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Motivation: parameter identification

Advection-Diffusion

Consider the contaminant concentration u, —kAu+v-Vu=0 inDx][0,T],
in domain Q € R? w(z, 0)=6 inD

kVu-n=0 on dD x [0,T]

» Forward Problem: given model state/parameter predict the expected
model observations

» Inverse Problem: given spatiotemporal measurements, and a prior infer
the true Qol, e.g., function of the model state/parameter

» OED (sensor placement): given a set of n. candidate locations,
determine the optimal positions, possibly under budget or sparsity
constraints
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Forward Problem and Bayesian Inversion

» Forward problem:
y=F(0)+3; p=Po
- 6 € RNstate: discretized model parameter, e.g., IC
-y € RNobs:; spatiotemporal sensor observations

- p € R¥pred: goal/prediction/Qol

> Bayesian inverse problem (goal-oriented):
P The prior: knowledge about the Qol p prior to obtaining new observations
p:=PO ~ N(POy,, PT,,P*)
where P here is a linear goal/prediction operator

P The likelihood: Gaussian observation noise;

1 T
£l0) xexp (< IFO) ~ylI2s )i Ixl =xTAx

2 noise

P The posterior: distribution of the Qol p conditioned on observations

Bayes’ theorem: Posterior o< Likelihood X Prior

For a linear operator F, the posterior is Gaussian N (ppost; Zpost) With

ppost = PLpost (Tpr0pr + F' L0 y) + Eposs = P (F'T,)

noise Y noise

F+T,} ) P

where F*, P* is the adjoints of F, P data-independent; only uncertainties

Forward, Inverse, and OED Problems [2/38]
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OED: sensor placement

Find the best subset (i.e., \) of sensor location such as to optimize some utility function (e.g.
identification accuracy, total uncertainties, information gain, etc.)

s e m. - Il — Wi () Eg,
o o o o Bpe o Xy oy Xy 1 1

= N - W — 3 —1 1
SRR ¢ { o } © —_— { WO W), on

» Weighted-likelihood:
1
£(y16:¢) ox exp (1 IF () ~ ¥, )

» Weighted posterior covariance:
Ba(¢) = P (F W (OF +T,)) " P’

» OED optimization problem:

Relaxed OED + Rounding

Binary OED
¢ = argmin J(C) == ¥(¢) + a () ¢™ = argmin J(¢) := ¥(¢) + a ®(C)
¢e{o,1}ns ¢elo, 1]ms

- W: utility function; Tr (Xpost) — A-optimality, det (B p0s¢) — D-optimality, etc.
- &: penalty function; £o, ¢1 etc.

Forward, Inverse, and OED Problems [3/38]
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OED (relaxed): sensor placement

Solving OED optimization problem: gradient-based approach
> A-optimality: ¥ := ¢

ot ALY
e = - (paoy m e o) )
» D-optimality: ¥ := ¢°
B\PGD _ -1 —1 dWF(g)
o = (. or men e )

H(() =T, + W ((F

Forward, Inverse, and OED Problems [4/38]
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OED Challenges

» Linear vs. Nonlinear forward operator F
1. Laplace/Gaussian approximation: iterate (OED — MAP — OED ... )

2. Use information criteria; e.g., KL divergence between posterior and prior

» Computational cost of the OED criterion and the gradient
1. Randomized approximation: A-optimality is easy, D-optimality is challenging!

2. Reduced order model F — F (POD, DNN, ...)

» Rounding (SUR, continuation, ...) is challenging

> Observation correlations: Stochastic learning for binary OED
P No observation correlation: Second part of this talk
- T'noise and W are diagonal

1 1
- Wr(Q) = diag (¢) » WE (L w3 =1, 2 wr_?

noise noise noise
P Spatiotemporal observation correlations (generally overlooked)

- A general/flexible approach to weight observation variances/covariances <—— Discussed Next

Forward, Inverse, and OED Problems [5/38]
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Schur-product OED formulation

We formulate the weighted likelihood as:
1
£(y16:¢) o oxp (2 1P = ¥y, o))

Wi(Q) == LE L (OL: Faie(€) 1= L(Tauiee © W(O)LT.

- @ is the Hadamard (Schur) product
- Entries of the localization/weighting matrix W(¢) influence the observation correlations
- W(¢) is a symmetric and doubly nonnegative weighting kernel, with entries:

w (b, b G, C)s kl=1,2,...,n,; 4,5 =1,2,...,n,

* w is a symmetric weighting (localization) function, such that:
@ (te,tis Ciy Gj) = @ (1, tes Gy GG) = @ (te, ts G5y Gi) = @ (f1, ts GG, Ci)

W(hatl% ¢15¢1) w<flatl; ¢1,62) ; w (b1, ta; Gy C1) w (b1, ta; Ciy C2)

R, R | B0 66wt 6,G) L @yt o) (b Gy G)
P {7 ﬁ_’j J‘r ﬁ.’: 7} = W)= @(ta, b1 €1 G) @ty tas Gy C2) | @ (ta; te; €1, G)  @(ta, te; Gy G
@(ta b1 C2s G1)  @(te, a3 G2y Co) L @ (ks ta; Gy G) @ty te; G2y C2)

Forward, Inverse, and OED Problems [6/38]
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Schur product OED formulation: space correlations

ng nt
T = EB R,):=diag(Ri,....R.,) . L= @), W@ =P Vi),
m=1 m=1 m=1
VIO =L,V, (OLn, Vu()=L.|R.0 E w(Gs ¢ee) | | L,
ij=1
.
8(0) = [|(w(¢1: ), s w(Guns ) ||
P
SQRT kernel:
w(Gi €)= VGV
) (S V)
hebud S LR} DA N n
G 2 VG VG
- GG €0, 14,5 =1,2,...,ns,
- 0;,,: standard delta function
- ¢ € [0, 1] — constrained-optimization (box-constraints)
- Relates to traditional OED formulation =
e 4}”“0 075 160 o
a Forward, Inverse, and OED Problems [7/38]
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Schur product OED formulation: space correlations
Solving Shur OED optimization problem: gradient-based approach

AW (0) d(LTFLN (OL) _

TR-1 aw TH-1
-L'T, . (OL (I‘m,m © %) LT, (OL

o, a¢,
= Wi (©) (P 0 2 (Q)wr@)

,7 _ (L 9w(6.¢) 1L 9w(6n, 6

W' = [, 025 oo, Ml mi(lJF‘;l,: ac, 7»~~,1+5““ ac, )

» A-optimality: ¢°** = argmin J(¢) := Tr (2,0 (€)) + a ®(¢)

¢elo, 1)ms

V() =2 diag (V] (OFo, H ' (OPPH(OF,, V], (0) (R © W)

m=1

» D-optimality: ¢°** = argmin J(¢) := logdet (Z,0::(¢)) + a ®(¢)

¢elo, 1]ms
v re( <:)—2Zdlag(v,‘,, OF0 H QP B, (OPH(OF,, \V,(0) (R, O W)

g OED with Correlated Observations [8/38]
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Experimental Settings

» Numerical model (AD): u solves:

* ) € R? is an open and bounded domain

u, —kAu+v-Vu=0 inDx[0,T], *
u(z, 0) =6 inD the domain Q2

v 0 D x [0. T * K is the diffusivity,
. = on .
rVuem x [0,7] * v is the velocity field

» Observational setup: n, = 43 candidate sensor locations, with

observation times ¢ := t1+sAt o
At=0.2 is the model simulation time step; w0 w0
t1=1,s=0,1,...,5 " o
Observation correlations; synthetic, created

with Gaspari-Cohn, and 5% noise level

L

Ry with £ =1 Ry with £ =3

w the concentration of a contaminant in

» Qol: p is the contaminant concentration predicted around the second building at time ¢, =2.

bl

Ground truth (initial parameter) 6 Qol (prediction) gridpoints.

» OED with Correlated Observations [9/38]
a March, 2021: LANS @ ANL; Ahmed Attia.



Numerical Results: space-correlation |

s Sigmoid = SQRT ms - Sigmoid s Sigmoid
— EXP m— SQRT m— SQRT

II::l!:_:L: :ﬂ
::u [T

£ = 0 (No correlation) =1 =3

Optimal design weights resulting from solving the OED problem, with o = 0.
Sensors with weights above 0.5 are activated.

OED with Correlated Observations [10/38]
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Numerical Results: space-correlation |l

0575
?\“ | | — - OED; EXP 3 H —— OED; SQRT
PN -+~ OED; Sigmoid S — -+~ OED; Sigmoid .
| \ —-©- Brute force; One Sensor ! —-©- Brute force; One Sensor
1 o, 503 il
", ~, =02
1 | \ k]
© i N 801
-, i L.
T 3 AN
bl 0.0
0 10 20 30 40 0 10 20 30 40
Number of Active Sensors Number of Active Sensors
£=0. £ =3.

Objective value (post-trace) evaluated for increasing number of sensors, corresponding to highest
optimal weights. Here, o = 0.

OED with Correlated Observations [11/38]
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Schur product OED formulation: space-time correlations
Entries of I'_}

noise

are weighted by

@(Cis G tms tn) 1= Pty £) W(Cir C5)

p(tm, tn) is a symmetric temporal decorrelation function
o p(tm, tm) =1

. 2
H

e p(tm, t.) is conversely related with d(t,., t,), the distance between ¢,, and ¢,

» Gauss:

(tm, t)
pltns 1) = exp (=2
» Gaspari-Cohn
1/5 1)4 1)3 1)2
e el S
5 4 503 502
P(bmstn) = (% — L 43 4 5% _Bp44— 2
0,
v = dmtn) and, ¢ is a predefined correlation length scale

OED with Correlated Observations [12/38]
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Schur product OED formulation: space-time correlations

Solving Shur-OED optimization problem: gradient-based approach

W = |:w <C(kl)%715+17<(711)%n5+1; tv 1J 71,1 1J >:|
== l+1 iRt
"t n koh=1.2,...,

Nobs
. o i=1,...,n,,
Gimlk] 1= ————@ | &), Cetysina st tms b 5 m=1,...,n,
M= e S =1 P R A N
oW - ( )
g=1+(m—1)n.,
OCF =-Wr(Q) g e, ((Thced) ©Yim) T+ g T\ icc®a GU‘"‘) e, | Wr(0), i=1,...,n,

m=1 m=1

> A-optimality: ¥ := ¥**

VU () = zzze e, Wr(OFH (P PH (OF Wr(0) ((T,).e,) © :.00)

i=1 m=1
» D-optimality: ¥ := ¥
nt
VIO =2 D ei(Tih e, 00.) Wr(OFH (OP B, (OPH (OF Wi (Qe,
i=1 m=1

; OED with Correlated Observations [13/38]
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Schur product OED formulation
Efficient evaluation of the OED objective ¥:
- reduced-order approximation of F

- randomized approximation of ¥

A-optimality: randomized-trace approximation: recall: W(¢) = LT (L (FHUM ® W(C))LT)7 L
B L& )
T = TR = — E AP(FW(CO)F +T,)) 'P'z,, 2z, &R
N,
r=1

DTN _ 1N ot e
it ZZTPH (OF Wi (¢) (r ®

r=1

OW({)
¢

) WeOFHE (P,

» space correlations:

g

~ 2 = Yy = V! (OF, . H )Pz, ,
VU = L O (R, OW) 9,0 '
Q=5 Z Z vim © ({ ) em) ¥, = (2l PH(O)F,, V! (O)'

r=1 m=1

» space-time correlations:
nr s g - .
_ .= Wr(¢)FH Pz, ,
VT =2 E E E eie, (Thoise€y) OV m) ¥y 3 w* T F(O,l EO
Y, =z, PH (OF Wr(¢)

r=1 i=1 m=1

OED with Correlated Observations [14/38]
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OED Challenges (relaxed formulation)

» Computational cost (objective/criterion and gradient)
» Differentiability (objective and regularizer)
» Enforcing sparsity

» Rounding/thresholding

Can we solve binary OED problems efficiently
without relaxation+rounding?

OED with Correlated Observations [15/38]
a March, 2021: LANS @ ANL; Ahmed Attia.



Solving the Binary OED problem (without relaxation+rounding) [

- The Binary OED Optimization Problem \

¢* = argmin J(¢) := ¥(¢) +a®(¢),

¢efo0,1}ns

* the function ®(¢) promotes regularization or sparsity on the design, e.g.,
®(¢) :=I¢ll, , or ®(¢) =<, =2 <+ nondifferentiable!

* « is a user-defined regularization parameter
. 7
IDEA
» Associate with each candidate sensor z;, i = 1,...,n.: a probability of activation ¢, € [0, 1]

> Let ¢, € {0,1} be the status of the ith sensor: 0 - OFF, 1 — ON

» ¢, are independent Bernoulli random variables:

6 v, =1
P(=w]0) =0/ (1-0) =" ’
(G =wlo) =67 (1 6) {(1_9?)’ "

> Probability associated with any observational configuration (described by the joint PMF
(policy)): P(Clo) =[] 65 1 =0, G efo1}, 6 elo1].

Stochastic Learning Approach for Binary OED [16/38]
a March, 2021: LANS @ ANL; Ahmed Attia.



.- - - - - """

Solving the Binary OED problem (without relaxation+rounding) ]

We replace the original problem with:

Stochastic OED Optimization Problem

ons

6™ = argmin 1(6) = Ecrian [7(0)] = Y TCDP (MO

0e[0,1]"s

k=1

where k =1 + Zzl i

» ¢ : parameter of an optimal policy that describes probability of sensors’ activation

> Solution: (exact) gradient approach:

ons

T(6) = Vo Ecrcein [7(0)] VQZJ P (C10) = Zﬂc[k] )V4 B (ClR]IO),

v = 3 20

1)< H9< )il
o . Z<
J=t 1#1
VI () is no longer required
¢
a Stochastic Learning Approach for Binary OED [17/38]

March, 2021: LANS @ ANL; Ahmed Attia.



S

Solving the Binary OED problem (without relaxation-+rounding) |1

One-dimensional Example; one candidate sensor:

1 Candidate sensor: On/Off
EE(0,1} < PEIB) ™ ,_tt®

2

S -

Simulation x- ___________ _x-

grid points 1 2

-1

F:=[05 05]; T(C) = Tr ((FTFCV - r;j) )
I, :=di 4,1) ; = noise .
p Iag( ) o 0.25¢ +0.25 0.25¢, .

Tooise :=1 = 0.25¢ 0.25¢ 4 1

T(0) = Beoren [T (Q)] = (1-0)7(0) + 07 (1)
VoY (0) = J(1) — J(0)

Stochastic Learning Approach for Binary OED [18/38]
° March, 2021: LANS @ ANL; Ahmed Attia.



Solving the Binary OED problem (without relaxation-+rounding) |V

— J© e J(E™)
— T(B) ° T(eopr)
2 4.5
240
835

0.0 0.2 0.4 0.6 0.8 1.0

The objective function J of the relaxed OED problem and the objective function Y of the corresponding
stochastic OED problem for a one-dimensional problem.

Stochastic Learning Approach for Binary OED [19/38]
o March, 2021: LANS @ ANL; Ahmed Attia.



Relation between 7, Y and their respective domains and codomains

The optimal solutions of the binary (deterministic) and the stochastic OED problem are
such that

arg min J(¢) C argmin Y(0) .

CeEQe ey

Moreover, if the optimal solution ¢ is unique, then 6 = ¢, where 6° is the unique
optimal solution of the stochastic OED optimization problem

Convex
Q= {0,1} — > Hall —— 5 Q:=[0a"
J(©) T(0)
\L Convex \L
C = {j1,Jas s Jane } —_ Hull —— conv(C) := [min{C}, max{C}]

Stochastic Learning Approach for Binary OED [20/38]
a March, 2021: LANS @ ANL; Ahmed Attia.
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Solving the stochastic OED optimization problem |

» Evaluating the objective Y and the gradient V,Y require enumerating all possible designs

> “The kernel trick”: V,log(P (¢|0)) = =2~ V,P(C|0) — VP (¢[0) =P (¢[0) Volog(P (¢]0))

1”(€|9)
VaX(0) = Y Tk VP (CH[6)

ons

= (7R Vo 108 B (C[K]16) )P (CTRIIO) = Ecoriior [T (C) Vi logP (<]0)

k=1

» The gradient can be written as an expectation of gradients; this enables us to approximate
the gradient using MC sampling by following a stochastic optimization approach

ZJ DV, logP (¢[4]16)

j=1

um

Nens

WZJ(C[J)Z< - 1—;1) e

where ¢[j] ~P(¢[6) =[], 67 1 =0, ,j=1,2,...,N,

Stochastic Learning Approach for Binary OED [21/38]
5 March, 2021: LANS @ ANL; Ahmed Attia.



Solving the stochastic OED optimization problem Il
» A stochastic steepest-descent algorithm:
0 if 6,<0,

ety — L(9<"> -n"mg™); L(6,) := min{l, max{0,6,}} =06, if 0,€][0,1],
1 if 6,>1,

Algorithm 1 Stochastic optimization algorithm for binary OED

Input: Initial distribution parameter 6, step size schedule n'™; sample
sizes N..., m
Output: ¢
1: Initialize n = 0
2: while Not Converged do
3 Update n+<n+1
4 Sample {¢[i];i =1,2,..., N} ~ P (¢|6)
5: Calculate g™ = - ijf (TEL) D, (Sl 4 bzt
6 Update 90 = L (9 — 5 g™)
7: end while
8: Set ¢ = 9™
9: Sample {¢[j];5 =1,2,...,m} ~ P(¢|6"), and calculate 7(¢[5])
10: return ¢*': the design ¢ with smallest value of 7 in the sample.

Stochastic Learning Approach for Binary OED [22/38]
3 March, 2021: LANS @ ANL; Ahmed Attia.



One dimensional example: revisited

1 Candidate sensor: On/Off : g((g)) : i(;::‘))
EE(0,1) cPEI0) S~ ,_utw ‘
2
5 uy l_ U, g5
Simulation — x- ““““““ -x- 54“
grid points B 2 3
835
-1 \0
JE) = Tr 0.25¢ 4+ 0.25 0.25¢, 00 02 04 06 05 10
0.25¢ 0.25¢ + 1
. Exact VT
+  Stochastic approximation g
g 5
©
E .
o LA
§ 01+ J T +- ri +
© . "o . »
> teee PYPTY o 4 .
E ""' yo o . .~' ;c ’ N o !
3 : :
Ch .
0.0 0.2 0.4 0.6 0.8 1.0
0
The estimate is unbiased, but it exhibits high variability!
° Stochastic Learning Approach for Binary OED [23/38]

March, 2021: LANS @ ANL; Ahmed Attia.
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Improving the Stochastic Optimization Procedure |

Lemma 4.1: Convergence guarantees, and statistics of the gradient estimator

The stochastic estimator g is unbiased, with sampling total variance var(g) , such that

r@[g] =g=V,T(0)
" 1
var(g) = N—var(J(C)VﬂogP(dQ)) <C< oo
E[ng] = ]E||§H2 <K, + K, ||g”2 =K, + Kngg)le K, >0

» Variance reduction:
* Increase Nepns
* Use antithetic variates and/or importance sampling

* Introduce baseline to the objective

Stochastic Learning Approach for Binary OED [24/38]
a March, 2021: LANS @ ANL; Ahmed Attia.
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Improving the Stochastic Optimization Procedure Il

» Policy gradient with baseline:

the objective function Y can be replaced with the following baseline version:

T"(6) = Ecarccro) [T () = 8]

» By applying the kernel trick again

VoT"(0) = & = Ecoriein[(T(C) — b) Y, log P (¢[6)]

el NL Z (T (C[]) = b) Vo logP (¢[5]]0)

j=1

arg min, Y® = arg min, Y,

Note that: T*(0) = E.. J —b =
(0) = Ecoriein [T (0)] { Vr® = VT — Vb Vo

How do we choose 6?7

Stochastic Learning Approach for Binary OED [25/38]
a March, 2021: LANS @ ANL; Ahmed Attia.
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Improving the Stochastic Optimization Procedure Ill

Lemma 4.2: Statistics of the gradient estimator (with baseline)

Nens

Let d = &= " Vi log P (¢[5]/6), then

E[g"] =g =v,1(6);

var(gb) = var(g) — 2bE [éTd} + 1\?(1 i: 7& i B
i=1

The expression of var(g") is quadratic in b and can be minimized over b:

poPt —

~ E"“flrzg[{] d.‘¢]¢

i=1 G,L—ef

where gle] and d[e] are realizations of g and d, respectively.

Stochastic Learning Approach for Binary OED [26/38]
a March, 2021: LANS @ ANL; Ahmed Attia.



Improving the Stochastic Optimization Procedure IV

The following function is then used to estimate the optimal baseline &

3 (Z T(Cled)Ve log]}”({[c,j]w)) (E 2 1ogu»(<[e,j]|e)>

opt . Jopt ,__
b b "
1
P
i
i=1

Stochastic Learning Approach for Binary OED [27/38]
o March, 2021: LANS @ ANL; Ahmed Attia.



Algorithm 2 Stochastic optimization for binary OED with the optimal baseline.

Input: Initial distribution parameter 6, step size schedule 1, sample sizes
N..., m, baseline batch size b,,
Output: ¢
1: initialize n =0
2: while Not Converged do
3 Update n «~n+1
4 Sample {¢[j];5 = 1,2,..., No.} ~ P (¢[6™)
5 Calculate b = OPTIMALBASELINE(6™, N..., b,.)
6: Calculate g™ = Z\ (Tl — b))zn” (“T[’] + %) e
7
8
9

Update 6" = L(6") — n‘"’g‘”)
: end while
Set 6 = 9™
10:  Sample {¢[j];j =1,2,...,m} ~P(¢|6™), and calculate 7 (¢[4])
11: return ¢: the design ¢ with smallest value of 7 in the sample.

12: function OPTIMALBASELINE(6, N..., b,.)

13: Initialize b + 0

14: for e «— 1 to b,, do

15: for j «+ 1to N,,. do

16: Sample ¢[j] ~ P (¢|6)

17: Calculate r[j] = > (S 4 ity e,
18: end for

19: Calculate d[e] = E " r[4]

20: Calculate gle] = = Z\“' T (ClaD) rld]
21: Update b « h + (gle])" dle]

22: end for

23: Update b + b x - E —

24: return b '

25: end function

Stochastic Learning Approach for Binary OED [28/38]
March, 2021: LANS @ ANL; Ahmed Attia.
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Numerical results: 2D (2 candidate sensors) example |
2 Candidate sensor: On/Off

e=[2]e (2] ] [0] [P (elo=1[e:])

's Y
u +uy Uz +uy
NnET LI
Uy l Uy us Uy
. __ ¥ __&________ u___8_ __ =
X1 Xy X3 X4
4 Simulation grid points
p._[05 05 0 0 ] 0+ 0.25 a o 0 -1
0 0 0.5 0.5 7O =Tr G G+l 0 0
T, :=diag(4,1,0.25,1) 0 0 0.25¢, + 4 0.25¢,
0 0 0.25¢, 0.25¢, + 1

Tporee := diag (0.25,1)

T(0) = 1(0) = Y TCRDP IO VaX(8) = Y TEIRDVP (CIH]6).,

k=1 k=1

VB (C]0) = [E:B:ZZS :Zﬂ , Ce {cm - m L2 = m L¢3l = H  Cl4l = H}

Numerical Results [29/38]
° March, 2021: LANS @ ANL; Ahmed Attia.
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Numerical results: 2D (2 candidate sensors) example I

—&— Optimization: no baseline
—& - Optimization: optimal baseline
B Relaxed objective J (&)
I Stochastic objective T(6)

O  Bruteforce £

% Bruteforce 6

S Sushioh
Objective valye JE)/1(6)

1 .
) 0.2
g1/5106 0.8 15700

Surface plot of the objective function J of the relaxed OED problem and the objective function Y of the

corresponding stochastic OED problem.

Numerical Results [30/38]
March, 2021: LANS @ ANL; Ahmed Attia.
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Numerical results: 2D (2 candidate sensors) example 1

—e— No baseline g

) —+—  Optimal baseline g"»
— 4.0 G 3
o -— obal Minimum
E
235
2
ey
o

3.0

0 2 5 7 10
Iteration

Value of the objective function Y evaluated at each iteration of the algorithm until convergence. The initial
parameter 6 of the optimizer is set to (0.5, O.5)T, and the algorithm terminates when the magnitude of the
projected gradient (pgtol) is lower than 105,

Numerical Results [31/38]
a March, 2021: LANS @ ANL; Ahmed Attia.



Numerical results: 2D (2 candidate sensors) example |V

Exact VT No baseline g

) pt

1.0

<'0.5{-

Exact and stochastic approximation of the gradient at multiple realizations of 6. In addition to the optimal

estimate, shown are results of an empirical baseline b := w (without guarantees!).
Numerical Results [32/38]
a [32/38]

March, 2021: LANS @ ANL; Ahmed Attia.



Numerical results: Advection-Diffusion

» Numerical model (AD): u solves:
* ) € R? is an open and bounded domain
u, — kAu+v-Vu=0 inDx|[0,T], * u the concentration of a contaminant in Q
u(xz, 0) =60 in D, * K is the diffusivity,
% o e
kVu-n=0 on dD x [0,T] v is the velocity field
» Observational setup: n, = 14 candidate sensor locations; 2'* = 16384 possible designs,
* observation times tj := t1+sAt; At=0.2 is the model simulation time step;
* t1=1,s=0,1,...,20

* Observation correlations; synthetic, created with Gaspari-Cohn, and 5% noise level

» The stochastic optimization problem:

0™ = arg min E¢ up(c |0 [Tr ((MilFTF;ullizdiag (©) F;:,:LQF + F;rl)il) +a <I>(<)]

6€(0,1]ms

T ()
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Numerical results: Advection-Diffusion Il
Dropping the penalty term: a =0

&

20
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2 || X No baseline
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Number of active sensors ||¢||;

Results of the policy gradient procedures compared with the brute-force search of all candidate binary designs.
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Iteration Iteration

Behavior of the policy gradient procedures over consecutive iterations. Left: the value of the objective Y at
each iteration of the optimization procedures. Right: number of new function J evaluations carried out.
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Numerical results: Advection-Diffusion Il

Results with sparsity and fixed-budget constraints:
> a=1, 2(¢) = [<l,
> a=1, () :=|[<ll, — A| for a budget X

---- Global Minimum X No baseline --=-- Global Minimum X No baseline
Bruteforce A Optimal baseline Bruteforce A Optimal baseline

< 30

S S

2 i

g e = g

o 1)

2 2

E 810 8

Siof—t— | s

° N HE B S S I SO S S -
0 2 4 6 8 10 12 14 0 4 6 8 10 12 14

Number of active sensors ||¢|| Number of active sensors ||¢[|,

Left: ®(¢) := [I<|l,- Right: ®(¢) := [[¢ — Ally, where A = 8. In both cases, we set the sparsity penalty
parameter to o = 1.0.
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Numerical results: Advection-Diffusion IV
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Iteration Iteration

Top: ®(¢) := |[¢]ly- Bottom: ®(¢) := || — M|, where X = 8. In both cases, we set the sparsity penalty
parameter to a = 1.0.
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Numerical results: Advection-Diffusion V

Initial policy and effect of the baseline
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Random starts: sampled designs &

No baseline  Heuristic baseline Optimal baseline

The optimization procedures are run 10 times from different (random) initial policies, and 10 designs are
sampled from the policy returned by each algorithm in each experiment.
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Concluding Remarks and References
1. Ahmed Attia, and Emil Constantinescu. "Optimal Experimental Design for Inverse Problems
in the Presence of Observation Correlations.” arXiv preprint arXiv:2007.14476 (2020).
— Properly accommodate observation correlations in relaxed OED problems
— D-optimality extension is straight forward, however it is computationally expensive
2. Ahmed Attia, Sven Leyffer, and Todd Munson. "Stochastic Learning Approach to Binary
Optimization for Optimal Design of Experiments.” arXiv preprint arXiv:2101.05958 (2021).
— Solve the binary OED optimization without relaxation

— Convert a binary design domain into a bounded continuous domain, where the optimal solution of
the two problems coincide

— The stochastic formulation enables utilizing efficient stochastic optimization algorithms to solve
binary optimization problems, e.g., SAA, etc.

— The solution of the stochastic OED problem is an optimal parameter 6°** that can be used for
sampling binary designs ¢ by sampling P (C\G"pt) , even if only a suboptimal solution is found

— Nonsmooth penalty functions ® can be utilized in defining J, for example to enforce sparsity or
budget constraints;

» These slides are available ws.oerssruentor | Office of
https://www.mcs.anl.gov/~attia/conferences.html ENERGY Scilgr?cz

» Questions are welcome
attia@mcs.anl.gov
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