

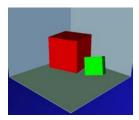
Dice3

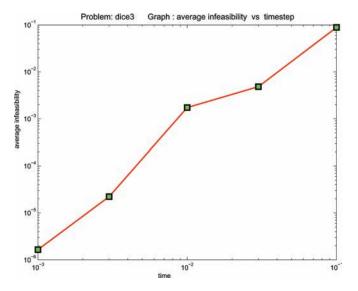
Four successive frames from Dice3







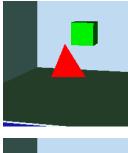


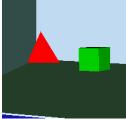


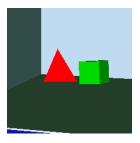
Average infeasibility demonstrates $O(h^2)$ nature

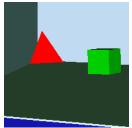
Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	' Comps 0000
Setup6						

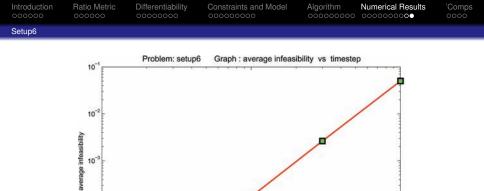
Four successive frames from Setup6









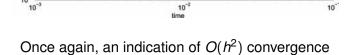


10-1

10

10-5

10-6



A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

- Ratio Metric
- Differentiability
- Constraints and Model
- Algorithm
- Numerical Results
- Accomplishments

Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	°Comps ●○○○		
Research Acco	omplishments							
Accomplishments from This Thesis								

- Successfully developed a computationally efficient signed distance function, Ratio Metric
- Successfully shown equivalence of RPM to MPD
- Successfully calculated generalized gradients and showed that infeasibility at step *I* is upper bounded by $O(||h_{l-1}||^2 ||v^{(l)}||^2)$
- Successfully developed and analyzed algorithm that achieves constraint stabilization solving one LCP per step
- Successfully implemented this algorithm for several problems with good results

Introduction										
Research Acc	omplishments									
List of Publications										
۰			nonconvex problems of multi elaxation, Mechanics Based							

(2003), pp. 335-356.

- M. Anitescu and G. D. Hart, A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction, International Journal for Numerical Methods in Engineering, 60 (2004), pp. 2335-2371.
- M. Anitescu and G. D. Hart, A fixed-point iteration approach for multibody dynamics with contact and small friction, Mathematical Programming, 101 (2004), pp. 3-32.
- M. Anitescu, A. Miller, and G. D. Hart, Constraint stabilization for time-stepping approaches for rigid multibody dynamics with joints, contact and friction, in Proceedings of the 2003 ASME International Design Engineering Technical Conferences, Chicago, Illinois, 2003, American Society for Mechanical Engineering. ANL/MCS-P1023-0403.
- G. D. Hart and M. Anitescu, A hard-constraint time-stepping approach for rigid multibody dynamics with joints, contact, and friction, in Proceedings of the Richard Tapia Celebration of Diversity in Computing Conference 2003, J. Meza and B. York, eds., New York, NY, USA, 2003, ACM Press, pp. 34-41.
- Publications in preparation: One dealing with Depth of Penetration by Linear Programming, the other dealing with Constraint Stabilization for Nonsmooth Shapes.

- I plan to demonstrate that computation of RPD is faster than computation of MPD
- I plan to optimize the algorithm. For example, I need to find a rigorous way to reduce the number of active gradients
- I plan to evaluate the bounds of constraint stabilization, because it would be interesting to explore the possibility of constraint stabilization results being useful for values of $\gamma \ge 1$
- I plan to increase the library of successfully solved examples, including the famous Brazil Nut problem

Research Acco	mplishments				
Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	°Comps ○○○●

• Dr. Mihai Anitescu, Department of Mathematics

Introduction	Ratio Metric	Differentiability	Constraints and Model	Numerical Results	'Comps ○○○●
Bassarah Ass	e man lie kanse a ste				

- Dr. Mihai Anitescu, Department of Mathematics
- Dr. William J. Layton, Department of Mathematics

Research Acco	mplishments					
Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	'Comps ○○○●

- Dr. Mihai Anitescu, Department of Mathematics
- Dr. William J. Layton, Department of Mathematics
- Dr. Beatrice M. Riviere, Department of Mathematics
- Dr. Andrew J. Schaefer, Department of Ind. Engineering
- Dr. Ivan P. Yotov, Department of Mathematics

Research Accor	mplishments					
Introduction	Ratio Metric	Differentiability	Constraints and Model	Algorithm 000000000	Numerical Results	'Comps ○○○●

- Dr. Mihai Anitescu, Department of Mathematics
- Dr. William J. Layton, Department of Mathematics
- Dr. Beatrice M. Riviere, Department of Mathematics
- Dr. Andrew J. Schaefer, Department of Ind. Engineering
- Dr. Ivan P. Yotov, Department of Mathematics
- Department of Mathematics, University of Pittsburgh