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Ensemble Kalman Filter (EnKF)
Assimilation cycle over [tk−1, tk]; Forecast step

I Initialize: an analysis ensemble {xa
k−1(e)}e=1,...,Nens at tk−1

I Forecast: use the discretized model Mtk−1→tk to generate a forecast ensemble at tk:

x
b
k(e) =Mtk−1→tk (x

a
k−1(e)) + ηk(e), e = 1, . . . ,Nens

I Forecast/Prior statistics:
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Ensemble Kalman Filter (EnKF)
Assimilation cycle over [tk−1, tk]; Analysis step

I Given an observation yk at time tk
I Analysis: sample the posterior (EnKF update)

Kk = BkH
T
k

(
HkBkH

T
k + Rk

)−1

x
a
k(e) = x

b
k(e) + Kk

(
[yk + ζk(e)]−Hk(x

b
k(e))

)
I The posterior (analysis) error covariance matrix:

Ak = (I−KkH)Bk ≡
(
B
−1
k + H

T
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Ensemble Kalman Filter (EnKF)
Sequential EnKF Issues

I Limited-size ensemble results in sampling errors, explained by:

- variance underestimation

- accumulation of long-range spurious correlations

- filter divergence after a few assimilation cycles

I EnKF requires inflation & localization
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Ensemble Kalman Filter (EnKF)
Inflation & Localization

I Covariance underestimation in EnKF is counteracted, by applying covariance inflation:

→ replace B, with an inflated version B̃

I Long-range spurious correlations are reduced by covariance localization (e.g., Schur-product)

→ replace B, with a decorrelated version B̂
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EnKF: Inflation

I Additive Inflation:

B̃ := D + B; s.t. D = diag (λ) , λ =
(
λ1, λ2, . . . , λNstate

)T
, 0 ≤ λli ≤ λi ≤ λ

u

I Multiplicative Inflation:
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I The inflated Kalman gain K̃, and analysis error covariance matrix Ã
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T
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EnKF: Schur-Product Localization
State-space formulation; B−Localization

I space-independent covariance localization:

B̂ := C�B; s.t. C = [ρi,j ]i,j=1,2,...,Nstate

I Entries of C are created using space-dependent localization functions †:

→ Gauss:

ρi,j(L) = exp

(
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2L2

)
; i, j = 1, 2, . . . ,Nstate ,

→ 5th-order Gaspari-Cohn:
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†

- d(i, j): distance between ith and jth grid points

- L: radius of influence, i.e. localization radius
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EnKF: Schur-Product Localization
Space-dependent formulation; B−Localization

I Space-dependent radii, i.e., L ≡ L(i, j): we need to define localization kernel C
→ Examples include †:

C :=



Cr = [ρi,j(li)]i,j=1,2,...,Nstate

Cc = (Cr)T = [ρi,j(lj)]i,j=1,2,...,Nstate

1
2 (Cr + Cc) =

[
1
2ρi,j(li) + ρi,j(lj)

]
i,j=1,2,...,Nstate

Cd =
[
ρi,j(lmin (i,j))

]
i,j=1,2,...,Nstate

Cu =
[
ρi,j(lmax (i,j))

]
i,j=1,2,...,Nstate

1
2 (Cd + Cu) =

[
1
2ρi,j(lmin (i,j)) + ρi,j(lmax (i,j))

]
i,j=1,2,...,Nstate

CG =
[
ρi,j
(√

li lj
)]
i,j=1,2,...,Nstate

I We focus here on the symmetric kernel:

C :=
1

2
(Cr + Cc) =

1

2
[ρi,j(li) + ρi,j(lj)]i,j=1,2,...,Nstate

†Ahmed Attia, and Emil Constantinescu. ”An Optimal Experimental Design Framework for Adaptive Inflation

and Covariance Localization for Ensemble Filters.” arXiv preprint arXiv:1806.10655 (2018).
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EnKF: Schur-Product Localization
Space-dependent formulation; R−Localization

I Localization in observation space (R−localization):

I HB is replaced with ”HB = Cloc,1 �HB, where

C
loc,1

=
[
ρ
o|m
i,j

]
; i = 1, 2, . . .Nobs ; j = 1, 2, . . .Nstate

I HBHT can be replaced with HBHT
∧

= Cloc,2 �HBHT, where

C
loc,2 ≡ C

o|o
=
[
ρ
o|o
i,j

]
; i, j = 1, 2, . . .Nobs

- ρ
o|m
i,j

is calculated between the ith observation grid point and the jth model grid point.

- ρ
o|o
i,j

is calculated between the ith and jth observation grid points.

I Assign radii to state grid points vs. observation grid points:

- Let L ∈ RNobs to model grid points, and project to observations for Cloc,2 [hard/unknown]

- Let L ∈ RNobs to observation grid points; [efficient; followed here]
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Inflation & Localization
Tuning the parameters

I Tuning the inflation parameter/factors λ

- Bayesian approach for adaptive inflation exists, and still requires improvements

- mostly for uncorrelated observation errors

I Tuning the localization radii of influence L

- adaptive localization approaches are limited, especially in the vertical

- mostly for uncorrelated observation errors

- expert knowledge, especially with observation system, is required

- theory is lacking

The parameters λ, L are generally tuned empirically!
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Optimal Experimental Design (OED)

An OED problem seeks an optimal design w that solves

min
λ∈RNstate

Ψ
OED

(w) + αΦ(w)

subject to w
l ≤ w ≤ w

u

I ΨOED(w) is the specific design criterion
I For sensor placement, the design decides which sensors to activate

I The optimal design minimizes the uncertainty in the posterior state

I OED famous criteria:

1. A-optimality: Trace of posterior covariance

2. D-optimality: Determinant of the posterior covariance

3. etc.

I Φ(λ) : RNs
+
7→ [0,∞) is a regularization function (e.g.,`1, `0, etc.)

I α > 0 is a user-defined penalty parameter that controls the sparsity of the design
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OED Approach for Adaptive Inflation

The A-optimal design (inflation parameter, λA−opt) minimizes:

min
λ∈RNstate

Tr
(
Ã(λ)

)
− α ‖λ− 1‖1

subject to 1 = λ
l
i ≤ λi ≤ λ

u
i , i = 1, . . . ,Nstate

Remark: we choose the sign of the regularization term to be negative, unlike the traditional formulation

I Let H = H = I with uncorrelated observation noise, the design criterion becomes:

Ψ
Infl

(λ) := Tr
(
Ã
)

=

Nstate∑
i=1

(
λ
−1
i σ

−2
i + r

−2
i

)−1

I Decreasing λi reduces ΨInfl, i.e. the optimizer will always move toward λl
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OED Approach for Adaptive Inflation

Solving the A-OED problem, requires evaluating the objective, and the gradient:

I The design criterion:

Ψ
Infl

(λ) := Tr
(
Ã
)

= Tr
(
B̃
)
− Tr

Ä(
R + HB̃H

T
)−1

HB̃B̃H
T
ä

I The gradient:

∇λΨ
Infl

(λ) =

Nstate∑
i=1

λ
−1
i eie

T
i (z1 − z2− z3 + z4)

z1 = B̃ei

z2 = H
T
(
R + HB̃H

T
)−1

HB̃z1

z3 = B̃H
T
(
R + HB̃H

T
)−1

Hz1

z4 = H
T
(
R + HB̃H

T
)−1

HB̃z3

ei ∈ RNstate is the ith cardinality vector
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OED Adaptive B−Localization (State-Space)

min
L∈RNstate

Ψ
B−Loc

(L) + γ Φ(L) := Tr
(
Â(L)

)
+ γ ‖L‖2

subject to l
l
i ≤ li ≤ l

u
i , i = 1, . . . ,Nstate

I The design criterion:

Ψ
B−Loc

(L) = Tr
(
B̂
)
− Tr

Ä(
R + HB̂H

T
)−1

HB̂B̂H
T
ä

I The gradient:

∇LΨ
B−Loc

=

Nstate∑
i=1

ei lB,i
(
I + H

T
R
−1

HB̂
)−1 (

I + B̂H
T
R
−1

H
)−1

ei

lB,i = l
T
i �
(
e

T
iB
)

li =

(
∂ρi,1(li)

∂li
,
∂ρi,2(li)

∂li
, . . . ,

∂ρi,Nstate (li)

∂li

)T

ei ∈ RNstate is the ith cardinality vector
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OED Adaptive: Observation-Space Localization

I So far, we assumed full state-space formulation, i.e. L ∈ RNstate

1. the OED problem is solved to find LA−opt in the model state space

2. LA−opt is projected, in the analysis step, into observation space to localize HB, and HBHT

I Pros:

- reduces the cost of calculating the analysis

I Cons:

- same cost for the optimization problem

- projecting of LA−opt might be challenging or unknown

I Alternative: observation-space formulation:

→ formulate OED optimization problem in the observation space; i.e., L ∈ RNobs
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OED Adaptive: Observation-Space Localization

I Assume L ∈ RNobs is attached to observation grid points

I HB is replaced with ”HB = Cloc,1 �HB, with

C
loc,1

=
[
ρ
o|m
i,j

(li)
]

; i = 1, 2, . . .Nobs ; j = 1, 2, . . .Nstate

I HBHT can be replaced with ’HBHT = Cloc,2 �HBHT, with

C
o|o

:=
1

2

(
C
o
r + C

o
c

)
=

1

2

[
ρ
o|o
i,j

(li) + ρ
o|o
i,j

(lj)
]
i,j=1,2,...,Nstate

I Localized posterior covariances:
I Localize HB:

Â = B−”HB
T(

R + HBH
T
)−1”HB

I Localize both HB and HBHT:

Â = B−”HB
T
Ä
R + ’HBHT

ä−1”HB
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OED Adaptive R−Localization
Decorrelate HB

I The design criterion:

Ψ
R−Loc

(L) = Tr (B)− Tr

Ä”HB”HB
T(

R + HBH
T
)−1
ä

I The gradient:

∇LΨ
R−Loc

= −2

Nobs∑
i=1

ei l
T
HB,i ψi

ψi =”HB
T(

R + HBH
T
)−1

ei

lHB,i =
(
l
s
i

)T
�
(
e

T
iHB

)
l
s
i =

(
∂ρi,1(li)

∂li
,
∂ρi,2(li)

∂li
, . . . ,

∂ρi,Nstate (li)

∂li

)T

ei ∈ RNobs is the ith cardinality vector
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OED Adaptive R−Localization
Decorrelate HB and HBHT

I The design criterion:

Ψ
R−Loc

(L) = Tr (B)− Tr

(”HB”HB
T
Ä
R + HBHT
∧ä−1

)
I The gradient:

∇LΨ
R−Loc

=

Nobs∑
i=1

ei

(
η
o
i − 2 l

T
HB,i

)
ψ
o
i

ψ
o
i =”HB

T
Ä
R + HBHT
∧ä−1

ei

η
o
i = l

o
B,i

Ä
R + HBHT
∧ä−1”HB

l
o
B,i =

(
l
o
i

)T
�
(
e

T
iHBH

T
)

l
o
i =

(
∂ρi,1(li)

∂li
,
∂ρi,2(li)

∂li
, . . . ,

∂ρi,Nobs
(li)

∂li

)T
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Experimental Setup

I The model (Lorenz-96):

dxi

dt
= xi−1 (xi+1 − xi−2)− xi + F ; i = 1, 2, . . . , 40 ,

◦ x ∈ R40 is the state vector, with x0 ≡ x40

◦ F = 8

I Initial background ensemble & uncertainty:

◦ reference IC: xTrue
0 =Mt=0→t=5(−2, . . . , 2)T

◦ B0 = σ0I ∈ RNstate×Nstate , with σ0 = 0.08
∥∥xTrue

0

∥∥
2

I Observations:

◦ σobs = 5% of the average magnitude of the observed reference trajectory

◦ R = σobsI ∈ RNobs×Nobs

◦ Synthetic observations are generated every 20 time steps, with

H(x) = Hx = (x1, x3, x5, . . . , x37, x39)
T ∈ R20

.

I EnKF flavor used here: DEnKF with Gaspari-Cohn (GC) localization

All experiments are carried out using DATeS

- http://people.cs.vt.edu/~attia/DATeS/

- https://doi.org/10.5281/zenodo.1247464

- Ahmed Attia and Adrian Sandu, DATeS: A Highly-Extensible Data Assimilation Testing Suite, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-30, in review, 2018.
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Numerical Results: Performance Metrics
I RMSE:

RMSE =

Ã
1

Nstate

Nstate∑
i=1

(xi − xTrue
i

)2 ,

I KL-distance to uniform Rank histogram
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→ The KL divergence between two Beta distributions Beta(α, β), and Beta(α′, β′):

DKL(Beta(α, β) |Beta(α′ β′)) = ln Γ(α + β) − ln(αβ) − ln Γ(α′ + β′) + ln(α′ β′) + (α − α′)
(
ψ(α) − ψ(α′)

)
+ (β − β′)

(
ψ(β) − ψ(β′)

)
- ψ(·) =

Γ′(·)
Γ(·) is the digamma function, i.e. the logarithmic derivative of the gamma function

- U(0, 1) ≡ Beta(α′ = 1, β′ = 1)

- A small, e.g. closer to 0, KL distance to be an indication of a nearly-uniform rank histogram,i.e., indicates a well-dispersed ensemble.
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Numerical Results: Benchmark
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Figure 2: Data assimilation results with DEnKF applied to Lorenz-96 system. RMSE, on a log-scale, and analysis rank
histogram with fitted uniform and Beta distributions, are shown. An ideal, i.e. uniform, uniform distribution, and a fitted Beta
distributions are added to the rank histogram. The localization radius is set equal to 4, and the inflation factor is 1.05.

5.1. Adaptive inflation results

Solving the OED A-optimal adaptive inflation problem (15) requires presetting the penalty parameter
α. To analyze the behaviour of the proposed algorithm, we solve the space-time adaptive inflation prob-
lem with various choices of the penalty parameter. Specifically, we solve (15), for α = 0, 0.01, . . . , 0.24,
and use the optimal solution in the inflation step of DEnKF.

In what follows, we detail the results of DEnKF with adaptive inflation, for ensemble size Nens =

25. Figure 3 shows RMSE and analysis rank histogram results of EnKF experiment with adaptive
space-time inflation for two choices of the regularization parameter α = 0.14, and α = 0.04. Our first
notice was that for values of α near zero, specifically 0 ≤ α ≤ 0.03, DEnKF with adaptive inflation
diverged. Moreover, for these small values, as alpha is pushed away from zero, the average RMSE of
the experiment decreased considerably. For all values of α ≥ 0.04, the filter performance was similar for
all experiments with slight differences in results. Specifically, by increasing the penalty parameter, the
rank histogram shape changed from mound to roughly uniform, where the RME was always below the
benchmark RMSE.

15

The minimum average RMSE over
the interval [10, 30], for every
choice of Nens, is indicated by red
a triangle. Blue tripods indicate
the minimum KL distance between
the analysis rank histogram and a
uniformly distributed rank
histogram. Space-independent
radius of influence L = 4 is used.

Analysis RMSE and rank histogram of DEnKF with
L = 4, and λ = 1.05.

Benchmark EnKF Results
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Numerical Results: OED Adaptive Space-Time Inflation I
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(b) Rank histogram; α = 0.14
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(d) Rank histogram; α = 0.04

Figure 3: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 system. The localization
radius is fixed to 4. RMSE, on a log-scale, and analysis rank histogram with fitted uniform and Beta distributions, are shown.
The optimization penalty parameter is indicated under each panel.

Another effect of increasing the value of the penalty parameter, is the decrease in variability of the
space-time inflation parameter. The evolution of the adaptive inflation factor over space and time is
shown in Figure 4. The results depicted in this Figure suggest that varying the penalty parameter affects
the variability of λ entries, while the mean behavior of these parameter is not affected.
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The localization radius is fixed to L = 4. The optimization penalty parameter α is indicated under each panel.
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Numerical Results: OED Adaptive Space-Time Inflation II
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(b) Rank histogram; α = 0.14
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Figure 3: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 system. The localization
radius is fixed to 4. RMSE, on a log-scale, and analysis rank histogram with fitted uniform and Beta distributions, are shown.
The optimization penalty parameter is indicated under each panel.

Another effect of increasing the value of the penalty parameter, is the decrease in variability of the
space-time inflation parameter. The evolution of the adaptive inflation factor over space and time is
shown in Figure 4. The results depicted in this Figure suggest that varying the penalty parameter affects
the variability of λ entries, while the mean behavior of these parameter is not affected.
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Figure 3: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 model. The localization
radius is fixed to l = 4. Analysis RMSE, on a log-scale, and analysis rank histogram are shown. The optimization penalty
parameter α is indicated under each panel.

Another effect of increasing the value of the penalty parameter α, is the decrease in both magnitude
and variability of the space-time inflation parameter. A Box-plot demonstrating the evolution of the
adaptive inflation factor over space and time is shown in Figure 4. The results depicted in this Figure
suggest that varying the penalty parameter affects the magnitude and the variability of λ entries, while
the temporal behavior of these parameter is not affected.
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(b) α = 0.04

Figure 4: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 model. Box-plots ex-
pressing the range of values of the inflation coefficients at each time instant, over the testing timespan [10, 30]. The optimization
penalty parameter α is indicated under each panel.

In what follows, we show the results of the proposed adaptive localization algorithm, followed by
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Box plots expressing the range of values of the inflation coefficients at each time instant, over the testing
timespan [10, 30].
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Numerical Results; A-OED Inflation Regularization I
Choosing α
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L-curve plots are are plotted for 25 equidistant values of the penalty parameter, at every assimilation time
instant over the testing timespan [0.03, 0.24]. The values of the penalty parameter α that resulted in the 5
smallest average RMSEs, over all experiments carried out with different penalties, are highlighted on the plot
and indicated in the legend along with the corresponding average RMSE.
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Numerical Results; A-OED Inflation Regularization II
Choosing α
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Figure 11: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 system. L-Curve plots
are shown for 25 equidistant values of the penalty parameter in the interval [0.03, 0.24]. The localization function are indicated
under each panel.

Based on the discussion in the Section 5.1, and the results revealed by Figures (10, 11), we notice
that all values of ↵ lying on the wiggling portion of L-curve give similar and desirable results. This
behavior suggests a preliminary strategy to selecting the adaptive inflation penalty parameter ↵.
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Figure 12: Average RMSE and KL-divergence from a uniform rank histogram resulted for 25 equidistant values of the penalty
parameter in the interval [0.03, 0.24]. The localization function are indicated under each panel. Penalty parameters that led to
filter or optimizer divergence are marked by red x marks.

Regularization for adaptive localization. As discussed earlier, while regularization might not be re-
quired here, for the sake of completion, we show L-curve plots in the case of adaptive covariance local-
ization. A surface of L-curves, over time, is shown in Figure 13. This plot shows the L2 norm of the
optimal solution, i.e. optimal localization radii ⇢, on the x-axis, assimilation time on the y-axis, and the
value of Infl corresponding to this optimal solution, on the z-axis. The values of the penalty parameter �
that resulted in analysis trajectory with minimum average RMSE, are indicated by the red circles. Here,
the values of the penalty parameter � increase in the opposite direction of the x-axis, i.e. in the direction
of decreasing k⇢k2. The results here support our claim that no-to-little regularization is needed in the
case of adaptive localization.
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L-curve plots are are plotted for 25 equidistant values of the penalty parameter at assimilation cycles 100 and
150, respectively.
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Numerical Results; A-OED Inflation Regularization III
Choosing α
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Average RMSE and KL-divergence from a uniform rank histogram resulted for 22 equidistant values of the
penalty parameter in the interval [0.03, 0.24]. Values of the penalty parameter α that led to filter or optimizer
divergence are indicated by red x marks.
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Numerical Results: OED Adaptive Space-Time Localization I
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(b) Rank histogram; γ = 0
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(d) Rank histogram; γ = 0.001

Figure 5: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. The inflation
factor is fixed to 1.05. RMSE, on a log-scale, and analysis rank histogram with fitted uniform and Beta distributions, are shown.
The optimization penalty parameter γ is shown under each panel.

The results in Figure 5 suggest that the penalty term in (21) is not necessarily required to achieve
good performance of the adaptive filter. Moreover, while increasing the penalty parameter γ may result
in more uniform rank histogram, it might also degrade the filter accuracy. This is supported by the
results in Figure 5, along with results in Figure 6 which shows results for a penalty parameter value of
γ = 0.04,
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The inflation factor is fixed to λ = 1.05. The optimization penalty parameter γ is shown under each panel.
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Numerical Results: OED Adaptive Space-Time Localization II
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(b) Rank histogram

Figure 6: Same as Figure 5, with the optimization penalty parameter is γ = 0.04.

Figure 7 shows the space-time evolution of the localization radii over the testing timespan.
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(b) Rank histogram

Figure 9: Same as Figure 8, with the optimization penalty parameter is � = 0.04.
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(b) � = 0.001
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Figure 10: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.
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The derivative (A.6) can be e�ciently evaluated given the matrices of ensemble anomalies of both the
forecast and analysis respectively. Moreover, we can proceed further as follows to avoid constructing
the analysis ensemble at every iteration
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Figure 7: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.

As indicated by the results in Figures 6 and 7, unlike the case with adaptive inflation, forcing regu-
larization by increasing the penalty parameter γ, restricts the values of the localization radii, as well as
its variability, and can result in degradation of the filter accuracy.

5.2.1. Localization in different spaces

Following the discussion in Section 3.3, we show here the results of adaptive localization carried out
in the observation space. Figure 8 shows the RMSE results of EnKF with Gaspari-Cohn localization, and
optimal localization radii l found by solving the OED-localization problems (21, 26, 29), respectively.
Here, we solve the adaptive localization problem at each assimilation cycle with penalty parameter
γ = 0, i.e. without forcing regularization.

19

Results for λ = 1.05, and γ = 0.04.

100 130 160 190 220 250 280
Time (assimilation cycles)

10−1

4× 10−2

6× 10−2

lo
g-

R
M

S
E

Optimal DEnKF

OED-DEnKF

(a) RMSE

0 10 20
Rank

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
F

re
qu

en
cy

(b) Rank histogram

Figure 6: Same as Figure 5, with the optimization penalty parameter is γ = 0.04.

Figure 7 shows the space-time evolution of the localization radii over the testing timespan.
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Figure 9: Same as Figure 8, with the optimization penalty parameter is � = 0.04.
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(b) � = 0.001
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Figure 10: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.
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The derivative (A.6) can be e�ciently evaluated given the matrices of ensemble anomalies of both the
forecast and analysis respectively. Moreover, we can proceed further as follows to avoid constructing
the analysis ensemble at every iteration
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Figure 7: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.

As indicated by the results in Figures 6 and 7, unlike the case with adaptive inflation, forcing regu-
larization by increasing the penalty parameter γ, restricts the values of the localization radii, as well as
its variability, and can result in degradation of the filter accuracy.

5.2.1. Localization in different spaces

Following the discussion in Section 3.3, we show here the results of adaptive localization carried out
in the observation space. Figure 8 shows the RMSE results of EnKF with Gaspari-Cohn localization, and
optimal localization radii l found by solving the OED-localization problems (21, 26, 29), respectively.
Here, we solve the adaptive localization problem at each assimilation cycle with penalty parameter
γ = 0, i.e. without forcing regularization.
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Figure 6: Same as Figure 5, with the optimization penalty parameter is γ = 0.04.
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(a) γ = 0.0
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(b) γ = 0.001
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Figure 7: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 model. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the testing timespan [10, 30]. The
optimization penalty parameter γ is shown under each panel.

As indicated by the results in Figures 6 and 7, forcing regularization by increasing the penalty
parameter γ, restricts the values of the localization radii, as well as its variability, and can result in
degradation of the filter accuracy. Further discussion on the choice of the penalty parameter γ is given
in 5.3.

5.2.1. Localization in different spaces

Following the discussion in Section 3.3, we show here the results of adaptive localization carried
out in the observation space. We choose the observation localization kernel that localizes the projected
covariances HBHT, to be Co|o = 1

2

(
Co|o

r + Co|o
c

)
. Figure 8 shows the RMSE results of EnKF with GC lo-

calization, and optimal localization radii L found by solving the OED-localization problems (21, 26, 29),
respectively. Here, we solve the adaptive localization problem at each assimilation cycle with penalty
parameter γ = 0, i.e. without forcing regularization.
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Localization radii at each time points, over the testing timespan [10, 30]. The optimization penalty parameter
γ is shown under each panel.
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Numerical Results: OED Adaptive Space-Time Localization III
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A-OED optimal localization radii L found by solving the OED localization problems in model state-space, and
observation space respectively. No regularization is applied, i.e., γ = 0
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Numerical Results: OED Adaptive Space-Time Localization IV

Rank histogram for A-OED localization solved in model state-space, and observation space respectively.

Space-time optimal localization radii over the testing timespan.
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Numerical Results; A-OED Localization Regularization I
Choosing γ
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L-curve plots are shown for values of the penalty parameter γ = 0, 0.001, . . . , 0.34.
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Concluding Remarks

I Introduced an OED approach for adaptive inflation and localization

I Either A-OED inflation or localization is carried out each cycle

I Can create a weighted objective to account for both inflation and localization

I Regularization is a must for adaptive inflation

I Regularization may not be needed, in general, for adaptive localization

I Definiteness of the localization Kernel D

I Regularization norm

I Other OED criteria; e.g., D-optimality

I Adaptive Bayesian A-OED!

Thank You
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