A Framework for Adaptive Inflation and Covariance Localization for Ensemble Filters

Ahmed Attia ${ }^{1}$ Emil Constantinescu ${ }^{12}$
${ }^{1}$ Mathematics and Computer Science Division (MCS),
Argonne National Laboratory (ANL)
${ }^{2}$ The University of Chicago, Chicago, IL

SIAM Conference on Mathematics of Planet Earth (MPE18)
September 14, 2018

ENERGY

Outline

Ensemble Filtering
Ensemble Kalman Filter (EnKF)
Inflation \& Localization
Optimal Experimental Design
OED and the alphabetical criteria
OED Inflation \& Localization
A-OED inflation
A-OED localization
Numerical Experiments
Experimental setup
Numerical Results

Outline

Ensemble Filtering
Ensemble Kalman Filter (EnKF)
Inflation \& Localization
Optimal Experimental Design
OED and the alphabetical criteria
OED Inflation \& Localization
A-OED inflation
A-OED localization
Numerical Experiments
Experimental setup
Numerical Results

Ensemble Kalman Filter (EnKF)

Assimilation cycle over $\left[t_{k-1}, t_{k}\right.$]; Forecast step

- Initialize: an analysis ensemble $\left\{\mathbf{x}_{k-1}^{\mathrm{a}}(e)\right\}_{e=1, \ldots, \mathrm{~N}_{\text {ens }}}$ at t_{k-1}
- Forecast: use the discretized model $\mathcal{M}_{t_{k-1} \rightarrow t_{k}}$ to generate a forecast ensemble at t_{k} :

$$
\mathbf{x}_{k}^{\mathrm{b}}(e)=\mathcal{M}_{t_{k-1} \rightarrow t_{k}}\left(\mathbf{x}_{k-1}^{\mathrm{a}}(e)\right)+\eta_{k}(e), \quad e=1, \ldots, \mathrm{~N}_{\mathrm{ens}}
$$

- Forecast/Prior statistics:

$$
\begin{aligned}
\overline{\mathbf{x}}_{k}^{\mathrm{b}} & =\frac{1}{\mathrm{~N}_{\mathrm{ens}}} \sum_{e=1}^{\mathrm{N}_{\mathrm{ens}}} \mathbf{x}_{k}^{\mathrm{b}}(e) \\
\mathbf{B}_{k} & =\frac{1}{\mathrm{~N}_{\mathrm{ens}}-1} \mathbf{X}_{k}^{\mathrm{b}}\left(\mathbf{X}_{k}^{\mathrm{b}}\right)^{\top} ; \quad \mathbf{X}_{k}^{\mathrm{b}}=\left[\mathbf{x}_{k}^{\mathrm{b}}(1)-\overline{\mathbf{x}}_{k}^{\mathrm{b}}, \ldots, \mathbf{x}_{k}^{\mathrm{b}}\left(\mathrm{~N}_{\mathrm{ens}}\right)-\overline{\mathbf{x}}_{k}^{\mathrm{b}}\right]
\end{aligned}
$$

Ensemble Kalman Filter (EnKF)

Assimilation cycle over $\left[t_{k-1}, t_{k}\right]$; Analysis step

- Given an observation \mathbf{y}_{k} at time t_{k}
- Analysis: sample the posterior (EnKF update)

$$
\begin{aligned}
\mathbf{K}_{k} & =\mathbf{B}_{k} \mathbf{H}_{k}^{\top}\left(\mathbf{H}_{k} \mathbf{B}_{k} \mathbf{H}_{k}^{\top}+\mathbf{R}_{k}\right)^{-1} \\
\mathbf{x}_{k}^{\mathrm{a}}(e) & =\mathbf{x}_{k}^{\mathrm{b}}(e)+\mathbf{K}_{k}\left(\left[\mathbf{y}_{k}+\zeta_{k}(e)\right]-\mathcal{H}_{k}\left(\mathbf{x}_{k}^{\mathrm{b}}(e)\right)\right)
\end{aligned}
$$

- The posterior (analysis) error covariance matrix:

$$
\mathbf{A}_{k}=\left(\mathbf{I}-\mathbf{K}_{k} \mathbf{H}\right) \mathbf{B}_{k} \equiv\left(\mathbf{B}_{k}^{-1}+\mathbf{H}_{k}^{\top} \mathbf{R}^{-1} \mathbf{H}_{k}\right)^{-1}
$$

Ensemble Kalman Filter (EnKF)

Sequential EnKF Issues

- Limited-size ensemble results in sampling errors, explained by:
- variance underestimation
- accumulation of long-range spurious correlations
- filter divergence after a few assimilation cycles
- EnKF requires inflation \& localization

Ensemble Kalman Filter (EnKF)

Inflation \& Localization

- Covariance underestimation in EnKF is counteracted, by applying covariance inflation:
\rightarrow replace \mathbf{B}, with an inflated version $\widetilde{\mathbf{B}}$

- Long-range spurious correlations are reduced by covariance localization (e.g., Schur-product)
\rightarrow replace B, with a decorrelated version $\widehat{\mathbf{B}}$

$\begin{array}{llllllll}-1.2 & -0.8 & -0.4 & 0.0 & 0.4 & 0.8 & 1.2 & 1.6\end{array}$

EnKF: Inflation

- Additive Inflation:

$$
\widetilde{\mathbf{B}}:=\mathbf{D}+\mathbf{B} ; \quad \text { s.t. } \mathbf{D}=\operatorname{diag}(\boldsymbol{\lambda}), \boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{N}_{\text {state }}}\right)^{\top}, 0 \leq \lambda_{i}^{l} \leq \lambda_{i} \leq \lambda^{\mathrm{u}}
$$

- Multiplicative Inflation:

1. Space-independent inflation:

$$
\begin{aligned}
\widetilde{\mathbf{X}^{\mathrm{b}}} & =\left[\sqrt{\lambda}\left(\mathbf{x}^{\mathrm{b}}(1)-\overline{\mathbf{x}}^{\mathrm{b}}\right), \ldots, \sqrt{\lambda}\left(\mathbf{x}^{\mathrm{b}}\left(\mathrm{~N}_{\mathrm{ens}}\right)-\overline{\mathbf{x}}^{\mathrm{b}}\right)\right] ; 0<\lambda^{l} \leq \lambda \leq \lambda^{u} \\
\widetilde{\mathbf{B}} & =\frac{1}{\mathrm{~N}_{\text {ens }}-1} \widetilde{\mathbf{X}^{\mathrm{b}}}\left(\widetilde{\mathbf{X}^{\mathrm{b}}}\right)^{\top}=\lambda \mathbf{B}
\end{aligned}
$$

2. Space-dependent inflation: Let $\mathbf{D}:=\operatorname{diag}(\boldsymbol{\lambda}) \equiv \sum_{i=1}^{\mathrm{N}_{\text {state }}} \lambda_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{\top}$,

$$
\begin{aligned}
\widetilde{\mathbf{X}^{\mathrm{b}}} & =\mathbf{D}^{\frac{1}{2}} \mathbf{X}^{\mathrm{b}} \\
\widetilde{\mathbf{B}} & =\frac{1}{\mathrm{~N}_{\mathrm{ens}}-1} \widetilde{\mathbf{X}^{\mathrm{b}}}\left(\widetilde{\mathbf{X}^{\mathrm{b}}}\right)^{\top}=\mathbf{D}^{\frac{1}{2}} \mathbf{B D}^{\frac{1}{2}} .
\end{aligned}
$$

- The inflated Kalman gain $\widetilde{\mathbf{K}}$, and analysis error covariance matrix $\widetilde{\mathbf{A}}$

$$
\widetilde{\mathbf{K}}=\widetilde{\mathbf{B}} \mathbf{H}^{\top}\left(\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\top}+\mathbf{R}\right)^{-1} ; \quad \widetilde{\mathbf{A}}=(\mathbf{I}-\widetilde{\mathbf{K}} \mathbf{H}) \widetilde{\mathbf{B}} \equiv\left(\widetilde{\mathbf{B}}^{-1}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1}
$$

EnKF: Schur-Product Localization

State-space formulation; B-Localization

- space-independent covariance localization:

$$
\widehat{\mathbf{B}}:=\mathbf{C} \odot \mathbf{B} ; \quad \text { s.t. } \mathbf{C}=\left[\rho_{i, j}\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}}
$$

- Entries of \mathbf{C} are created using space-dependent localization functions ${ }^{\dagger}$:
\rightarrow Gauss:

$$
\rho_{i, j}(L)=\exp \left(\frac{-d(i, j)^{2}}{2 L^{2}}\right) ; \quad i, j=1,2, \ldots, \mathrm{~N}_{\text {state }},
$$

\rightarrow 5th-order Gaspari-Cohn:

$$
\rho_{i, j}(L)= \begin{cases}-\frac{1}{4}\left(\frac{d(i, j)}{L}\right)^{5}+\frac{1}{2}\left(\frac{d(i, j)}{L}\right)^{4}+\frac{5}{8}\left(\frac{d(i, j)}{L}\right)^{3}-\frac{5}{3}\left(\frac{d(i, j)}{L}\right)^{2}+1, & 0 \leq d(i, j) \leq L \\ \frac{1}{12}\left(\frac{d(i, j)}{L}\right)^{5}-\frac{1}{2}\left(\frac{d(i, j)}{L}\right)^{4}+\frac{5}{8}\left(\frac{d(i, j)}{L}\right)^{3}+\frac{5}{3}\left(\frac{d(i, j)}{L}\right)^{2}-5\left(\frac{d(i, j)}{L}\right)+4-\frac{2}{3}\left(\frac{L}{d(i, j)}\right), & L \leq d(i, j) \leq 2 L \\ 0 . & 2 L \leq d(i, j)\end{cases}
$$

- $d(i, j)$: distance between i th and j th grid points
- L: radius of influence, i.e. localization radius

EnKF: Schur-Product Localization

Space-dependent formulation; \mathbf{B}-Localization

- Space-dependent radii, i.e., $L \equiv L(i, j)$: we need to define localization kernel \mathbf{C} \rightarrow Examples include ${ }^{\dagger}$:

$$
\mathbf{C}:=\left\{\begin{array}{l}
\mathbf{C}_{r}=\left[\rho_{i, j}\left(l_{i}\right)\right]_{i, j=1,2}, \ldots, \mathrm{~N}_{\text {state }} \\
\mathbf{C}_{c}=\left(\mathbf{C}_{r}\right)^{\top}=\left[\rho_{i, j}\left(l_{j}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}} \\
\frac{1}{2}\left(\mathbf{C}_{r}+\mathbf{C}_{c}\right)=\left[\frac{1}{2} \rho_{i, j}\left(l_{i}\right)+\rho_{i, j}\left(l_{j}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}} \\
\mathbf{C}_{d}=\left[\rho_{i, j}\left(l_{\min (i, j)}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}} \\
\mathbf{C}_{u}=\left[\rho_{i, j}\left(l_{\max (i, j)}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}} \\
\frac{1}{2}\left(\mathbf{C}_{d}+\mathbf{C}_{u}\right)=\left[\frac{1}{2} \rho_{i, j}\left(l_{\min (i, j)}\right)+\rho_{i, j}\left(l_{\max (i, j)}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}} \\
\mathbf{C}_{G}=\left[\rho_{i, j}\left(\sqrt{l_{i} l_{j}}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}}
\end{array}\right.
$$

- We focus here on the symmetric kernel:

$$
\mathbf{C}:=\frac{1}{2}\left(\mathbf{C}_{r}+\mathbf{C}_{c}\right)=\frac{1}{2}\left[\rho_{i, j}\left(l_{i}\right)+\rho_{i, j}\left(l_{j}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}}
$$

\dagger Ahmed Attia, and Emil Constantinescu. "An Optimal Experimental Design Framework for Adaptive Inflation and Covariance Localization for Ensemble Filters." arXiv preprint arXiv:1806.10655 (2018).

EnKF: Schur-Product Localization

Space-dependent formulation; \mathbf{R}-Localization

- Localization in observation space (R -localization):
- HB is replaced with $\widehat{\mathbf{H B}}=\mathbf{C}^{\text {loc, } 1} \odot \mathbf{H B}$, where

$$
\mathbf{C}^{\mathrm{loc}, 1}=\left[\rho_{i, j}^{o \mid m}\right] ; i=1,2, \ldots \mathrm{~N}_{\mathrm{obs}} ; j=1,2, \ldots \mathrm{~N}_{\text {state }}
$$

- $\mathbf{H B H}^{\top}$ can be replaced with $\widehat{\mathbf{H B H}^{\top}}=\mathbf{C}^{\text {loc, } 2} \odot \mathbf{H B H}^{\top}$, where

$$
\mathbf{C}^{\mathrm{loc}, 2} \equiv \mathbf{C}^{o \mid o}=\left[\rho_{i, j}^{o \mid o}\right] ; i, j=1,2, \ldots \mathrm{~N}_{\mathrm{obs}}
$$

- $\rho_{i, j}^{o \mid m}$ is calculated between the i th observation grid point and the j th model grid point.
- $\rho_{i, j}^{o \mid o}$ is calculated between the i th and j th observation grid points.
- Assign radii to state grid points vs. observation grid points:
- Let $\mathbf{L} \in \mathbb{R}^{\mathrm{N}_{\text {obs }}}$ to model grid points, and project to observations for $\mathbf{C}^{\text {loc,2 }}$ [hard/unknown]
- Let $\mathbf{L} \in \mathbb{R}^{N_{\text {obs }}}$ to observation grid points; [efficient; followed here]

Inflation \& Localization

Tuning the parameters

- Tuning the inflation parameter/factors $\boldsymbol{\lambda}$
- Bayesian approach for adaptive inflation exists, and still requires improvements
- mostly for uncorrelated observation errors
- Tuning the localization radii of influence \mathbf{L}
- adaptive localization approaches are limited, especially in the vertical
- mostly for uncorrelated observation errors
- expert knowledge, especially with observation system, is required
- theory is lacking

The parameters $\boldsymbol{\lambda}, \mathrm{L}$ are generally tuned empirically!

Outline

```
Ensemble Filtering
    Ensemble Kalman Filter (EnKF)
    Inflation & Localization
```

Optimal Experimental Design
OED and the alphabetical criteria

OED Inflation \& Localization
A-OED inflation
A-OED localization

Numerical Experiments
Experimental setup
Numerical Results

Optimal Experimental Design (OED)

An OED problem seeks an optimal design \mathbf{w} that solves

$$
\begin{array}{ll}
& \min _{\boldsymbol{\lambda} \in \mathbb{R}^{\mathrm{s} \text { state }}} \Psi^{\mathrm{OED}}(\mathbf{w})+\alpha \Phi(\mathbf{w}) \\
\text { subject to } & \mathbf{w}^{l} \leq \mathbf{w} \leq \mathbf{w}^{u}
\end{array}
$$

- $\Psi^{\mathrm{OED}(\mathbf{w})}$ is the specific design criterion
- For sensor placement, the design decides which sensors to activate
- The optimal design minimizes the uncertainty in the posterior state
- OED famous criteria:

1. A-optimality: Trace of posterior covariance
2. D-optimality: Determinant of the posterior covariance
3. etc.

- $\Phi(\boldsymbol{\lambda}): \mathbb{R}_{+}^{\mathrm{Ns}_{s}} \mapsto[0, \infty)$ is a regularization function (e.g., ℓ_{1}, ℓ_{0}, etc.)
- $\alpha>0$ is a user-defined penalty parameter that controls the sparsity of the design

Outline

Ensemble Filtering
Ensemble Kalman Filter (EnKF)
Inflation \& Localization
Optimal Experimental Design
OED and the alphabetical criteria
OED Inflation \& Localization
A-OED inflation
A-OED localization
Numerical Experiments
Experimental setup
Numerical Results

OED Approach for Adaptive Inflation

The A-optimal design (inflation parameter, $\boldsymbol{\lambda}^{\mathrm{A}-\text { opt }}$) minimizes:

$$
\begin{gathered}
\min _{\boldsymbol{\lambda} \in \mathbb{R}^{\mathrm{N}} \text { state }} \operatorname{Tr}(\widetilde{\mathbf{A}}(\boldsymbol{\lambda}))-\alpha\|\boldsymbol{\lambda}-\mathbf{1}\|_{1} \\
\text { subject to } \quad 1=\lambda_{i}^{l} \leq \lambda_{i} \leq \lambda_{i}^{u}, \quad i=1, \ldots, \mathrm{~N}_{\text {state }}
\end{gathered}
$$

Remark: we choose the sign of the regularization term to be negative, unlike the traditional formulation

- Let $\mathcal{H}=\mathbf{H}=\mathbf{I}$ with uncorrelated observation noise, the design criterion becomes:

$$
\Psi^{\mathrm{Infl}}(\boldsymbol{\lambda}):=\operatorname{Tr}(\widetilde{\mathbf{A}})=\sum_{i=1}^{\mathrm{N}_{\text {state }}}\left(\lambda_{i}^{-1} \sigma_{i}^{-2}+r_{i}^{-2}\right)^{-1}
$$

- Decreasing λ_{i} reduces $\Psi^{\text {Infl }}$, i.e. the optimizer will always move toward $\boldsymbol{\lambda}^{l}$

OED Approach for Adaptive Inflation

Solving the A-OED problem, requires evaluating the objective, and the gradient:

- The design criterion:

$$
\Psi^{\mathrm{Infl}}(\boldsymbol{\lambda}):=\operatorname{Tr}(\widetilde{\mathbf{A}})=\operatorname{Tr}(\widetilde{\mathbf{B}})-\operatorname{Tr}\left(\left(\mathbf{R}+\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\top}\right)^{-1} \mathbf{H} \widetilde{\mathbf{B}} \widetilde{\mathbf{B}} \mathbf{H}^{\top}\right)
$$

- The gradient:

$$
\begin{aligned}
\nabla_{\boldsymbol{\lambda}} \Psi^{\text {Infl }}(\boldsymbol{\lambda}) & =\sum_{i=1}^{\mathrm{N}_{\text {state }}} \lambda_{i}^{-1} \mathbf{e}_{i} \mathbf{e}_{i}^{\top}\left(z_{1}-z 2-z 3+z 4\right) \\
z_{1} & =\widetilde{\mathbf{B}} \mathbf{e}_{i} \\
z_{2} & =\mathbf{H}^{\top}\left(\mathbf{R}+\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\top}\right)^{-1} \mathbf{H} \widetilde{\mathbf{B}} z 1 \\
z_{3} & =\widetilde{\mathbf{B}} \mathbf{H}^{\top}\left(\mathbf{R}+\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\top}\right)^{-1} \mathbf{H} z_{1} \\
z_{4} & =\mathbf{H}^{\top}\left(\mathbf{R}+\mathbf{H} \widetilde{\mathbf{B}} \mathbf{H}^{\top}\right)^{-1} \mathbf{H} \widetilde{\mathbf{B}} z_{3}
\end{aligned}
$$

$\mathbf{e}_{i} \in \mathbb{R}^{\mathbb{N}_{\text {state }}}$ is the $i t h$ cardinality vector

OED Adaptive B-Localization (State-Space)

$$
\begin{array}{ll}
& \min _{\mathbf{L} \in \mathbb{R}^{\mathrm{N}} \text { state }} \Psi^{\mathrm{B}-\mathrm{Loc}}(\mathbf{L})+\gamma \Phi(\mathbf{L}):=\operatorname{Tr}(\widehat{\mathbf{A}}(\mathbf{L}))+\gamma\|\mathbf{L}\|_{2} \\
\text { subject to } & l_{i}^{l} \leq l_{i} \leq l_{i}^{u}, \quad i=1, \ldots, \mathrm{~N}_{\text {state }}
\end{array}
$$

- The design criterion:

$$
\Psi^{B-L o c}(\mathbf{L})=\operatorname{Tr}(\widehat{\mathbf{B}})-\operatorname{Tr}\left(\left(\mathbf{R}+\mathbf{H} \widehat{\mathbf{B}} \mathbf{H}^{\top}\right)^{-1} \mathbf{H} \widehat{\mathbf{B}} \widehat{\mathbf{B}} \mathbf{H}^{\top}\right)
$$

- The gradient:

$$
\begin{aligned}
\nabla_{\mathbf{L}} \Psi^{B-L o c} & =\sum_{i=1}^{\mathrm{N}_{\text {state }}} \mathbf{e}_{\mathbf{i}} \mathbf{l}_{B, i}\left(\mathbf{I}+\mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H} \widehat{\mathbf{B}}\right)^{-1}\left(\mathbf{I}+\widehat{\mathbf{B}} \mathbf{H}^{\top} \mathbf{R}^{-1} \mathbf{H}\right)^{-1} \mathbf{e}_{i} \\
\mathbf{l}_{B, i} & =\mathbf{l}_{i}^{\top} \odot\left(\mathbf{e}_{i}^{\top} \mathbf{B}\right) \\
\mathbf{1}_{i} & =\left(\frac{\partial \rho_{i, 1}\left(l_{i}\right)}{\partial l_{i}}, \frac{\partial \rho_{i, 2}\left(l_{i}\right)}{\partial l_{i}}, \ldots, \frac{\partial \rho_{i, \mathrm{~N}_{\text {state }}}\left(l_{i}\right)}{\partial l_{i}}\right)^{\top}
\end{aligned}
$$

$\mathbf{e}_{i} \in \mathbb{R}^{\mathrm{N}_{\text {state }}}$ is the $i t h$ cardinality vector

OED Adaptive: Observation-Space Localization

- So far, we assumed full state-space formulation, i.e. $\mathbf{L} \in \mathbb{R}^{N_{s t a t e}}$

1. the OED problem is solved to find $\mathbf{L}^{\mathrm{A} \text {-opt }}$ in the model state space
2. $\mathbf{L}^{\mathrm{A}-\text { opt }}$ is projected, in the analysis step, into observation space to localize $\mathbf{H B}$, and $\mathbf{H B} \mathbf{H}^{\top}$

- Pros:
- reduces the cost of calculating the analysis
- Cons:
- same cost for the optimization problem
- projecting of $\mathbf{L}^{\mathrm{A} \text {-opt }}$ might be challenging or unknown
- Alternative: observation-space formulation:
\rightarrow formulate OED optimization problem in the observation space; i.e., $\mathbf{L} \in \mathbb{R}^{N_{\text {obs }}}$

OED Adaptive: Observation-Space Localization

- Assume $\mathbf{L} \in \mathbb{R}^{N_{o b s}}$ is attached to observation grid points
- HB is replaced with $\widehat{\mathrm{HB}}=\mathbf{C}^{\text {loc, } 1} \odot \mathbf{H B}$, with

$$
\mathbf{C}^{\mathrm{loc}, 1}=\left[\rho_{i, j}^{o \mid m}\left(l_{i}\right)\right] ; i=1,2, \ldots \mathrm{~N}_{\mathrm{obs}} ; j=1,2, \ldots \mathrm{~N}_{\mathrm{state}}
$$

- $\mathbf{H B H}^{\top}$ can be replaced with $\widehat{\mathbf{H B H}^{\top}}=\mathbf{C}^{\mathrm{loc}, 2} \odot \mathbf{H B H}^{\top}$, with

$$
\mathbf{C}^{o \mid o}:=\frac{1}{2}\left(\mathbf{C}_{r}^{o}+\mathbf{C}_{c}^{o}\right)=\frac{1}{2}\left[\rho_{i, j}^{o \mid o}\left(l_{i}\right)+\rho_{i, j}^{o \mid o}\left(l_{j}\right)\right]_{i, j=1,2, \ldots, \mathrm{~N}_{\text {state }}}
$$

- Localized posterior covariances:
- Localize HB:

$$
\widehat{\mathbf{A}}=\mathbf{B}-\widehat{\mathbf{H B}}^{\top}\left(\mathbf{R}+\mathbf{H B H}^{\top}\right)^{-1} \widehat{\mathbf{H B}}
$$

- Localize both $\mathbf{H B}$ and $\mathbf{H B H}^{\top}$:

$$
\widehat{\mathbf{A}}=\mathbf{B}-\widehat{\mathbf{H B}}^{\top}\left(\mathbf{R}+\widehat{\mathbf{H B H}}^{\top}\right)^{-1} \widehat{\mathbf{H B}}
$$

OED Adaptive \mathbf{R}-Localization

- The design criterion:

$$
\Psi^{R-L o c}(\mathbf{L})=\operatorname{Tr}(\mathbf{B})-\operatorname{Tr}\left(\widehat{\mathbf{H B}} \widehat{\mathbf{H B}}^{\top}\left(\mathbf{R}+\mathbf{H B H}^{\top}\right)^{-1}\right)
$$

- The gradient:

$$
\begin{aligned}
\nabla_{\mathbf{L}} \Psi^{R-L o c} & =-2 \sum_{i=1}^{\mathrm{N}_{\mathrm{obs}}} \mathbf{e}_{\mathbf{i}} \mathbf{l}_{\mathrm{HB}, \mathrm{i}}^{\top} \psi_{i} \\
\psi_{i} & =\widehat{\mathbf{H B}}^{\top}\left(\mathbf{R}+\mathbf{H B H}^{\top}\right)^{-1} \mathbf{e}_{i} \\
\mathbf{l}_{\mathrm{HB}, \mathrm{i}} & =\left(\mathbf{l}_{i}^{s}\right)^{\top} \odot\left(\mathbf{e}_{i}^{\top} \mathbf{H B}\right) \\
\mathbf{l}_{i}^{s} & =\left(\frac{\partial \rho_{i, 1}\left(l_{i}\right)}{\partial l_{i}}, \frac{\partial \rho_{i, 2}\left(l_{i}\right)}{\partial l_{i}}, \ldots, \frac{\partial \rho_{i, \mathrm{~N}_{\mathrm{state}}}\left(l_{i}\right)}{\partial l_{i}}\right)^{\top}
\end{aligned}
$$

$\mathbf{e}_{i} \in \mathbb{R}^{\mathrm{N}_{\text {obs }}}$ is the $i t h$ cardinality vector

OED Adaptive \mathbf{R}-Localization

Decorrelate $\mathbf{H B}$ and $\mathbf{H B H}^{\top}$

- The design criterion:

$$
\Psi^{R-L o c}(\mathbf{L})=\operatorname{Tr}(\mathbf{B})-\operatorname{Tr}\left(\widehat{\mathbf{H B}} \widehat{\mathbf{H B}}^{\top}\left(\mathbf{R}+\widehat{\mathbf{H B H}}^{\top}\right)^{-1}\right)
$$

- The gradient:

$$
\begin{aligned}
\nabla_{\mathbf{L}} \Psi^{R-L o c} & =\sum_{i=1}^{\mathrm{N}_{\mathrm{obs}}} \mathbf{e}_{\mathbf{i}}\left(\eta_{i}^{o}-2 \mathbf{1}_{\mathrm{HB}, \mathrm{i}}^{\top}\right) \psi_{i}^{o} \\
\psi_{i}^{o} & =\widehat{\mathbf{H B}}^{\top}\left(\mathbf{R}+\widehat{\mathbf{H B H}^{\top}}\right)^{-1} \mathbf{e}_{i} \\
\eta_{i}^{o} & =\mathbf{l}_{B, i}^{o}\left(\mathbf{R}+\widehat{\mathbf{H B H}^{\top}}\right)^{-1} \widehat{\mathbf{H B}} \\
\mathbf{l}_{B, i}^{o} & =\left(\mathbf{1}_{i}^{o}\right)^{\top} \odot\left(\mathbf{e}_{i}^{\top} \mathbf{H B H}^{\top}\right) \\
\mathbf{1}_{i}^{o} & =\left(\frac{\partial \rho_{i, 1}\left(l_{i}\right)}{\partial l_{i}}, \frac{\partial \rho_{i, 2}\left(l_{i}\right)}{\partial l_{i}}, \ldots, \frac{\partial \rho_{i, \mathrm{~N}}\left(l_{\mathrm{obs}}\right)}{\partial l_{i}}\right)^{\top}
\end{aligned}
$$

Outline

```
Ensemble Filtering
    Ensemble Kalman Filter (EnKF)
    Inflation & Localization
Optimal Experimental Design
    OFD and the alphabetical criteria
OED Inflation & Localization
    A-OED inflation
    A-OED localization
```

Numerical Experiments

Experimental setup

Numerical Results

Experimental Setup

- The model (Lorenz-96):

$$
\frac{d x_{i}}{d t}=x_{i-1}\left(x_{i+1}-x_{i-2}\right)-x_{i}+F ; \quad i=1,2, \ldots, 40
$$

- $\mathbf{x} \in \mathbb{R}^{40}$ is the state vector, with $x_{0} \equiv x_{40}$
- $F=8$
- Initial background ensemble \& uncertainty:
- reference IC: $\mathbf{x}_{0}^{\text {True }}=\mathcal{M}_{t=0 \rightarrow t=5}(-2, \ldots, 2)^{\top}$
- $\mathbf{B}_{0}=\sigma_{0} \mathbf{I} \in \mathbb{R}^{\mathrm{N}_{\text {state }} \times \mathrm{N}_{\text {state }}, \text { with } \sigma_{0}=0.08\left\|\mathbf{x}_{0}^{\text {True }}\right\|_{2}, ~}$
- Observations:
- $\sigma_{\text {obs }}=5 \%$ of the average magnitude of the observed reference trajectory
- $\mathbf{R}=\sigma_{\text {obs }} \mathbf{I} \in \mathbb{R}^{\mathrm{N}_{\text {obs }} \times \mathrm{N}_{\text {obs }}}$
- Synthetic observations are generated every 20 time steps, with

$$
\mathcal{H}(\mathbf{x})=\mathbf{H} \mathbf{x}=\left(x_{1}, x_{3}, x_{5}, \ldots, x_{37}, x_{39}\right)^{T} \in \mathbb{R}^{20}
$$

- EnKF flavor used here: DEnKF with Gaspari-Cohn (GC) localization

All experiments are carried out using DATeS

- http://people.cs.vt.edu/~attia/DATeS/
- https://doi.org/10.5281/zenodo. 1247464
- Ahmed Attia and Adrian Sandu, DATeS: A Highly-Extensible Data Assimilation Testing Suite, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-30, in review, 2018.

Numerical Results: Performance Metrics

- RMSE:

$$
\mathbf{R M S E}=\sqrt{\frac{1}{\mathrm{~N}_{\text {state }}} \sum_{i=1}^{\mathrm{N}_{\text {state }}}\left(x_{i}-x_{i}^{\text {True }}\right)^{2}}
$$

- KL-distance to uniform Rank histogram

\rightarrow The KL divergence between two Beta distributions $\operatorname{Beta}(\alpha, \beta)$, and $\operatorname{Beta}\left(\alpha^{\prime}, \beta^{\prime}\right)$:

$$
D_{\mathrm{KL}}\left(\operatorname{Beta}(\alpha, \beta) \mid \operatorname{Beta}\left(\alpha^{\prime} \beta^{\prime}\right)\right)=\ln \Gamma(\alpha+\beta)-\ln (\alpha \beta)-\ln \Gamma\left(\alpha^{\prime}+\beta^{\prime}\right)+\ln \left(\alpha^{\prime} \beta^{\prime}\right)+\left(\alpha-\alpha^{\prime}\right)\left(\psi(\alpha)-\psi\left(\alpha^{\prime}\right)\right)+\left(\beta-\beta^{\prime}\right)\left(\psi(\beta)-\psi\left(\beta^{\prime}\right)\right)
$$

- $\psi(\cdot)=\frac{\Gamma^{\prime}(\cdot)}{\Gamma(\cdot)}$ is the digamma function, i.e. the logarithmic derivative of the gamma function
- $\mathcal{U}(0,1) \equiv \operatorname{Beta}\left(\alpha^{\prime}=1 \cdot \beta^{\prime}=1\right)$

Numerical Results: Benchmark

The minimum average RMSE over the interval [10,30], for every choice of $\mathrm{N}_{\text {ens }}$, is indicated by red a triangle. Blue tripods indicate the minimum KL distance between the analysis rank histogram and a uniformly distributed rank histogram. Space-independent radius of influence $\mathbf{L}=4$ is used.

Analysis RMSE and rank histogram of DEnKF with $\mathbf{L}=4$, and $\lambda=1.05$.

Benchmark EnKF Results

Numerical Results: OED Adaptive Space-Time Inflation I

The localization radius is fixed to $\mathbf{L}=4$. The optimization penalty parameter α is indicated under each panel.

Numerical Results: OED Adaptive Space-Time Inflation II

Box plots expressing the range of values of the inflation coefficients at each time instant, over the testing timespan [10, 30].

Numerical Results; A-OED Inflation Regularization ।

Choosing α

L-curve plots are are plotted for 25 equidistant values of the penalty parameter, at every assimilation time instant over the testing timespan $[0.03,0.24]$. The values of the penalty parameter α that resulted in the 5 smallest average RMSEs, over all experiments carried out with different penalties, are highlighted on the plot and indicated in the legend along with the corresponding average RMSE.

Numerical Results; A-OED Inflation Regularization II

Choosing α

(a) Cycle 100

(b) Cycle 150

L-curve plots are are plotted for 25 equidistant values of the penalty parameter at assimilation cycles 100 and 150, respectively.

Numerical Results; A-OED Inflation Regularization III

Choosing α

Average RMSE and KL-divergence from a uniform rank histogram resulted for 22 equidistant values of the penalty parameter in the interval $[0.03,0.24]$. Values of the penalty parameter α that led to filter or optimizer divergence are indicated by red x marks.

Numerical Results: OED Adaptive Space-Time Localization I

The inflation factor is fixed to $\lambda=1.05$. The optimization penalty parameter γ is shown under each panel.

Numerical Results: OED Adaptive Space-Time Localization II

Localization radii at each time points, over the testing timespan $[10,30]$. The optimization penalty parameter γ is shown under each panel.

Numerical Results: OED Adaptive Space-Time Localization III

A-OED optimal localization radii \mathbf{L} found by solving the OED localization problems in model state-space, and observation space respectively. No regularization is applied, i.e., $\gamma=0$

Numerical Results: OED Adaptive Space-Time Localization IV

Rank histogram for A-OED localization solved in model state-space, and observation space respectively.

Space-time optimal localization radii over the testing timespan.

Numerical Results; A-OED Localization Regularization I

Choosing γ

L-curve plots are shown for values of the penalty parameter $\gamma=0,0.001, \ldots, 0.34$.

Concluding Remarks

- Introduced an OED approach for adaptive inflation and localization
- Either A-OED inflation or localization is carried out each cycle
- Can create a weighted objective to account for both inflation and localization
- Regularization is a must for adaptive inflation
- Regularization may not be needed, in general, for adaptive localization
- Definiteness of the localization Kernel D
- Regularization norm
- Other OED criteria; e.g., D-optimality
- Adaptive Bayesian A-OED!

Thank You

