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Bayesian Data Assimilation (DA)
I The prior P(x): encapsulates knowledge

about x prior to obtaining new observations

I The likelihood P (y|x): describes the
probability distribution of observations
conditioned by the model parameter

Model + Prior + Observations︸ ︷︷ ︸
with associated uncertainties

→ Best description of the parameter

I The posterior P(x|y): distribution of the parameter x conditioned on
observations

Bayes’ theorem: Posterior ∝ Likelihood × Prior

Applications: NWP, oil reservoir, ocean, ground water, power flow, etc.
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Data Assimilation: Problem Setup

I Sequential filtering: assimilate a single observation at a time (xk|yk)

3D data assimilation

Time

!" !#

Forecast
$!",→ !'

Prior

I The Gaussian framework:

- Prior: xb − xtrue ∼ N (0,B)

- Likelihood: y −H(xtrue) ∼ N (0,R)

→ Posterior: xa − xtrue ∼ N (0,A)

I Kalman Filtering (KF): predict-correct the Gaussian PDFs, i.e., means and
covariance matrices
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Data Assimilation: Challenges

I Dimensionality:

- Observation space: Nobs � Nstate

- Model state space: Nstate ∼ 108−12

- Covariance matrices ∈ RNstate×Nstate (← makes KF impractical)
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Data Assimilation

Ensemble Kalman Filter (EnKF): follows a Monte-Carlo approach to
approximate the PDFs, i.e. uses an ensemble of model states {xk(e) | e = 1, . . . ,Nens}

I Forecast step:

x
f

k(e) = Mtk−1→tk
(x

a

k−1(e)) + ηk(e), e = 1, . . . ,Nens

x
f

=
1
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x
f
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X

f

k
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X

f

k

)T
, s.t. X

f

k = [x
f
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f

k, . . . ,x
f

k(Nens)− x
f

k]

I Analysis step:

Kk = BkH
T
k

(
HkBkH

T
k + Rk

)−1

x
a

k(e) = x
f

k(e) + Kk

(
[yk + ζk(e)]−Hk(x

f

k(e))
)
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EnKF Issues

I EnKF:

→ Limited-size ensemble, sampling errors, rank-deficiency

→ Spurious long-range correlations:

I 1111111 ll111 11111 I 
0.00 0.25 0.50 0.75 1.00 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 

→ Rank-deficiency

→ Ensemble collapse, and filter divergence

I Spurious long-range correlations: ← covariance localization
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EnKF: Schur-Product Localization
State-space formulation; B−Localization

Covariance localization:

B̂ := C�B; s.t. C = [ρi,j ]i,j=1,2,...,Nstate

Entries of C are created using space-dependent localization functions †:

→ 5th-order Gaspari-Cohn:

ρi,j(L) =
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†

- d(i, j): distance between ith and jth grid points

- L ≡ L(i, j): radius of influence, i.e. localization radius, for ith and jth grid points
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EnKF with Covariance Localization

I Forecast step:

x
f

k(e) = Mtk−1→tk
(x
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k−1
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I Analysis step:

B̂k(L) = C(L)�Bk

K̂k = B̂kH
T
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(
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How to choose L?

Covariance Localization [9/23]

June 12, 2019: ICCS-19; A.M., A.A, A.S.



EnKF with Covariance Localization

I Forecast step:

x
f

k(e) = Mtk−1→tk
(x

a

k−1
(e)) + ηk(e), e = 1, . . . ,Nens

x
f

=
1

Nens

x
f

k(e)

Bk =
1

Nens − 1
X

f

k

(
X

f

k

)T
, s.t. X

f

k = [x
f

k(1)− x
f

k, . . . ,x
f

k(Nens)− x
f

k]

I Analysis step:

B̂k(L) = C(L)�Bk

K̂k = B̂kH
T
k

(
HkB̂kH

T
k + Rk

)−1

x
a

k(e) = x
f

k(e) + K̂k

(
[yk + ζk(e)]−Hk(x

f

k(e))
)

How to choose L?

Covariance Localization [9/23]

June 12, 2019: ICCS-19; A.M., A.A, A.S.



Adaptive Covariance Localization

Adaptive tuning of the localization radius/radii

I Idea: Machine learning for adaptive localization Train a ML model, and
use it to predict a proper localization radius at the analysis step

I ML model:

1. Lasso

2. Random Forest

I space and/or time adaptive localization

1. Adaptive localization in time: space-independent localization

2. Adaptive localization in time and space: space-dependent localization
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Adaptive Covariance Localization

Features from forecast information

I Statistical descriptive summaries of the forecast ensemble

1. First-order moment

2. Second-order moment; e.g., blocks of the correlation matrix

I Forecast-observation root-mean-squared error (RMSE):

RMSE
x
f |y

=
1

Nobs

∥∥H (xf
)
− y

∥∥
2
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Adaptive Covariance Localization
Decision criteria

I Accuracy: analysis-observation RMSE:

RMSExa|y =
1

Nobs
‖H (xa)− y‖2

I Dispersion: uniformity of the rank histogram.

DKLBeta(α, β)‖U = DKLBeta(α, β)‖Beta(1.0, 1.0)

The decision criterion:

Cr = w1RMSExa|y + w2DKLBeta(α, β)‖Beta(1.0, 1.0)

with 0 ≤ w1, w2 ≤ 1, w1 + w2 = 1
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EnKF with Adaptive Localization

I Forecast step: xf

k(e) = Mtk−1→tk
(xa

k−1(e)) + ηk(e), e = 1, . . . ,Nens

I ML training/testing:
I Training phase:

1. extract the features from the forecast ensemble

2. sample a set of localization radius/radii and use each to calculate the analysis,
and the decision criterion to train the model

3. pick the winner (minimum value of the decision criterion) for the analysis step

I Testing phase: use the fitted model to yield proper localization radius/radii

I Analysis step: use the winner/predicted radius for localization, and calculate
the analysis ensemble
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Numerical Experiments
I Lorenz96 model:

dXk

dt
= −Xk−2Xk−1 +Xk−1Xk+1 −Xk + 8, k = 1, 2, · · · , 40

All state vector components here are observed, i.e. H = I

I Quasi Geostrophic (QG) model:

qt = ψx − εJ(ψ, q)− A∆
3
ψ + 2π sin(2πy) ,

q = ∆ψ − Fψ ,

J(ψ, q) ≡ ψxqx − ψyqy ,

∆ := ∂
2
/∂x

2
+ ∂

2
/∂y

2
,

where ψ is surface elevation or the stream function, and
F = 1600, ε = 10−5, A = 2× 10−12

Model discretized by a grid of size 129× 129.

A standard linear operator to observe 300 components of ψ is used.
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Numerical experiments: adaptive-in-time localization

Lorenz model

Training-phase results. RMSE of adaptive localization in time vs fixed localization in
Lorenz model for training (first 80 assimilation cycles)
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Numerical experiments: adaptive-in-time localization

Lorenz model

Testing-phase results. RMSE over the next 20 assimilation cycles.
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Numerical experiments: adaptive-in-time localization

QG model

Training-phase results. RMSE of adaptive localization in time vs fixed localization in QG
model for training (first 80 assimilation cycles)
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Numerical experiments: adaptive-in-time localization

QG model

Testing-phase results, over the following 20 assimilation cycles.
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Numerical experiments: space-time adaptive localization

Lorenz model

Training-phase over 200 assimilation cycles.
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Numerical experiments: space-time adaptive localization

Lorenz model

Testing-phase over 100 assimilation cycles.
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Numerical experiments: space-time adaptive localization

QG model

Training-phase
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Numerical experiments: space-time adaptive localization

QG model

Testing-phase

Numerical Experiments & Results [22/23]

June 12, 2019: ICCS-19; A.M., A.A, A.S.



Remarks & References

Numerical experiments are carried out using DATeS, available from:
http://people.cs.vt.edu/~attia/dates/ or
https://bitbucket.org/a_attia/dates/ or
https://github.com/a-attia/dates/
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