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Motivation: Ocean Simulation
» Consider the sea-surface-height (SSH) in Q € R*:
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Motivation: Advection-Diffusion
» Consider the concentration of a
contaminant in © € R*:

» Simulation: given model
parameter 0 := x,, forward
integrator, and model
discretization, solve the DEs
Xo — Xk
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Motivation: Advection-Diffusion
» Consider the concentration of a
contaminant in Q € R*:

» Simulation: given model

parameter 0 := x,, forward
integrator, and model
discretization, solve the DEs
X0 — Xk

Forward problem: given
model state/parameter
predict model observations
60—y

Inverse problem: given noisy
observations, and “possibly”
uncertain model
state/parameter, recover the
unknown model
state/parameter 0 <y
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Motivation: Advection-Diffusion
» Consider the concentration of a
contaminant in Q € R*:

Simulation: given model
parameter 0 := x,, forward
integrator, and model
discretization, solve the DEs
X0 — Xk

Forward problem: given
model state/parameter
predict model observations
60—y

Inverse problem: given noisy
observations, and “possibly”
uncertain model
state/parameter, recover the
unknown model
state/parameter 0 <y

Design of experiments: e.g.,
sensor placement for optimal
reconstruction of model
parameter
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Bayesian Inversion & Data Assimilation

» The prior P(9): encapsulates knowledge about 6 prior
to obtaining new observations

» The likelihood P (y|0): describes the probability
distribution of observations conditioned by the model

parameter 1 Analysis
Observations
a Improving model predictability Bayesian Inversion & Data Assimilation [6/65]

October 31, 2018: ANL; Ahmed Attia.



Bayesian Inversion & Data Assimilation

» The prior P(9): encapsulates knowledge about 6 prior
to obtaining new observations

» The likelihood P (y|0): describes the probability
distribution of observations conditioned by the model
parameter

Analysis

Observations

Data Assimilation (DA)

Model + Prior + Observations — Best description of the parameter

with associated uncertainties

» The posterior P(0]y): distribution of the parameter ¢ conditioned on observations

Bayes’ theorem: Posterior « Likelihood x Prior
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Bayesian Inversion & Data Assimilation

» The prior P(9): encapsulates knowledge about 6 prior
to obtaining new observations

» The likelihood P (y|0): describes the probability
distribution of observations conditioned by the model
parameter

Analysis

Observations

Data Assimilation (DA)

Model + Prior + Observations — Best description of the parameter

with associated uncertainties

» The posterior P(0]y): distribution of the parameter ¢ conditioned on observations

Bayes’ theorem: Posterior « Likelihood x Prior

Applications include:

Atmospheric forecasting, power flow, oil reservoir, ocean, ground water, etc.
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Data Assimilation: Problem Setup

> Filtering (3D-DA): assimilate a single observation at a time (xx|yx)

Prior

Time . .
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Data Assimilation: Problem Setup

> Filtering (3D-DA): assimilate a single observation at a time (xx|yx)

[ Assimitation cycle | Assimitation Cycle ¥’ N
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Data Assimilation: Problem Setup

> Filtering (3D-DA): assimilate a single observation at a time (xx|yx)

[ hssimitation cycle | Assimilation cycle N

Time 0 0 0 0

» Smoothing (4D-DA): assimilate multiple observations at once (xo|y1,¥2s- - Ym)

@
‘
‘
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Data Assimilation: Problem Setup

> Filtering (3D-DA): assimilate a single observation at a time (xx|yx)

[ hssimitation cycle | Assimilation cycle N

Time L 0 L L

» Smoothing (4D-DA): assimilate multiple observations at once (xo|y1,¥2s- - Ym)
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Data Assimilation: Problem Setup

> Filtering (3D-DA): assimilate a single observation at a time (xx|yx)

[ hssimitation cycle | Assimilation cycle N

Time L 0 L L

» Smoothing (4D-DA): assimilate multiple observations at once (xo|y1,ya, - -

[ Assimilation Cycle \
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Data Assimilation: Probabilistic Assumptions & Solvers

Simplifying assumptions are imposed on the error distribution, “typically”, errors are assumed to
be Gaussian (easy, tractable, ...).

» The Gaussian framework:
- Prior: x® — x'" ~ A(0, B)
- Likelihood: y — H(x""°) ~ N (0, R)
— Posterior: x* — x"™"° ~ N(0, A)

Improving model predictability Bayesian Inversion & Data Assimilation [8/65]
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Data Assimilation: Probabilistic Assumptions & Solvers

Simplifying assumptions are imposed on the error distribution, “typically”, errors are assumed to

be Gaussian (easy, tractable, ...

» The Gaussian framework:

).

- Prior: x® — x'" ~ A(0, B)
- Likelihood: y — H(x"™°) ~ N(0, R)

— Posterior: x* — x"™"° ~ N(0, A)

» Approaches & solvers:

solve an optimization problem,
e.q., minimize the negative-log of the
posterior, to get an analysis state

use Bayes’ theorem, with Monte-Carlo
ion of errors and

Filtering
(3D)

* 3DVar: three-dimensional Variational DA

EnKF: Ensemble Kalman filter

MLEF: Maximum-likelihood ensemble filter
IENKF: Iterative Ensemble Kalman filter

PF: Particle filters

MCMC: Markov Chain Monte-Carlo sampling

Smoothing
(4D)

* 4DVar: four-dimensional Variational DA

EnKS: Ensemble Kalman Smoother
MCMC: Markov Chain Monte-Carlo sampling

Improving model predictability Bayesian Inversion & Data Assimilation [8/65]
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Data Assimilation: Challenges
» Dimensionality:
- Model state space: Ngtate ~ 10812
- Observation space: Nops < Ngtate

- Ensemble size: Ngps ~ 100

» Gaussian framework:
- Strong assumption that holds for linear dynamics and linear observation operator
- EnKF is the most popular filter for “linear-Gaussian” settings:
— Sampling errors
— Spurious long-range correlations,
— Rank-deficiency
— Ensemble collapse, and filter divergence

- H is becoming more nonlinear, leading to non-Gaussian posterior

» Non-Gaussian DA

- PF: Degeneracy
- MCMC: Gold standard, yet computationally unaffordable

; Improving model predictability Bayesian Inversion & Data Assimilation [9/65]
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Data Assimilation: Challenges
» Dimensionality:
- Model state space: Ngtate ~ 10812
- Observation space: Nops < Ngtate

- Ensemble size: Nops ~ 100

» Gaussian framework:

- Strong assumption that holds for linear dynamics and linear observation operator
- EnKF is the most popular filter for “linear-Gaussian” settings:

— Sampling errors

— Spurious long-range correlations,

— Rank-deficiency

— Ensemble collapse, and filter divergence

- H is becoming more nonlinear, leading to non-Gaussian posterior

» Non-Gaussian DA
- PF: Degeneracy
- MCMC: Gold standard, yet computationally unaffordable

» Resampling family: Gradient-based MCMC (e.g. HMC) filtering and smoothing algorithms
for non-Gaussian DA

Improving model predictability Bayesian Inversion & Data Assimilation [9/65]
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A Resampling Family for Non-Gaussian DA
1- HMC sampling filter
2- Cluster sampling filters
3- HMC sampling smoother
4- Reduced-order HMC smoother

Improving model predictability A R ling Family for Non-G. ian DA [10/65]
A October 31, 2018: ANL; Ahmed Attia.



Hybrid Monte-Carlo (HMC) sampling
To draw samples {x(e)}e_, ... from o 7(x) = eI ),
- x: viewed as a position variable,
- Add synthetic " momentum" p ~ N'(0, M) and sample the joint PDF, then discard p.
- Generate a MC with invariant distribution o« exp (—H(p,x)) ;
- HMC proposal: symplectic integrator plays the role of a proposal density.

The Hamiltonian:

1 _ 1 -
H(p,x)=5p"'M 'p+ J(x) =;p "M 'p—log(n(x))
| — ~

e potential energy
kinetic energy

The Hamiltonian dynamics (a symplectic integrator used):

dx _ dp
=V, H=M" — =-V.H=-V,
dt P P, at J(X)

e The canonical PDF of (p,x):

o< exp (—H(p, x)) = exp (*%pTM_lp - J(X)) = exp (*%pTM_lp)f(X)

Improving model predictability A R ling Family for Non-G. ian DA [11/65]
o October 31, 2018: ANL; Ahmed Attia.




Hybrid Monte-Carlo (HMC) sampling
Symplectic integrators
» To integrate the solution of the Hamiltonian equations from pseudo time ¢, to time
tper = te + he
1. Position Verlet integrator

h o 1
Xgy1/2 = Xk + 3 M pg,
Pkt1 = Pk —h VT (Xpq1/2),
ho 1
Xk+1 =  Xpp1/2 + 3 M prt1.
2. Two-stage integrator
X1 = X+ (a1h)M71pk R
P1 = Pr— (b1h)VxT(x1),
x2 = x1+(a2h)M 'py,
Prt1 = P1— (1h)ViT(x2),
Xp+1 = X2+ (a2h)M_1Pk+1 s

a; = 0.21132 N az = 1-— 20.1 N b1 =0.5.

» MH: Acceptance Probability: a® =1Ae™H  AH = H(p*,x*) — H(pk, Xk)

v — ] x* with probability a®
1= xi  with probability 1 — a®

Improving model predictability A R Family for Non-G ian DA [12/65]

- October 31, 2018: ANL; Ahmed Attia.



Hybrid Monte-Carlo (HMC) sampling

Examples; code is available from: https://www.mcs.anl.gov/~attia/software.html

» MH Sampling

Iteration : 0001

» HMC Sampling

Iteration : 0001

a Improving model predictability A R

October 31, 2018: ANL; Ahmed Attia.
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https://www.mcs.anl.gov/~attia/software.html

1- HMC sampling filter T (for sequential DA)

The analysis step

Assimilate given information (e.g. background
and observations ) at a single time instance ty.

» Gaussian framework:
1 1
P ) o exp (=3l =l )+ POyl ox exp (= 3100 = vl )
()
P*(x) oc exp (=T (x)) ,

» Potential energy and gradient:

T = gl xles + 5 IHG) = Yl
V,J(x) = B l'x—x")+HTR'(H(x)-y).

» The Hamiltonian: 1
H(p, x) = -p" M "p+J(x)

T Attia, Ahmed, and Adrian Sandu. "A hybrid Monte Carlo sampling filter for non-Gaussian data assimilation.” AIMS Geosciences 1, no. geosci-01-00041

(2015): 41-78.

Improving model predictability A R Family for Non-G ian DA [14/65]

-3 October 31, 2018: ANL; Ahmed Attia.



1- HMC sampling filter (for sequential DA)

Numerical experiments: setup

» The model (Lorenz-96): % =iy (Tiy1 —Ti—n) —x; + F; i=1

,2,...,40
o x € RO s the state vector, with z¢g = x40, and F' = 8

» Initial background ensemble & uncertainty:
o reference IC: xgr“e = Mi=0—t=5(—2,..., 2)T

o By =ool € RNstate XNstate with oo = 0.08 ng‘"“e

» Observations:

o oobs = 5% of the average magnitude of the observed reference trajectory
o R = oopsI € RNobs XNobs

o Synthetic observations are generated every 20 time steps, with

T 14
Moo = { (o0 oo e m) R i o] =

{ mf cx; > 0.5
/ ’ ’ ’ ’ T 14
(2, Ty, 7, ..y Thy, Tyg)  ER

793? s x; < 0.5

» Benchmark EnKF flavor: DEnKF with Gaspari-Cohn (GC) localization

Experiments are carried out using DATeS

- Ahmed Attia and Adrian Sandu, DATeS: A Highly-Extensible Data Assimilation Testing Suite, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194 /gmd-2018-30, in review, 2018.

- http://people.cs.vt.edu/~attia/DATeS/

Improving model predictability A R ling Family for Non-G. ian DA [15/65]
o October 31, 2018: ANL; Ahmed Attia.
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1- HMC sampling filter (for sequential DA)

Numerical experiments: results with linear H

~—Forecast
—EnKF
—-HMC

Fromar,

N A AN e e ATV Ao,

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
ime

(a) RMSE

°
4
5585585585°

2 4 6 810121416 18202224 26 2830

(c) R. Hist: xo

%72 4 6 81012141618202224 262830

(b) R. Hist: x1

Position Verlet symplectic integrator is used with
time step 7" = 0.1 with h = 0.01, £ = 10, and
10 mixing steps. The (log) RMSE reported for
the HMC filter is the average taken over the 100
realizations of the filter.

——Forecast
—EnKF
—-HMC

e PPN
AR P RN L S VA A Vi WY,

A Fenre,
RV

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

ime

(a) RMSE
o o
o4 o
oo 508
0.0 0.07;
0.06( 0.06;
0.05¢ 0.05;
0.04; 0.04
o Fre
oo o6
o o8

Q26 610121416102022242020%0  §E § 6 6 10121416102022 24 202850

(b) R. Hist: x1 (c) R. Hist: xg
Two-stage symplectic integrator is used with time
step T' = 0.1 with h = 0.01, £ = 10, and 10
mixing steps. The (log) RMSE reported for the
HMC filter is the average taken over the 100
realizations of the filter.

Improving model predictability A Resampling Family for Non-Gaussian DA [16/65]
October 31, 2018: ANL; Ahmed Attia.



1- HMC sampling filter (for sequential DA)

Numerical experiments: results with discontinuous quadratic H

@ \ h v —Forecast

—IEnKF
oM e Rt S STt 24 6 8 ibiiieinmesmima

10 Ao,
w o o ) MLEF
» Y A ’,.’\,\_,_h_,\. A (a) x1 (b) x2
s SN g VI
=

107 Rank histograms for observed and unobserved

‘Ii " | { Rl ;
X W';QMW“\%WWNW'@ WWW‘M components of the state vector with Ne,s = 30.

0 2 4 6 8 101‘2141618202224262830
Time

Three-stage symplectic integrator is used with
time step 7" = 0.1 with h = 0.01, £ = 10, and
10 mixing steps. The (log) RMSE reported for ® a e % e
the HMC filter is the average taken over the 100 (a) x1 (b) x2
realizations of the filter.

Rank histograms for observed and unobserved
components of the state vector with Ny = 10.

Improving model predictability A Resampling Family for Non-Gaussian DA [17/65]
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1- HMC sampling filter (for sequential DA)

Numerical experiments: accuracy vs cost

0.1000 0.1000 2

@@ EnkF @ EnkF
(0O MLEF <> DO MLEF
IEnKF IEnKF
HMC-Verlet HMC-Verlet
0.0100 ’ HMC-2Stage 0.0100 ‘ HMC-2Stage|
w HMC-35tage w HMC-3Stage|
g HMC-4Stage g (> <> HMC-4Stage|
& OO HMC-Hilbert & HMC-Hilbert
0.0010(g ° 0.0010[0 °
0.0001, 5 10 15 20 25 30 35 0:0001;——5—5 15 320 25 30 35
CPU-Time (seconds) CPU-Time (seconds)
(a) Linear observation operator (b) Quadratic observation operator with a threshold

RMSE Vs CPU-time per assimilation cycle of DA with the Lorenz-96 model. The time reported is the average
CPU-time taken over 100 identical runs of each experiment. The ensemble size is fixed to 30 members for all
experiments here.

a Improving model predictability A R Family for Non-G ian DA [18/65]

October 31, 2018: ANL; Ahmed Attia.



Relaxing the Gaussian-Prior Assumption

» In practice, the prior is generally expected to be non-Gaussian.

» The prior PDF can hardly be formulated explicitly or even upto a scaling factor.

; Improving model predictability A R ling Family for Non-G.
-3 October 31, 2018: ANL; Ahmed Attia.
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Relaxing the Gaussian-Prior Assumption

» To this point, we have assumed that “the prior can be well-approximated by a Gaussian”.
» In practice, the prior is generally expected to be non-Gaussian.

» The prior PDF can hardly be formulated explicitly or even upto a scaling factor.

» Can we efficiently approximate the prior distribution given the ensemble of forecasts?
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Relaxing the Gaussian-Prior Assumption

» To this point, we have assumed that “the prior can be well-approximated by a Gaussian”.
» In practice, the prior is generally expected to be non-Gaussian.

» The prior PDF can hardly be formulated explicitly or even upto a scaling factor.

» Can we efficiently approximate the prior distribution given the ensemble of forecasts?

> Idea: approximate the prior density by fitting a Gaussian mixture model (GMM) to the
forecast ensemble’ (e.g. using EM).

T Attia, Ahmed, Azam Moosavi, and Adrian Sandu. " Cluster sampling filters for non-Gaussian data assimilation.” Atmosphere 9, no. 6 (2018): 213.

Improving model predictability A R

ling Family for Non-Gaussian DA [19/65]
-+ October 31, 2018: ANL; Ahmed Attia.
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2- Sampling filters with GMM prior; cluster sampling filters

» Prior (GMM):

P"(xy) = Zﬂ“ N(pr,i, Zk,i)

i=1
Nstate
S, 2T (-3 )
= Thy ———=———expP | =5 ||Xx — ptr,i 1)
= VIZk,il 2 ki
where 7, ; = P(xx(e) € it component, and (i ;, Yk,;) are the mean and the covariance
matrix associated with the i*" component.
» Likelihood: .
Cl N (=3 1x0) =yl )
————exp | — s He(xk) —yrll_ -
VIR 2 !

P(yk|xk) =

» Posterior:

1 1
Z\/m p (=3l — el = P00 = vl )

Improving model predictability A R ling Family for Non-G. ian DA [20/65]
o October 31, 2018: ANL; Ahmed Attia.
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2- Sampling filters with GMM prior; cluster sampling filters

HMC sampling filter with GMM prior (C£HMC )

» Potential energy and gradient:

1 1
T (xk) = 5||7'lk(xk) _Yk”;;1 log (Z \/\ZT <—5||xk - uk,iHik’i_l))

1 T
= 5”Hk(xk) _yk”;;l + Tk, (%) — log <L>

vV |zk,1|
— log (1 + Z :: : \/7“};::1 P (T (xk) — Jk,z‘(’ﬂc))) .

Vi T (1) = HY R, (Hi (xk) — ¥&) + Vi Tior (Xk)

1
<1 X, BV exp (i ) Jk,,-<xk>))

T VT
> <7Tk,1 Nl exp (Jk,1 (Xk) — Jk,i(Xk))> [kaj;m - kajk,i} ,

Vo Tyi = Vi, Thji(xi) = L (ke — pes) ;. Vi=1,2,..0 Ne.

i=2

» The Hamiltonian: 1
H(pk, xx) = 5 pe” M~ py 4+ T (xk).

Improving model predictability A R ling Family for Non-G. ian DA [21/65]
o October 31, 2018: ANL; Ahmed Attia.
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2- Sampling filters with GMM prior; cluster sampling filters

limitations & multi-chain samplers (MC-C¢HMC , MC-C/MCMC )

» If GMM has too many components, C/HMC may collapse (i.e. filter degeneracy)

Iteration ; 0001 Iteration : 0001

Improving model predictability A R ling Family for Non-G. ian DA [22/65]
A October 31, 2018: ANL; Ahmed Attia.
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2- Sampling filters with GMM prior; cluster sampling filters

limitations & multi-chain samplers (MC-C¢HMC , MC-C/MCMC )

» If GMM has too many components, C/HMC may collapse (i.e. filter degeneracy)

Iteration ; 0001 Iteration : 0001

» This could be avoided if we force the sampler to collect ensemble members from all the
probability modes

Idea: construct a Markov chain to sample each of the components in the posterior
— Multi-chain cluster sampling filter (MC-c¢eMCMC , MC-c¢/HMC )

» The parameters of each chain can be tuned locally
- Chains are initialized to the components’ means in the prior mixture

- The local ensemble size (sample size per chain) can be specified for example based on the prior
weight of the corresponding component, multiplied by the likelihood of the mean of that component

Improving model predictability A R ling Family for Non-G. ian DA [22/65]
o October 31, 2018: ANL; Ahmed Attia.
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2- HMC sampling filter with GMM prior; cluster sampling filters
Numerical experiments: setup

» The model (QG-1.5):

qr = Yy —eJ (¥, q) — AA®Y + 27 sin(27y) ,
g=Ap— Py,
J(qu) = Yeqe — way s

_ 02 8?2
where A = 25 + 5T

- State vector: 3 € R6641,

- Model subspace dimension of the order of 102 — 103.

- 1) is interpreted as either a stream function or surface elevation.
- Here F = 1600, ¢ = 107°, and A = 2 x 10712,

- Boundary conditions: ¥ = Ay = A2y = 0.

» The observations:
1. A linear operator with random offset,
2. A flow-velocity magnitude operator:

8 d
HROM SR H o V02 u:+8—w, v:—%-
Y xr

g Improving model predictability A R ling Family for Non-G. ian DA [23/65]
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2- HMC sampling filter with GMM prior; cluster sampling filters

Numerical experiments: QG-1.5 results with linear H

RMSE
BN WA VO N ®

~ Forecast
— EnkF

+— HMC

.= CHMC
= MC-CIHMC

40 60 80
Time (assimilation cycles)

10

Data assimilation results with the linear
observation operator. RMSE of the analyses
obtained by EnKF, HMC, C/HMC , and
MC-CZHMC filters. The ensemble size is 25. The
symplectic integrator used is 3-stage, with

h = 0.0075, £ = 25, for HMC and C/HMC , and

h = 0.05/Nc, £ = 15 for MC-CEHMC .

0.1 gox
i

§

(b) HMC

Rk (ruth amang ansembie membars)

(c) CLHMC +AIC

(d) MC-CLHMC +AIC

Data assimilation results with the linear
observation operator. The rank histograms of
where the truth ranks among posterior ensemble
members. The ranks are evaluated for every 16"
variable in the state vector (past the correlation
bound) at 100 assimilation times.

Improving model predictability A Resampling Family for Non-Gaussian DA [24/65]
October 31, 2018: ANL; Ahmed Attia.



2- HMC sampling filter with GMM prior; cluster sampling filters

Numerical experiments: QG-1.5 results with flow magnitude H

][~ Forecast
+— HMC
.= CHMC
e MC-CIHMC|

RMSE
P EN W s VN ®

40 60
Time (assimilation cycles)

RMSE of the analyses obtained by HMC, C/ZHMC
, and MC-C/HMC filtering schemes. In this
experiment, EnKF analysis diverged after the
third cycle, and it's RMSE results have been
omitted for clarity.

Rank (truth among ensemble members)

(a) HMC

Relative frequency

Rank (truth among ensemble members)

() MC-CEHMC +AIC

Rank (truth among ensemble members)

(b) CLHMC +AIC

The rank histograms of where the truth ranks
among posterior ensemble members. The ranks
are evaluated for every 16" variable in the state
vector (past the correlation bound) at 100
assimilation times. The filtering scheme used is
indicated under each panel.

Improving model predictability A Resampling Family for Non-Gaussian DA [25/65]

October 31, 2018: ANL; Ahmed Attia.



[3, 4] HMC sampling smoothers

Assimilate a set of observations y,, yi, ...y. at
once, to a background x,.

1. Attia, Ahmed, Vishwas Rao, and Adrian Sandu. " A sampling approach for four dimensional
data assimilation.” In Dynamic Data-Driven Environmental Systems Science, pp. 215-226.
Springer, Cham, 2015.

2. Attia, Ahmed, Vishwas Rao, and Adrian Sandu. " A hybrid Monte-Carlo sampling smoother

for four-dimensional data assimilation.” International Journal for Numerical Methods in
Fluids 83, no. 1 (2017): 90-112.

3. Attia, Ahmed, Razvan Stefanescu, and Adrian Sandu. " The reduced-order hybrid
Monte-Carlo sampling smoother.” International Journal for Numerical Methods in Fluids 83,
no. 1 (2017): 28-51.

Improving model predictability A Resampling Family for Non-Gaussian DA [26/65]
o October 31, 2018: ANL; Ahmed Attia.



Optimal Design of Experiments (ODE)
Bayesian inversion & sensor placement
Goal-Oriented approach for ODE (GOODE)

Improving model predictability Optimal Design of Experiments (ODE) [27/65]
o October 31, 2018: ANL; Ahmed Attia.



Optimal Experimental Design

» Sensor placement for optimal parameter recovery

Experimental design: ¢ := { Vi YN, }

Wy, e ooy W

. . . 0 sensor inactive
Yi,---,¥~.: candidate sensor locations; we can vary weights w; =

1: sensor active

» Find the best r sensor location such as to maximize some utility function (e.g. identification
accuracy, information gain, etc.)

Improving model predictability Optimal Design of Experiments (ODE) [28/65]
o October 31, 2018: ANL; Ahmed Attia.



Optimal Experimental Design

» Sensor placement for optimal parameter recovery

Experimental design: ¢ :

Yis-r o ¥YNg
Wi,y ooy W

. . . 0 sensor inactive
Yi,---,¥~.: candidate sensor locations; we can vary weights w; = h

sensor active

» Find the best r sensor location such as to maximize some utility function (e.g. identification
accuracy, information gain, etc.)

» Challenges:

1. Brute force search for an optimal design is combinatorially prohibitive. It requires (1\1?) function
evaluations; e.g., for Ny = 35, and r = 10, then ~ 2 x 108 function evaluations
2. Each function evaluations is prohibitively expensive
* The covariance matrix can have over 1012 entries ~ 8 TB

* Need to evaluate the determinant or the trace repeatedly

; Improving model predictability Optimal Design of Experiments (ODE) [28/65]
o October 31, 2018: ANL; Ahmed Attia.



Optimal Experimental Design

» Sensor placement for optimal parameter recovery

Experimental design: ¢ :

Yis-r o ¥YNg
Wi,y ooy W

. . . 0 sensor inactive
Yi,---,¥~.: candidate sensor locations; we can vary weights w; = h

sensor active

» Find the best r sensor location such as to maximize some utility function (e.g. identification
accuracy, information gain, etc.)

» Challenges:

1. Brute force search for an optimal design is combinatorially prohibitive. It requires (1\1?) function
evaluations; e.g., for Ny = 35, and r = 10, then ~ 2 x 108 function evaluations
2. Each function evaluations is prohibitively expensive
* The covariance matrix can have over 1012 entries ~ 8 TB

* Need to evaluate the determinant or the trace repeatedly

» Solution strategy:
- Gradient based optimization with relaxation w; € [0, 1], and

- use sparsifying penalty functions

; Improving model predictability Optimal Design of Experiments (ODE) [28/65]
o October 31, 2018: ANL; Ahmed Attia.



Inverse Problem & Sensor Placement

Bayesian inverse problem: Gaussian framework

» Forward operator:
y=FO)+n; 1n~N(O Tuoc)

» The prior and the likelihood:
P(0) = N0y, Tye) s P(y|0) = N(F(0), Tuoice) »

For time-dependent model, with temporally-uncorrelated observational noise: T’y .ise is a block diagonal
with k" equal to Ry, observation error covariances at time instance ti

» The posterior: N (67, T,o.):

Tpw=(FTLF+T,.") = (Huw+T,') =H"

607 . = Thont (I‘;lapr +FT_.. y) ,where
* F* is the adjoint of the forward operator F
* H is the Hessian of the negative posterior-log

* Hpissit is the data misfit term of the Hessian (i.e. Hessian-misfit)

Improving model predictability Optimal Design of Experiments (ODE) [29/65]
o October 31, 2018: ANL; Ahmed Attia.



Experimental Design

Standard formulation

» The design w enters the Bayesian inverse problem through the data likelihood:

noise

1 _ _
ey 105w) o 0xp (= (F(0) = )" W (F(0) = y) ) s Wr = DLW
where W =1, ® W, and W = diag (w1, ..., wny)

» Given the weighted likelihood, the posterior covariance of 9 reads:

Ty (w) = [H(w)] ™ = ("W, F + 1“;1)71 = (Husn(w) + 1";1)71

Here, & is the Kronecker product

Improving model predictability Optimal Design of Experiments (ODE) [30/65]
o October 31, 2018: ANL; Ahmed Attia.



Experimental Design

Standard formulation

» The design w enters the Bayesian inverse problem through the data likelihood:

noise

ey 105w) o 0xp (= (F(0) = )" W (F(0) = y) ) s Wr = DLW
where W =1, ® W, and W = diag (w1, ..., wny)
» Given the weighted likelihood, the posterior covariance of 9 reads:
Tpon(w) = [Hw)] " = (FWeF + ) = (Hawn(w) +T,1)

» Standard Approach for ODE: find w that minimizes posterior uncertainty, e.g.:
P A-optimality: Tr (Tpost)
» D-optimality: det (T'post)
> etc.

Here, & is the Kronecker product

g Improving model predictability Optimal Design of Experiments (ODE) [30/65]
o October 31, 2018: ANL; Ahmed Attia.



Experimental Design

Goal-oriented formulation

what if we are interested in a prediction quantity

Weights
p="P(0), .
rather than the parameter itself?

e.g. the average contaminant concentration

within a specific distance from the buildings’ walls;

Goal-Oriented ODE (GOODE)

g Improving model predictability Optimal Design of Experiments (ODE) [31/65]
o October 31, 2018: ANL; Ahmed Attia.




GOODE

» Consider a linear prediction:
p=P0,

where P is a linear prediction operator
» In the linear-Gaussian settings: p follows a Gaussian prior N'(p,., =,,)

ppe =PO,, X, =Pr,P"

Improving model predictability Optimal Design of Experiments (ODE) [32/65]
o October 31, 2018: ANL; Ahmed Attia.



GOODE

» Consider a linear prediction:
p=P0O,

where P is a linear prediction operator
» In the linear-Gaussian settings: p follows a Gaussian prior N'(p,., =,,)

ppe =PO,, X, =Pr,P"

» Given the observation y, and the design w, the posterior distribution of p is N (ppoeis Zpost),

with
— y
Prpost = Pepost
—1
* — 1% —1 *
Sy = PT,P" = PH'P" =P (Huw +T,') P
a Improving model predictability Optimal Design of Experiments (ODE) [32/65]
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GOODE

» Consider a linear prediction:
p=P0O,

where P is a linear prediction operator
» In the linear-Gaussian settings: p follows a Gaussian prior N'(p,., =,,)

poe = PO, =, =PI, P”

» Given the observation y, and the design w, the posterior distribution of p is N (ppoeis Zpost),
with
Ppost = PoY

post

Sy = PT, P = PH'P" =P (Huun +T,') P

GOODE Objective:

Find the design w that minimizes the uncertainty in p

Improving model predictability Optimal Design of Experiments (ODE) [32/65]
o October 31, 2018: ANL; Ahmed Attia.



GOODE: A-Optimality

space-time formulation

The G-O A-optimal design (wS24

opt
GA — in Tr(X
Wope = arg min Tr(Zpe. (w)) + o [[w]|
weRNs
st. 0<w; <1, i=1,...,N,
Improving model predictability Optimal Design of Experiments (ODE) [33/65]
° October 31, 2018: ANL; Ahmed Attia.



GOODE: A-Optimality

space-time formulation

The G-O A-optimal design (wS24

opt

wo = arg min Tr(Zpe (W) + a [|[wW]|

opt
wERNs

st.0<w; <1, i=1,...,N,

» The gradient (discarding the regularization term) :

Npred

Vo Tr(Bpost (W) = — > GO
i=1

noise

_1
where (; = <I‘ 2 F [H(w)]’1 P* ei>, and e; is the i*" coordinate vector in RVpred

Here, (® is the pointwise Hadamard product

Improving model predictability Optimal Design of Experiments (ODE) [33/65]
6 October 31, 2018: ANL; Ahmed Attia.



GOODE: A-Optimality

4D-Var formulation

» Efficient computation of the gradient: for temporally-uncorrelated observational noise, the

gradient:
m  Npred
Vo Tr(Zpou (W) = = > D" Chj © g
k=1 j=1
where .
Chj =Ry 2Fo i [H(w) 'P'e;
and

* e, is the i'" coordinate vector in RN pred

* Fo,1 is the forward operator that maps the parameter to the equivalent observation at time instance
tk;k=1,2,...,m

Improving model predictability Optimal Design of Experiments (ODE) [34/65]
o October 31, 2018: ANL; Ahmed Attia.



GOODE: D-Optimality

4D-Var formulation

The G-O D-optimal design (wSY

opt
WSPI: = arg min log det (X, (W)) + o ||w]]|
wERNs
st.0<w; <1, i=1,...,N,

» The gradient (discarding the regularization term):

m  Npred
Vi (log det (Spou (W) = =D > &k j @ bxj
k=1 j=1
where
€k =Ry VPFo i [H(w)] 7' P S/ (w)e;
and

1. e; is the it" coordinate vector in RNpred

2. 2oL (w) = =22 (w) 222 (w)

post post post

Improving model predictability Optimal Design of Experiments (ODE) [35/65]
o October 31, 2018: ANL; Ahmed Attia.



GOODE: D-Optimality

Alternative 4D-Var formulation

» Efficient computation of the gradient: for temporally-uncorrelated observational noise, the
gradient is equivalent to:

T ogdet (Bpon(w))) = = 30301 (S
k=1 i=1
with
Nk, = P [H(W)] ' Fp oR_1/2

th

where e; is the i*" coordinate vector in RY, i.e. in the observation space

Improving model predictability Optimal Design of Experiments (ODE) [36/65]
6 October 31, 2018: ANL; Ahmed Attia.



GOODE

Experiments using Advection-Diffusion Model: Setup |

» Numerical model (A-D): u solves:
us — kAu+v-Vu=0 inQ x[0,T]
w(0, z) =up inQ
kVu-n=0 ondQ x [0,T]

* 0 € R? is an open and bounded domain
* wu the concentration of a contaminant in the domain Q
* K is the diffusivity, and v is the velocity field

» Observations: Ny = 22 candidate sensor locations, with
* to=0,and T = 0.8
* and observations are taken at time instances {t;} = {0.4, 0.6, 0.8}
respectively

Domain, observational
grid, and velocity field

B2

GOODE Experiments are implemented in hIPPYlib
- https://hippylib.github.io/

a Improving model predictability Optimal Design of Experiments (ODE) [37/65]

October 31, 2018: ANL; Ahmed Attia.
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GOODE

Experiments using Advection-Diffusion Model: Setup Il

Predictions: P predicts u at the degrees of freedom of the FE discretization withing distance ¢ from one or
both buildings at ¢} ed.

Vector-valued prediction
w within distance e from the internal boundaries
at time ;.4

Scalar-valued prediction
the “average” u within distance e from the inter-

nal boundaries at time ¢,,.q4
B1 P P, =VvP,
B2 P, P, =VvP,
Bl & B2 P, P,=VvP,

The vector-valued operators, predict the value of u at the prediction grid-points, at prediction time. The

scalar-valued operators average the vector-valued prediction Qol, i.e. v = <7Npie-d Sy Npied

)T = ]RNpred

Here, we show A-GOODE results for:

Prediction operator | ¢,,.q € Nyrea
Py 1.0 0.02 164
P, 1.0 0.02 138
P, 1.0 0.02 302

Regularization: ¢, norm is used

Attia, Ahmed, Alen Alexanderian, and Arvind K. Saibaba. " Goal-Oriented Optimal Design of Experiments for Large-Scale Bayesian Linear Inverse
Problems.” Inverse Problems, Vol . 34, Number 9, Pages 095009 (2018).

Improving model predictability Optimal Design of Experiments (ODE) [38/65]
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Numerical Results: P =p,.; A-GOODE

Weights

Weights
(w)

(w)

°oh
ok

ik

(f) Pyo: @ = 104 (g) Pyi; o =104 (h) Pyo; o =104
The optimal weights {w; };—1,... N, are plotted on the z-axis, where the weights are normalized to add up to 1

(top row); the corresponding active sensors are plotted on the bottom row.

Improving model predictability Optimal Design of Experiments (ODE) [39/65]
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Choosing the penalty parameter: p =P,.; A-GOODE

600 0150 600 0150
o Neoroptimala GooBE T — oo
gs0e02 goazs arsrorce $50e02 goi2s = Brusrorce
Gaceo: Zo1o Faceae L0100
3 & 8 &
2 3.0e-02{a=5.0e-03 G 0.075 230002 0075
£ 2 E 1.0e-03 2
220602 gooso £20e02 gooso
o = 0.025- ° & 0.025
L0602 Loeoz
¢ 5 1 15 2 099956 005 010 015 020 025 S 10 15 20 099950 005 010 015 020 025
1 — Norm Objective value - Norm Objective value
(2) Pyo (b) Pyo (c) Pyy (d) Pyy

A-GOODE results with a sequence of 75 penalty parameter values spaced between [10777 0.2].

6.0e-02 - 0.150
2=1.0e-02 @® Near-optimal a === GOODE
£5.0e-02 g Emm BruteForce
5
2 4.0e-02
)
o
= 3.0e-02
£
2 2.0e-02
o
1.0e-02
0 5 10 15 20 0'008400 0.05 0.10 0.15 0.20 0.25
£, —Norm Objective value
(a) Pyo (b) P2

Test with a prediction operator P 5.

Improving model predictability Optimal Design of Experiments (ODE) [40/65]
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Outline

EnKF Inflation & Localization
OED-based inflation & localization

Improving model predictability EnKF Inflation & Localization [41/65]
° October 31, 2018: ANL; Ahmed Attia.



Ensemble Kalman Filter (EnKF)

Assimilation cycle over [t} 1, ty]; Forecast step

> Initialize: an analysis ensemble {x} _,(e)}e=1,... xon. At th—1
Initial/Analysis
Ensemble ~ P4(x;_y)
Time :
ti-1
Improving model predictability EnKF Inflation & Localization [42/65]
° October 31, 2018: ANL; Ahmed Attia.



Ensemble Kalman Filter (EnKF)

Assimilation cycle over [t} 1, ty]; Forecast step

> Initialize: an analysis ensemble {x} _, (e)}c_:,.

at ti_,

s Nens

> Forecast: use the discretized model M, | .;, to generate a forecast ensemble at ¢;:

x‘l)c(e) = Mtk_1—>tk (x?c—1(e)) +nx(e), e=1,...,Ne

Forecast/Background
Ensemble ~ P?(x;)

Time : -

Improving model predictability EnKF Inflation & Localization [42/65]
October 31, 2018: ANL; Ahmed Attia.



Ensemble Kalman Filter (EnKF)

Assimilation cycle over [t} 1, ty]; Forecast step

> Initialize: an analysis ensemble {x} _,(e)}e=1,... xon. At th—1
> Forecast: use the discretized model M, | .;, to generate a forecast ensemble at ¢;:

x‘l)c(e) = Mtk_1—>tk (x?c—1(e)) +nx(e), e=1,...,Ne

» Forecast/Prior statistics:

Nens

. 1
), = N Z x;(e)
ene £
1 - _
B = Xk (X0)"5 Xi =0 () - %% (Naw) = K]
Forecast/Background

Ensemble ~ P?(x;)

Time : -

Improving model predictability EnKF Inflation & Localization [42/65]
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Ensemble Kalman Filter (EnKF)

Assimilation cycle over [t} _ 1, tx]; Analysis step

» Given an observation y, at time t

Observation: yy;
Likelihood: P(y|x))

Time : -

Improving model predictability EnKF Inflation & Localization [43/65]
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Ensemble Kalman Filter (EnKF)

Assimilation cycle over [t} _ 1, tx]; Analysis step
» Given an observation y;, at time t
» Analysis: sample the posterior (EnKF update)
K = B,H} (H;BH}, + Ry) "
xi(e) = xz(e) + Ky, ([yr + Cule)] — Hr(x}(e)))

Analysis Ensemble
~P%(x,)

Observation
&
Likelihood
Model
State
Time : :
ti-1 e
Improving model predictability EnKF Inflation & Localization [43/65]
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Ensemble Kalman Filter (EnKF)

Assimilation cycle over [t} _ 1, tx]; Analysis step

» Given an observation y, at time t
» Analysis: sample the posterior (EnKF update)

K = B,H} (H;BH}, + Ry) "
x5 (e) = xp(e) + Ky ([yr + Cr(e)] — Hi(x}.(e)))

» The posterior (analysis) error covariance matrix:

A, = (I - KyH)B; = (B,;1 + HTkR_lHk)_l

Analysis Ensemble
~P%(x,)

Observation
&
Likelihood
Model
State
Time : :
ti-1 e
Improving model predictability EnKF Inflation & Localization [43/65]
° October 31, 2018: ANL; Ahmed Attia.



Ensemble Kalman Filter (EnKF)

Sequential EnKF Issues
» Limited-size ensemble results in sampling errors, explained by:
- variance underestimation
- accumulation of long-range spurious correlations

- filter divergence after a few assimilation cycles

| Repeat the Assimilation Cycle
Analysis Ensemble
~ P(x)

[ Assimilation Cycle

Observation

Likelihood

Time - -

ti-1 te tira

Improving model predictability EnKF Inflation & Localization [44/65]
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Ensemble Kalman Filter (EnKF)

Sequential EnKF Issues
» Limited-size ensemble results in sampling errors, explained by:
- variance underestimation
- accumulation of long-range spurious correlations

- filter divergence after a few assimilation cycles

» EnKF requires inflation & localization

| Repeat the Assimilation Cycle
Analysis Ensemble
~ P(x)

[ Assimilation Cycle

Observation

Likelihood

Time - -

ti-1 te tira

Improving model predictability EnKF Inflation & Localization [44/65]
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Magnify Inflated

EnKF: Inflation : .

. > * >
Space-independent inflation:

X = [VA () =R VA (K (Na) =R 5 0 <A <A<

Ensemble

B-g— X (X) =B

Space-dependent inflation: Let D := diag (A) = Z':s:‘f‘e ie;e],

— 1y
X» =DzX",
~ 1 ~ T 1 1
B= — X" (X") =DBDx.
Nens — 1
Improving model predictability EnKF Inflation & Localization [45/65]
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EnKF: Inflation i — e

Anomalies Ensemble
. ’ * ’
Space-independent inflation:
X = [ﬁ(x"u) —%) . VA (X (Naw) —z")] o< Al <A<
~ 1 — /T\T
B=g X (Xb) =B

Space-dependent inflation: Let D := diag (A) = Z'i“s:‘f‘e ie;e],

_ 1

Xr=D2X",

B ! X (x") =piBD!
= — = 2 2
oo (%) -

The inflated Kalman gain K, and analysis error covariance matrix A

K = BH' (HﬁHT + R)ﬂ . A= (1 - f{H) B= (ﬁ‘l + HTR_1H>71

Improving model predictability EnKF Inflation & Localization [45/65]
-3 October 31, 2018: ANL; Ahmed Attia.



EnKF: Schur-Product Localization

State-space formulation; B —Localization

Covariance localization:

B:=C@®B; st. C= [pi’j]ivjzlaQVHV\rstate

Entries of C are created using space-dependent localization functions *:
— Gauss:

—d(i, 5)* o
pi (L) = exp (72(;) ) i3 =12, Noue,

— bth-order Gaspari-Cohn:

S3(2E2) 4 (42) g (42) - g (22) 4, 0<d(ig) < L
pra(L) = 5 (B2 ) =3 (B2) g (22) 4 3 (20) —5 (200 1a—2 (k) . L<dGg) <2
2L < d(i, j)

0.

- d(%,7): distance between ith and jth grid points
- L = L(4,j): radius of influence, i.e. localization radius, for ith and jth grid points

; Improving model predictability EnKF Inflation & Localization [46/65]
o October 31, 2018: ANL; Ahmed Attia.



EnKF: Schur-Product Localization

Observation-space formulation; R —Localization
» Localization in observation space (R—localization):
» HB is replaced with HB = C'°¢! © HB, where

¥

ot = [o] =12 Nobss 5= 1,2, Nutate

> HBH' can be replaced with HBH' = C'°%2 @ HBH', where

co? =l = [pl] 1ii = 1,2, Nowe

- p?‘;n is calculated between the ith observation grid point and the jth model grid point.

ol

- Py jo is calculated between the ith and jth observation grid points.

Improving model predictability EnKF Inflation & Localization [47/65]
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EnKF: Schur-Product Localization

Observation-space formulation; R —Localization
» Localization in observation space (R—localization):

> HB is replaced with HB = cloo! ® HB, where

ot = [o] =12 Nobss 5= 1,2, Nutate

¥

> HBH' can be replaced with HBH' = C'°%2 @ HBH', where

co? =l = [pl] 1ii = 1,2, Nowe

ol

- Py Jm is calculated between the ith observation grid point and the jth model grid point.

- pf‘; is calculated between the ith and jth observation grid points.
» Assign radii to state grid points vs. observation grid points:
- Let L € RNobs to model grid points, and project to observations for C'°©2 [hard/unknown]

- Let L € RNobs to observation grid points; [efficient; followed here]

; Improving model predictability EnKF Inflation & Localization [47/65]
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EnKF: Schur-Product Localization

Observation-space formulation; R —Localization
» Localization in observation space (R—localization):

> HB is replaced with HB = cloo! ® HB, where

ot = [o] =12 Nobss 5= 1,2, Nutate

¥

> HBH' can be replaced with HBH' = C'°%2 @ HBH', where

co? =l = [pl] 1ii = 1,2, Nowe

- p?‘;n is calculated between the ith observation grid point and the jth model grid point.

- pf‘jo is calculated between the ith and jth observation grid points.
» Assign radii to state grid points vs. observation grid points:
- Let L € RNobs to model grid points, and project to observations for C'°©2 [hard/unknown]

- Let L € RNobs to observation grid points; [efficient; followed here]

The parameters A € R¥tate | L e (RVstate or RNOYS)  are generally tuned empirically!

Improving model predictability EnKF Inflation & Localization [47/65]
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EnKF: Schur-Product Localization

Observation-space formulation; R —Localization
» Localization in observation space (R—localization):

> HB is replaced with HB = cloo! ® HB, where

¥

ot = [o] =12 Nobss 5= 1,2, Nutate

> HBH' can be replaced with HBH' = C'°%2 @ HBH', where

co? =l = [pl] 1ii = 1,2, Nowe

- p?‘;n is calculated between the ith observation grid point and the jth model grid point.

- pf‘jo is calculated between the ith and jth observation grid points.
» Assign radii to state grid points vs. observation grid points:
- Let L € RNobs to model grid points, and project to observations for C'°©2 [hard/unknown]

- Let L € RNobs to observation grid points; [efficient; followed here]

The parameters A € R¥tate | L e (RVstate or RNOYS)  are generally tuned empirically!

We proposed an OED approach to automatically tune/ these parameters.
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OED Approach for Adaptive Inflation

The A-optimal design (inflation parameter, A*~°**) minimizes:

min Tr (X(A)) —a A -1,

X ERrNstate
B 1 .
subjectto 1=X; < X; <A, i=1,..., Noue
a Improving model predictability EnKF Inflation & Localization [48/65]
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OED Approach for Adaptive Inflation

The A-optimal design (inflation parameter, A*~°**) minimizes:

min Tr (X(A)) —a A -1,

X ERNstate

subjectto 1=Al <X <Y, i=1,..., N

Remark: we choose the sign of the regularization term to be negative, unlike the traditional formulation

» Let H = H = I with uncorrelated observation noise, the design criterion becomes:

state

N.
Infl — e 12 —2\ 1
NELIONE Tr(A) ; (/\1 P, )

» Decreasing \; reduces Wl e the optimizer will always move toward Al

Improving model predictability EnKF Inflation & Localization [48/65]
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OED Approach for Adaptive Inflation
Solving the A-OED problem, requires evaluating the objective, and the gradient:

» The design criterion:
v i=Tr (A) = Tr (B) = Tx ((R + HﬁHT)ﬂHﬁﬁHT)

» The gradient:
Nstate

VAT™M(A) = D Aleie; (21 — 22 — 23 + 24)

i=1

2z = ﬁei
T S s

2 =H (R + HBH ) HB:1

e ST

2z, = BH (R + HBH ) Hz,
T S s

z=H (R + HBH ) HBz,

e; € Rt js the ith cardinality vector

; Improving model predictability EnKF Inflation & Localization [49/65]
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OED Adaptive B—Localization (State-Space)

min WPTHU(L) 4y B(L) = Tr (A(L)) + v IIL,

LERrNstate
subject to lé <UL <y, i=1,...,Nouwe
» The design criterion:

wB—Loe (L) = Ty (B) ~Tr ((R + H§H7>71 HﬁﬁHT)

» The gradient:

Nstate o — —~ _
VerP Tt = 3 elp (I+HR'HB)  (1+BHR'H) e
i=1
15,: =1, O (e]B)
_ (9pin(ls) Opia(l) 0pi,Nare (L) \ "
al, ol T ol;
e; € R s the ith cardinality vector

L;

Improving model predictability EnKF Inflation & Localization [50/65]
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OED Adaptive: Observation-Space Localization

» Assume L € R¥!= is attached to observation grid points

> HB is replaced with HEB = C'*>! ® HB, with

cot = [ptr o] si=120 Nawi 3= 1,2, N

—_—
» HBH' can be replaced with HBH™ = C'**? ® HBH', with

1 1
clo .= = (c2+ =7[‘.’|?z. ‘?‘f’z»]
2 ( T + C) 2 pl’J ( 1) + pl’J ( J) %,j=1,2,...,Nstate
a Improving model predictability EnKF Inflation & Localization [51/65]
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OED Adaptive: Observation-Space Localization

» Assume L € R¥!= is attached to observation grid points

> HB is replaced with HEB = C'*>! ® HB, with

cot =[] si=120 Nowij =12, N

—_—
» HBH' can be replaced with HBH™ = C'**? ® HBH', with

colo —

J=1,2,...,Nstate

1 o o 1 o|o o|o
5 (Cr+c2) =3 [prf a0 +oll7 )],

» Localized posterior covariances:

P Localize HB: . L
A-B-HB (R+HBHT) HB

» Localize both HB and HBH':

~ ~T —\ 1 —
A =B - HB <R+HBHT) HB

Improving model predictability EnKF Inflation & Localization [51/65]
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OED Adaptive R—Localization

Decorrelate HB

» The design criterion:

@R=Loc(L) — Ty (B) — Tr (ﬁﬁ HB (R + HBH') ') ;L e R

» The gradient:

Nobs

VLR = 2 N e L,
i=1

¢; = HB (R + HBH') e,
Lis, = (17)" © (e;HB)

= api,l(li) 6Pi,2(li) apigNscatc (ll) ’
° ol; ’ al; ol;
e; € R is the ith cardinality vector
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OED Adaptive R—Localization

Decorrelate HB and HBH'

» The design criterion:

wR=Loc(1) — Ty (B) — Tr (I—/I\B HB' (R+ﬁ)ﬂ> ;L € RYous

» The gradient:

Nobs

VL‘11137[‘OC = Zei (77? - 2111:1B,i) w:
i=1
o~ . -1
¥? = HB' (R+HBH) e

0 =13, (R + HBH') 'HB

15, = (/)" © (e;HBH)

o (2pin(li) 9pin(li) 9pixons (1))
’ al, Al T ol;
a Improving model predictability EnKF Inflation & Localization [53/65]
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Experimental Setup
» The model (Lorenz-96):

dx;

;t = Ti—1 (‘Ti+1 - Ez‘fz) —x; + F;

i=1,2,...,40,

o x € R0 is the state vector, with zg = x40

o F=8
» Initial background ensemble & uncertainty:
o reference IC: xg™® = My—g—t=5(—2,...,2)"

o Bg = ool € RVstate XNstate | with g = 0.08 ngrue

» Observations:
0 Oobs = 5% of the average magnitude of the observed reference trajectory

o R = oopsI € RNobs XNobs
o Synthetic observations are generated every 20 time steps, with
T 20
» T37, T39) € RT.

H(x) = Hx = (21, =3, =5,

» EnKF flavor used here: DEnKF with Gaspari-Cohn (GC) localization

Experiments are implemented in DATeS
- http://people.cs.vt.edu/~attia/DATeS/
- Ahmed Attia and Adrian Sandu, DATeS: A Highly-Extensible Data Assimilation Testing Suite, Geosci. Model Dev. Discuss.,

https: / /doi.org/10.5194/gmd-2018-30, in review, 2018.
Improving model predictability EnKF Inflation & Localization [54/65]
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Numerical Results: Benchmark

A RMSE A KL-Distance to U
. X
=
=
8 A
= IS X
= AL x by
] A A
= A A
R A A

5 10 15 20 25 30 35 40
Ensemble Size

The minimum average RMSE over
the interval [10, 30], for every
choice of N.,., is indicated by red
a triangle. Blue tripods indicate
the minimum KL distance between
the analysis rank histogram and a
uniformly distributed rank
histogram. Space-independent
radius of influence L = 4 is used.

2x 107! == Forecast
—+— OED-DEnKF j

¢-RMSE

107!

log

61072

4x 1072

100 130 160 190 220 250 280
Time (assimilation cycles) Rank

(a) RMSE (b) Rank histogram

Analysis RMSE and rank histogram of DEnKF with
L =4, and A = 1.05.

Benchmark EnKF Results
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.- - - - - """

Numerical Results: A-OED Adaptive Space-Time Inflation |

o= Optimal DEnKF 3 .
—— OED-DEnKF

1x107*
3x 1072
100 130 160 190 220 250 280 10
Time (assimilation cycles) Rank
(a) RMSE; a = 0.14 (b) Rank histogram; o = 0.14

--e= Optimal DEnKF

100 130 160 190 220 250 280 : 10
Time (assimilation cycles) Rank
(c) RMSE; @ = 0.04 (d) Rank histogram; a = 0.04

The localization radius is fixed to L = 4. The optimization penalty parameter « is indicated under each panel.
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Numerical Results: A-OED Adaptive Space-Time Inflation Il

1.020

7 1018
016
014
1.012

1.06 *
100 140 180 220 260 300 100 140 180 220 260 300
Time (assimilation cycles) Time (assimilation cycles)
(a) @ =0.14 (b) @ =0.04

Box plots expressing the range of values of the inflation coefficients at each time instant, over the testing
timespan [10, 30].

Improving model predictability EnKF Inflation & Localization [57/65]
6 October 31, 2018: ANL; Ahmed Attia.



.

Numerical Results; A-OED Inflation Regularization |

Choosing «

o a=0.1400, RMSE = 0.0547 * a=0.0900, RMSE = 0.0555
1200, RMSE 0 a=0.1300, RMSE = 0.0558
.2200, RMSE

300

0.18

290
0.16

0.14

280

260

250

L-curve plots are are plotted for 25 equidistant values of the penalty parameter, at every assimilation time
instant over the testing timespan [0.03, 0.24]. The values of the penalty parameter « that resulted in the 5
smallest average RMSEs, over all experiments carried out with different penalties, are highlighted on the plot
and indicated in the legend along with the corresponding average RMSE.
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.- - - - - """

Numerical Results; A-OED Inflation Regularization I

Choosing «

@ =0.1400, RMSE = 00547 @ =0.1400, RMSE = 0.0547
@ =0.1200, RMS.
0.20 0.20
*
=]
=< 0.15 =< 0.15
= =
0.10 0.10
0.05 0.05
7.25 7.50 6.50 6.75 7.00 7.25 7.50
[l

650 675 7.00
[l

(a) Cycle 100 (b) Cycle 150
are plotted for 25 equidistant values of the penalty parameter at assimilation cycles 100 and

L-curve plots are
150, respectively.
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Numerical Results: A-OED Adaptive Space-Time Localization |

State-space formulation

0.06

-+~ Optimal DEnKF &
g T OEDDENF "i
+ I

107!

x 107%

1x 1072

3x 1072

100 130 160 190 220 250 280
Time (assimilation cycles)

10
Rank

(a) RMSE; y =0 (b) Rank histogram; y = 0

0.06

- Optimal DEnKF #
:
—— OED-DEnKF 1;
o 4
i

0.00
0

10
Rank

100 130 160 190 220 250 280
Time (assimilation cycles)

(c) RMSE; y = 0.001 (d) Rank histogram; y = 0.001

The inflation factor is fixed to A = 1.05. The optimization penalty parameter - is shown under each panel.
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Numerical Results: A-OED Adaptive Space-Time Localization Il

State-space formulation

1000130 160 190 220 250 280

Time (assimilation cycles) Rank

(a) RMSE (b) Rank histogram

Results for A = 1.05, and v = 0.04.

. il
13
9

100 10 180 220 260 300 100 140

180 20 260 300 100 140 180 220 260 300
Tin lation cycles) Time (assin cycles) Time (assimilation cycles)
(@) y =00 (b) y =0.001 (c) y=0.04

Localization radii at each time points, over the testing timespan [10, 30]. The optimization penalty parameter
~ is shown under each panel.
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Numerical Results: A-OED Adaptive Space-Time Localization

Choosing v

0 4=00000, RMSE =0.0569  # ~=0.0030, RMSE = 0.0685
0 0010, RMSE =0.0613 0 5 =0.0040, RMSE = 0.0743
o ~=00020, RMSE = 0.0630
300
0.55
290 0.50
0.45
0.40
0.35
0.30
0.25
260 0.20
0.15
250
A
(9753
L-curve plots are shown for values of the penalty parameter v = 0, 0.001, ..., 0.34.
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Numerical Results: A-OED Adaptive Space-Time Localization |

Observation-space formulation

—— localize B --== localize HB —

localize (HB, HBHT)

1074

log-RMSE
(=2
X
=

150 200 250 300
Time (Assimilation cycles)

A-OED optimal localization radii L found by solving the OED localization problems in model state-space, and
observation space respectively. No regularization is applied, i.e., v = 0
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Numerical Results: A-OED Adaptive Space-Time Localization Il

Observation-space formulation

0 10 20 0 10 20 0 10 20
Rank Rank Rank

() Localize B (b) Localize HB (¢) Localize (HB, HBH')

Rank histogram for A-OED localization solved in model state-space, and observation space respectively.

100 140 180 220 260 300 2 2 100 140 180 220 260 300
Time (assimilation cycles) Time (assimilation cycles)

(d) Localize B (¢) Localize HB (f) Localize (HB, HBH')

Space-time optimal localization radii over the testing timespan.
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Concluding Remarks

» A family of sampling algorithms for Non-Gaussian DA
- HMC sampling filter, and Cluster sampling filters
- HMC smoother, and Reduced HMC smoothers

> Goal oriented Optimal Design of Experiments (GOODE)

- Mathematical and algorithmic foundations for goal-oriented optimal design of experiments, for
PDE-based Bayesian linear inverse problems

» OED framework for adaptive localization and inflation
- Either A-OED inflation or localization is carried out each cycle
- Can create a weighted objective to account for both inflation and localization

- Unlike localization, regularization is a must for adaptive inflation

Improving model predictability Concluding Remarks & Future Plans [65/65]
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