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Bayesian Data Assimilation (DA)

» The prior p(x): encapsulates knowledge
about x prior to obtaining new observations

» The likelihood P (y|x): describes the
probability distribution of observations
conditioned by the model parameter

Observations
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Bayesian Data Assimilation (DA)

» The prior p(x): encapsulates knowledge
about x prior to obtaining new observations

» The likelihood P (y|x): describes the
probability distribution of observations
conditioned by the model parameter

Model + Prior + Observations — Best description of the parameter

with associated uncertainties

» The posterior P(x|y): distribution of the parameter x conditioned on
observations

Bayes’ theorem: Posterior «x Likelihood x Prior

Applications: NWP, oil reservoir, ocean, ground water, power flow, etc.

Bayesian Data Assimilation [3/23]
COL o oshomemb o Argonne &




Data Assimilation: Problem Setup

» Sequential filtering: assimilate a single observation at a time (x,|yx)

Time
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Data Assimilation: Problem Setup

» Sequential filtering: assimilate a single observation at a time (x,|yx)
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Data Assimilation: Problem Setup

» Sequential filtering: assimilate a single observation at a time (x,|yx)
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Data Assimilation: Problem Setup

» Sequential filtering: assimilate a single observation at a time (x,|yx)
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Data Assimilation: Problem Setup

» Sequential filtering: assimilate a single observation at a time (x,|yx)
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[ Assimitation cycle | Assimilation Cycle
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Data Assimilation: Problem Setup

» Sequential filtering: assimilate a single observation at a time (x,|yx)

A A A
Assimilation Cycle | Assimilation Cycle

Time

» The Gaussian framework:
- Prior: x> —x'™ ~ N(0, B)
- Likelihood: y — H(x"""°) ~ A/(0,R)

— Posterior: x* —x""° ~ N (0, A)
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Data Assimilation: Problem Setup

» Sequential filtering: assimilate a single observation at a time (x,|yx)

A A A
Assimilation Cycle | Assimilation Cycle

Time

» The Gaussian framework:
- Prior: x> —x'™ ~ N(0, B)
- Likelihood: y — H(x"""°) ~ A/(0,R)
— Posterior: x* —x""° ~ N (0, A)

» Kalman Filtering (KF): predict-correct the Gaussian PDFs, i.e., means and
covariance matrices
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Data Assimilation: Challenges

» Dimensionality:
- Observation space: Nobs < Ngtate
- Model state space: Ngpate ~ 108712

- Covariance matrices € RNstate XNstate (. makes KF impractical)
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Data Assimilation

Ensemble Kalman Filter (EnKF): follows a Monte-Carlo approach to
approximate the PDFs, i.e. uses an ensemble of model states {x,(e) |e=1,...,N...}

» Forecast step:

x(e) =M,k 141,&("7@71(6))4-%(6)7 e=1,...,N..
N )
B = X0 (X)L S8 X = k(1) - (N 5

» Analysis step:

—1

Ky, = BH! (HkBka + Rk)

xi(e) = xi(e) + Ki ([yr + Cr(e)] — Hr(x)(e)))
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EnKF Issues

» EnKF:
— Limited-size ensemble, sampling errors, rank-deficiency

— Spurious long-range correlations:

— Rank-deficiency

— Ensemble collapse, and filter divergence
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EnKF Issues

» EnKF:
— Limited-size ensemble, sampling errors, rank-deficiency

— Spurious long-range correlations:

— Rank-deficiency

— Ensemble collapse, and filter divergence

» Spurious long-range correlations: «— covariance localization
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EnKF: Schur-Product Localization

State-space formulation; B—Localization

Covariance localization:

B:=COB; s.t. Cc= (Piilijia

-»Nstate

Entries of c are created using space-dependent localization functions *:

— b5th-order Gaspari-Cohn:

- (d(z])>5+% d(z]))‘_'_g d(zj))a - d(i-]i)2+1‘ 0<d(i,j) <L
pig(L) =1 & (252)" - 4 (Lp2) 2 (202" 45 (252)" 5 (490) +a—2 (gE5), L <dig) <20
0. 2L < d(i, )

- d(i,7): distance between ith and jth grid points
- L =L(¢,5): radius of influence, i.e. localization radius, for ith and jth grid points
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EnKF with Covariance Localization

» Forecast step:

xh(e) =My ey, (%5_1 () +mi(e), e=1,...,N..
1
® = k()
1
Bi= 1x; (X", st X5 =[x (1) =%y X (Now) — %5

» Analysis step:

Biu(L) = C(L)® By,
Izk = /B\kH}z (HkﬁkHZ‘ + Rk)71
xi(e) = xi(e) + Kk ([yr + Crle)] — Hi(x}(e)))
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EnKF with Covariance Localization

» Forecast step:

xh(e) =My ey, (%5_1 () +mi(e), e=1,...,N..
1
® = k()
1
Bi= 1x§c (X", st X5 =[x (1) =%y X (Now) — %5

» Analysis step:

Biu(L) = C(L)® By,
I’Zk = ’B\kHz (Hkﬁng + Rk)71
xi(e) = xi(e) + Kk ([yr + Crle)] — Hi(x}(e)))

How to choose L.?
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Adaptive Covariance Localization

Adaptive tuning of the localization radius/radii

» Idea: Machine learning for adaptive localization Train a ML model, and
use it to predict a proper localization radius at the analysis step
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Adaptive Covariance Localization

Adaptive tuning of the localization radius/radii

» Idea: Machine learning for adaptive localization Train a ML model, and
use it to predict a proper localization radius at the analysis step

» ML model:
1. Lasso
2. Random Forest
» space and/or time adaptive localization
1. Adaptive localization in time: space-independent localization

2. Adaptive localization in time and space: space-dependent localization
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Adaptive Covariance Localization

Features from forecast information
» Statistical descriptive summaries of the forecast ensemble
1. First-order moment
2. Second-order moment; e.g., blocks of the correlation matrix

> Forecast-observation root-mean-squared error (RMSE):

1
RMSE = N G =yl
obs

2
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Adaptive Covariance Localization
Decision criteria

» Accuracy: analysis-observation RMSE:
x? 1 a
RMSE*Y = |1 (x") ~ yl,
Nobs

» Dispersion: uniformity of the rank histogram.

Dk Beta(a, 8)||U = D1, Beta(a, 8)||Beta(1.0,1.0)
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Adaptive Covariance Localization
Decision criteria

» Accuracy: analysis-observation RMSE:
x? 1 a
RMSE*Y = |1 (x") ~ yl,
Nobs

» Dispersion: uniformity of the rank histogram.

Dk Beta(a, 8)||U = D1, Beta(a, 8)||Beta(1.0,1.0)

The decision criterion:
Ce = wy RMSE*"Y + w, Dy, Beta(a, B)|| Beta(1.0,1.0)

with 0 <w, w2 <1, wi+w=1
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EnKF with Adaptive Localization

> Forecast step: xi(e) =My, _ e, (x5_,(e) +me(e), e=1,...,N..
» ML training/testing:
» Training phase:
1. extract the features from the forecast ensemble

2. sample a set of localization radius/radii and use each to calculate the analysis,
and the decision criterion to train the model

3. pick the winner (minimum value of the decision criterion) for the analysis step

> Testing phase: use the fitted model to yield proper localization radius/radii

> Analysis step: use the winner/predicted radius for localization, and calculate
the analysis ensemble
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Numerical Experiments
» Lorenz96 model:

ka
dt = —Xg—2Xp—1 +Xk—1Xk+1 — Xk + 8, k=1,2,--

., 40

All state vector components here are observed, i.e. # =1
» Quasi Geostrophic (QG) model:

ar = Yz — eJ (¥, q) — AA™P + 2w sin(2my)
qg=A¢ — F,
J(, @) = VYaqe — Pyay
A= 9"/0z" + 0% /9y”,
where v is surface elevation or the stream function, and
F =1600,e =10"°, A=2x 107"

Model discretized by a grid of size 129 x 129.

A standard linear operator to observe 300 components of y is used.

Numerical Experiments & Results [14/23]
June 12, 2019: ICCS-19; AM., A.A, AS.

Argonne &

'NATIONAL LABORATORY



Numerical experiments: adaptive-in-time localization

Lorenz model

wi=1w,=0
wy=0,w=1
- w1=0.5,w,=0.5
£ N —— w1=0.7,w,=0.3
10-1 JE " . N w;=0.3,w,=0.7

RMSE

6x1072

4x1072

3x1072
x 10 20 30 40 50 60 70 80

Time (assimilation cycles)

Training-phase results. RMSE of adaptive localization in time vs fixed localization in
Lorenz model for training (first 80 assimilation cycles)

Numerical Experiments & Results [15/23]
COL imiciesmns & Fowte o2 Argonne &



Numerical experiments: adaptive-in-time localization

Lorenz model

6x1072)

RMSE

wi=1lw,=0
w1=0,wo=1
w;=0.5,w,=0.5
—— w1=0.7,w,=0.3
. e w;=0.3,w,=0.7
3x10°2 —— r=4 e
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Time (assimilation cycles)

4x1072

Testing-phase results. RMSE over the next 20 assimilation cycles.
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Numerical experiments: adaptive-in-time localization

QG model

wi=1,w;=0
w1=0,w;=1
wi =0.5, w; =0.5
—— w1=0.7,w2,=0.3
e wi1=0.3,w,=0.7
w '—o—r 3
2 10°
o©
6x10°!
o 10 20 30 40

50 60 70 80
Time (assimilation cycles)

Training-phase results. RMSE of adaptive localization in time vs fixed localization in QG
model for training (first 80 assimilation cycles)
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Numerical experiments: adaptive-in-time localization

QG model

RMSE

Testing-phase results, over the following 20 assimilation cycles.
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Numerical experiments: space-time adaptive localization

Lorenz model

wi=1,w,=0
» wp=0,w=1
———— w1 =0.5,w;=0.5
—— w1=0.7,w,=0.3
* w;=0.3,w;=0.7

25 50 75 100 125 150 175 200
Time (assimilation cycles)

Training-phase over 200 assimilation cycles.
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Numerical experiments: space-time adaptive localization

Lorenz model

6x1072

+ w1=0,w=1
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. —— w1=0.7,w;=0.3 §
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—— r=4
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Time (assimilation cycles)

Testing-phase over 100 assimilation cycles.
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Numerical experiments: space-time adaptive localization

QG model
4x10° « radii pool{2, 3}
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Numerical experiments: space-time adaptive localization

QG model

RMSE
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Remarks & References

Numerical experiments are carried out using DATeS, available from:
http://people.cs.vt.edu/~attia/dates/ or
https://bitbucket.org/a_attia/dates/ or
https://github.com/a-attia/dates/
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