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Motivation: Ocean Simulation
I Consider the sea-surface-height (SSH) in Ω ∈ R2:
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Motivation: Advection-Diffusion
I Consider the concentration of a

contaminant in Ω ∈ R2:
I Simulation: given model

parameter θ := x0, forward
integrator, and model
discretization, solve the DEs
x0 → xk

I Forward problem: given
model state/parameter
predict model observations
θ → y

I Inverse problem: given noisy
observations, and “possibly”
uncertain model
state/parameter, recover the
unknown model
state/parameter θ ← y

I Design of experiments: e.g.,
sensor placement for optimal
reconstruction of model
parameter
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Bayesian Inversion & Data Assimilation

I The prior P(θ): encapsulates knowledge about θ prior
to obtaining new observations

I The likelihood P (y|θ): describes the probability
distribution of observations conditioned by the model
parameter

Data Assimilation (DA)

Model + Prior + Observations︸ ︷︷ ︸
with associated uncertainties

→ Best description of the parameter

I The posterior P(θ|y): distribution of the parameter θ conditioned on observations

Bayes’ theorem: Posterior ∝ Likelihood × Prior

Applications include:

Atmospheric forecasting, power flow, oil reservoir, ocean, ground water, etc.
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Data Assimilation: Problem Setup

I Filtering (3D-DA): assimilate a single observation at a time (xk|yk)

3D data assimilation

Time

!" !#

Forecast
$!",→ !'

Prior

I Smoothing (4D-DA): assimilate multiple observations at once (x0|y1,y2, . . . ,ym)
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Data Assimilation: Probabilistic Assumptions & Solvers

Simplifying assumptions are imposed on the error distribution, “typically”, errors are assumed to
be Gaussian (easy, tractable, ...).

I The Gaussian framework:

- Prior: xb − xtrue ∼ N (0,B)

- Likelihood: y −H(xtrue) ∼ N (0,R)

→ Posterior: xa − xtrue ∼ N (0,A)

I Approaches & solvers:

  Approach 

  
Variational: solve an optimization problem, 
e.g., minimize the negative-log of the 
posterior, to get an analysis state 

Ensemble: use Bayes’ theorem, with Monte-Carlo 
representation of errors and states/parameters 

Pr
ob

le
m

 S
et

up
 Filtering  

(3D) • 3DVar: three-dimensional Variational DA 

• EnKF: Ensemble Kalman filter 
• MLEF: Maximum-likelihood ensemble filter 
• IEnKF: Iterative Ensemble Kalman filter 
• PF: Particle filters 
• MCMC: Markov Chain Monte-Carlo sampling 
• … 

Smoothing  
(4D) • 4DVar: four-dimensional Variational DA 

• EnKS: Ensemble Kalman Smoother 
• MCMC: Markov Chain Monte-Carlo sampling 
• … 
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Data Assimilation: Challenges
I Dimensionality:

- Model state space: Nstate ∼ 108−12

- Observation space: Nobs � Nstate

- Ensemble size: Nens ∼ 100

I Gaussian framework:

- Strong assumption that holds for linear dynamics and linear observation operator H
- EnKF is the most popular filter for “linear-Gaussian” settings:

→ Sampling errors

→ Spurious long-range correlations,

→ Rank-deficiency

→ Ensemble collapse, and filter divergence

- H is becoming more nonlinear, leading to non-Gaussian posterior

I Non-Gaussian DA

- PF: Degeneracy

- MCMC: Gold standard, yet computationally unaffordable

I Resampling family: Gradient-based MCMC (e.g. HMC) filtering and smoothing algorithms
for non-Gaussian DA
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Hybrid Monte-Carlo (HMC) sampling
To draw samples {x(e)}e=1,2,... from ∝ π(x) = e−J (x):

- x: viewed as a position variable,

- Add synthetic ”momentum“ p ∼ N (0,M) and sample the joint PDF, then discard p.

- Generate a MC with invariant distribution ∝ exp (−H(p,x)) ;

- HMC proposal: symplectic integrator plays the role of a proposal density.

• The Hamiltonian:

H(p,x) =
1

2
p
T

M
−1

p︸ ︷︷ ︸
kinetic energy

+ J (x)︸ ︷︷ ︸
potential energy

=
1

2
p
T

M
−1

p− log(π(x))

• The Hamiltonian dynamics (a symplectic integrator used):

dx

dt
= ∇p H = M

−1
p ,

dp

dt
= −∇x H = −∇xJ (x)

• The canonical PDF of (p,x):

∝ exp (−H(p,x)) = exp

(
−

1

2
p
T

M
−1

p− J (x)

)
= exp

(
−

1

2
p
T

M
−1

p

)
π(x)
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Hybrid Monte-Carlo (HMC) sampling
Symplectic integrators

I To integrate the solution of the Hamiltonian equations from pseudo time tk to time
tk+1 = tk + h:

1. Position Verlet integrator

xk+1/2 = xk +
h

2
M
−1

pk ,

pk+1 = pk − h∇xJ (xk+1/2) ,

xk+1 = xk+1/2 +
h

2
M
−1

pk+1.

2. Two-stage integrator

x1 = xk + (a1h)M
−1

pk ,

p1 = pk − (b1h)∇xJ (x1) ,

x2 = x1 + (a2h)M
−1

p1 ,

pk+1 = p1 − (b1h)∇xJ (x2) ,

xk+1 = x2 + (a2h)M
−1

pk+1 ,

a1 = 0.21132 , a2 = 1− 2a1 , b1 = 0.5 .

I MH: Acceptance Probability: a(k) = 1 ∧ e−∆H , ∆H = H(p∗,x∗)−H(pk,xk)

xk+1 =

{
x∗ with probability a(k)

xk with probability 1− a(k)

Improving model predictability A Resampling Family for Non-Gaussian DA [12/65]
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Hybrid Monte-Carlo (HMC) sampling
Examples; code is available from: https://www.mcs.anl.gov/~attia/software.html

I MH Sampling

I HMC Sampling

Improving model predictability A Resampling Family for Non-Gaussian DA [13/65]
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1- HMC sampling filter † (for sequential DA)
The analysis step

Assimilate given information (e.g. background
and observations ) at a single time instance tk.

3D data assimilation

Time

!" !# !$

Assimilation Cycle

%!$→⋯

Assimilation Cycle

!(

I Gaussian framework:

Pb
(x) ∝ exp

(
−

1

2
‖x− x

b‖
B−1

)
; P(y|x) ∝ exp

(
−

1

2
‖H(x)− y‖

R−1

)
.

Pa
(x) ∝

π(x)︷ ︸︸ ︷
exp (−J (x)) ,

I Potential energy and gradient:

J (x) =
1

2
‖x− x

b‖
B−1 +

1

2
‖H(x)− y‖

R−1 ,

∇xJ (x) = B
−1

(x− x
b
) + H

T
R
−1

(H(x)− y) .

I The Hamiltonian:

H(p, x) =
1

2
p
T

M
−1

p + J (x).

† Attia, Ahmed, and Adrian Sandu. ”A hybrid Monte Carlo sampling filter for non-Gaussian data assimilation.” AIMS Geosciences 1, no. geosci-01-00041

(2015): 41-78.
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1- HMC sampling filter (for sequential DA)
Numerical experiments: setup

I The model (Lorenz-96): dxi
dt = xi−1 (xi+1 − xi−2)− xi + F ; i = 1, 2, . . . , 40

◦ x ∈ R40 is the state vector, with x0 ≡ x40, and F = 8

I Initial background ensemble & uncertainty:

◦ reference IC: xTrue
0 =Mt=0→t=5(−2, . . . , 2)T

◦ B0 = σ0I ∈ RNstate×Nstate , with σ0 = 0.08
∥∥∥xTrue

0

∥∥∥
2

I Observations:

◦ σobs = 5% of the average magnitude of the observed reference trajectory

◦ R = σobsI ∈ RNobs×Nobs

◦ Synthetic observations are generated every 20 time steps, with

H(x) =

{
(x1, x4, x7, . . . , x37, x40)T ∈ R14

(x′1, x
′
4, x

′
7, . . . , x

′
37, x

′
40)T ∈ R14 with x

′
i =

{
x2
i : xi ≥ 0.5
−x2

i : xi < 0.5

I Benchmark EnKF flavor: DEnKF with Gaspari-Cohn (GC) localization

Experiments are carried out using DATeS

- Ahmed Attia and Adrian Sandu, DATeS: A Highly-Extensible Data Assimilation Testing Suite, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-30, in review, 2018.

- http://people.cs.vt.edu/~attia/DATeS/
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1- HMC sampling filter (for sequential DA)
Numerical experiments: results with linear H

Time
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Position Verlet symplectic integrator is used with
time step T = 0.1 with h = 0.01, ` = 10, and
10 mixing steps. The (log) RMSE reported for
the HMC filter is the average taken over the 100
realizations of the filter.
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Two-stage symplectic integrator is used with time
step T = 0.1 with h = 0.01, ` = 10, and 10
mixing steps. The (log) RMSE reported for the
HMC filter is the average taken over the 100
realizations of the filter.
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1- HMC sampling filter (for sequential DA)
Numerical experiments: results with discontinuous quadratic H
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Three-stage symplectic integrator is used with
time step T = 0.1 with h = 0.01, ` = 10, and
10 mixing steps. The (log) RMSE reported for
the HMC filter is the average taken over the 100
realizations of the filter.
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Rank histograms for observed and unobserved
components of the state vector with Nens = 30.
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Rank histograms for observed and unobserved
components of the state vector with Nens = 10.
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1- HMC sampling filter (for sequential DA)
Numerical experiments: accuracy vs cost
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(a) Linear observation operator
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(b) Quadratic observation operator with a threshold

RMSE Vs CPU-time per assimilation cycle of DA with the Lorenz-96 model. The time reported is the average
CPU-time taken over 100 identical runs of each experiment. The ensemble size is fixed to 30 members for all
experiments here.

Improving model predictability A Resampling Family for Non-Gaussian DA [18/65]

October 31, 2018: ANL; Ahmed Attia.



Relaxing the Gaussian-Prior Assumption

I To this point, we have assumed that “the prior can be well-approximated by a Gaussian”.

I In practice, the prior is generally expected to be non-Gaussian.

I The prior PDF can hardly be formulated explicitly or even upto a scaling factor.

I Can we efficiently approximate the prior distribution given the ensemble of forecasts?

I Idea: approximate the prior density by fitting a Gaussian mixture model (GMM) to the
forecast ensemble† (e.g. using EM).

† Attia, Ahmed, Azam Moosavi, and Adrian Sandu. ”Cluster sampling filters for non-Gaussian data assimilation.” Atmosphere 9, no. 6 (2018): 213.
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2- Sampling filters with GMM prior; cluster sampling filters

I Prior (GMM):

Pb
(xk) =

nc∑
i=1

τk,iN (µk,i, Σk,i)

=

nc∑
i=1

τk,i
(2π)−

Nstate
2√

|Σk,i|
exp

(
−

1

2
‖xk − µk,i‖2

Σk,i
−1

)
,

where τk,i = P(xk(e) ∈ ith component, and (µk,i, Σk,i) are the mean and the covariance
matrix associated with the ith component.

I Likelihood:

P(yk|xk) =
(2π)−

Nobs
2√

|Rk|
exp

(
−

1

2
‖Hk(xk)− yk‖2

R
−1

k

)
I Posterior:

Pa
(xk) ∝

nc∑
i=1

τk,i√
|Σk,i|

exp

(
−

1

2
‖xk − µk,i‖2

Σk,i
−1 −

1

2
‖Hk(xk)− yk‖2

R
−1

k

)
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2- Sampling filters with GMM prior; cluster sampling filters
HMC sampling filter with GMM prior (C`HMC )

I Potential energy and gradient:

J (xk) =
1

2
‖Hk(xk)− yk‖2

R
−1

k

− log

(
nc∑
i=1

τk,i√
|Σk,i|

exp

(
−

1

2
‖xk − µk,i‖2

Σk,i
−1

))

=
1

2
‖Hk(xk)− yk‖2

R
−1

k

+ Jk,1(xk) − log

(
τk,1√
|Σk,1|

)

− log

(
1 +

nc∑
i=2

τk,i
√
|Σk,1|

τk,1
√
|Σk,i|

exp (Jk,1(xk)− Jk,i(xk))

)
.

∇xk
J (xk) = H

T
kR
−1

k (Hk(xk)− yk) +∇xk
Jk,1(xk)

−
1(

1 +
∑nc
j=2

τk,j
√
|Σk,1|

τk,1
√
|Σk,j |

exp (Jk,1(xk)− Jk,j(xk))

)
nc∑
i=2

(
τk,i

√
|Σk,1|

τk,1
√
|Σk,i|

exp (Jk,1(xk)− Jk,i(xk))

)[
∇xk
Jk,1 −∇xk

Jk,i
]
,

∇xk
Jk,i = ∇xk

Jk,i(xk) = Σ
−1

k,i(xk − µk,i) ; ∀ i = 1, 2, . . . ,nc .

I The Hamiltonian:

H(pk, xk) =
1

2
pk

T
M
−1

pk + J (xk).
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2- Sampling filters with GMM prior; cluster sampling filters
limitations & multi-chain samplers (MC-C`HMC , MC-C`MCMC )

I If GMM has too many components, C`HMC may collapse (i.e. filter degeneracy)

I This could be avoided if we force the sampler to collect ensemble members from all the
probability modes

Idea: construct a Markov chain to sample each of the components in the posterior
→ Multi-chain cluster sampling filter (MC-C`MCMC , MC-C`HMC )

I The parameters of each chain can be tuned locally

- Chains are initialized to the components’ means in the prior mixture

- The local ensemble size (sample size per chain) can be specified for example based on the prior
weight of the corresponding component, multiplied by the likelihood of the mean of that component
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2- HMC sampling filter with GMM prior; cluster sampling filters
Numerical experiments: setup

I The model (QG-1.5):

qt = ψx − εJ(ψ, q)− A∆
3
ψ + 2π sin(2πy) ,

q = ∆ψ − Fψ ,

J(ψ, q) ≡ ψxqx − ψyqy ,

where ∆ ≡ ∂2

∂x2 + ∂2

∂y2 .

- State vector: ψ ∈ R16641.

- Model subspace dimension of the order of 102 − 103.

- ψ is interpreted as either a stream function or surface elevation.

- Here F = 1600, ε = 10−5, and A = 2× 10−12.

- Boundary conditions: ψ = ∆ψ = ∆2ψ = 0.

I The observations:

1. A linear operator with random offset,

2. A flow-velocity magnitude operator:

H : R16641 → R300
; H : ψ →

√
u2 + v2 ; u = +

∂ψ

∂y
, v = −

∂ψ

∂x
.
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2- HMC sampling filter with GMM prior; cluster sampling filters
Numerical experiments: QG-1.5 results with linear H
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Data assimilation results with the linear
observation operator. RMSE of the analyses
obtained by EnKF, HMC, C`HMC , and
MC-C`HMC filters. The ensemble size is 25. The
symplectic integrator used is 3-stage, with
h = 0.0075, ` = 25, for HMC and C`HMC , and
h = 0.05/nc, ` = 15 for MC-C`HMC .
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(b) HMC
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(c) C`HMC +AIC
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(d) MC-C`HMC +AIC

Data assimilation results with the linear
observation operator. The rank histograms of
where the truth ranks among posterior ensemble
members. The ranks are evaluated for every 16th

variable in the state vector (past the correlation
bound) at 100 assimilation times.
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2- HMC sampling filter with GMM prior; cluster sampling filters
Numerical experiments: QG-1.5 results with flow magnitude H
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RMSE of the analyses obtained by HMC, C`HMC
, and MC-C`HMC filtering schemes. In this
experiment, EnKF analysis diverged after the
third cycle, and it’s RMSE results have been
omitted for clarity.
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(b) C`HMC +AIC
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(c) MC-C`HMC +AIC

The rank histograms of where the truth ranks
among posterior ensemble members. The ranks
are evaluated for every 16th variable in the state
vector (past the correlation bound) at 100
assimilation times. The filtering scheme used is
indicated under each panel.
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[3, 4] HMC sampling smoothers

Assimilate a set of observations y0, y1, . . .ym at
once, to a background x0.

Prior IC

Corrected IC
(Analysis)

Observation
&

Likelihood

4D data assimilation

Assimilation Cycle

Time

!" !# !$ !%

Forward 
Model
&!",→ !)

Adjoint
&!),→ !"

∗

1. Attia, Ahmed, Vishwas Rao, and Adrian Sandu. ”A sampling approach for four dimensional
data assimilation.” In Dynamic Data-Driven Environmental Systems Science, pp. 215-226.
Springer, Cham, 2015.

2. Attia, Ahmed, Vishwas Rao, and Adrian Sandu. ”A hybrid Monte-Carlo sampling smoother
for four-dimensional data assimilation.” International Journal for Numerical Methods in
Fluids 83, no. 1 (2017): 90-112.

3. Attia, Ahmed, Razvan Stefanescu, and Adrian Sandu. ”The reduced-order hybrid
Monte-Carlo sampling smoother.” International Journal for Numerical Methods in Fluids 83,
no. 1 (2017): 28-51.
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Motivation

Bayesian Inversion & Data Assimilation

A Resampling Family for Non-Gaussian DA

1- HMC sampling filter

2- Cluster sampling filters

3- HMC sampling smoother

4- Reduced-order HMC smoother

Optimal Design of Experiments (ODE)

Bayesian inversion & sensor placement

Goal-Oriented approach for ODE (GOODE)

EnKF Inflation & Localization

OED-based inflation & localization

Concluding Remarks & Future Plans
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Optimal Experimental Design
I Sensor placement for optimal parameter recovery

Experimental design: ξ :=

{
y1, . . . ,yNs

w1, . . . , wNs

}

y1, . . . ,yNs : candidate sensor locations; we can vary weights wi =

{
0 sensor inactive

1 : sensor active

}
I Find the best r sensor location such as to maximize some utility function (e.g. identification

accuracy, information gain, etc.)

I Challenges:

1. Brute force search for an optimal design is combinatorially prohibitive. It requires
(Ns
r

)
function

evaluations; e.g., for Ns = 35 , and r = 10, then ∼ 2× 108 function evaluations

2. Each function evaluations is prohibitively expensive

* The covariance matrix can have over 1012 entries ∼ 8 TB

* Need to evaluate the determinant or the trace repeatedly

I Solution strategy:

- Gradient based optimization with relaxation wi ∈ [0, 1], and

- use sparsifying penalty functions
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Inverse Problem & Sensor Placement
Bayesian inverse problem: Gaussian framework

I Forward operator:
y = F(θ) + η ; η ∼ N (0,Γnoise)

I The prior and the likelihood:

P(θ) = N (θpr,Γpr) , P(y|θ) = N (F(θ),Γnoise) ,

For time-dependent model, with temporally-uncorrelated observational noise: Γnoise is a block diagonal

with kth equal to Rk, observation error covariances at time instance tk

I The posterior: N
(
θy

post
,Γpost

)
:

Γpost =
(
F
∗
Γ
−1

noiseF + Γ
−1

pr

)−1

≡
(
Hmisfit + Γ

−1

pr

)−1

= H
−1

θ
y

post = Γpost

(
Γ
−1

pr θpr + F
∗
Γ
−1

noise y
)
,where

* F∗ is the adjoint of the forward operator F

* H is the Hessian of the negative posterior-log

* Hmisfit is the data misfit term of the Hessian (i.e. Hessian-misfit)
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Experimental Design
Standard formulation

I The design w enters the Bayesian inverse problem through the data likelihood:

πlike(y|θ; w) ∝ exp

(
−

1

2
(F(θ)− y)

T
WΓ (F(θ)− y)

)
; WΓ = Γ

−1/2

noise
WΓ

−1/2

noise

where W = Im ⊗Ws, and Ws = diag (w1, . . . , wNs )

I Given the weighted likelihood, the posterior covariance of θ reads:

Γpost(w) = [H(w)]
−1

=
(
F
∗
WΓF + Γ

−1

pr

)−1

=
(
Hmisfit(w) + Γ

−1

pr

)−1

I Standard Approach for ODE: find w that minimizes posterior uncertainty, e.g.:
I A-optimality: Tr (Γpost)

I D-optimality: det (Γpost)

I etc.

Here, ⊗ is the Kronecker product.
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Experimental Design
Goal-oriented formulation

what if we are interested in a prediction quantity

ρ = P(θ) ,

rather than the parameter itself?
e.g. the average contaminant concentration
within a specific distance from the buildings’ walls;

Goal-Oriented ODE (GOODE)

0.0
0.1
0.2
0.3

Weights
    (w)
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GOODE

I Consider a linear prediction:
ρ = Pθ ,

where P is a linear prediction operator

I In the linear-Gaussian settings: ρ follows a Gaussian prior N (ρpr,Σpr)

ρpr = Pθpr Σpr = PΓprP
∗

I Given the observation y, and the design w, the posterior distribution of ρ is N (ρpost,Σpost),
with

ρpost = Pθ
y

post

Σpost = PΓpostP
∗

= PH
−1

P
∗

= P
(
Hmisfit + Γ

−1

pr

)−1

P
∗

GOODE Objective:

Find the design w that minimizes the uncertainty in ρ
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GOODE: A-Optimality
space-time formulation

The G-O A-optimal design (wGA
opt )

w
GA

opt
= arg min

w∈RNs

Tr(Σpost(w)) + α ‖w‖

s.t. 0 ≤ wi ≤ 1, i = 1, . . . ,Ns

I The gradient (discarding the regularization term) :

∇wTr(Σpost(w)) = −
Npred∑
i=1

ζi � ζi

where ζi =

(
Γ
− 1

2
noiseF [H(w)]−1 P∗ ei

)
, and ei is the ith coordinate vector in RNpred

Here, � is the pointwise Hadamard product
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GOODE: A-Optimality
4D-Var formulation

I Efficient computation of the gradient: for temporally-uncorrelated observational noise, the
gradient:

∇wTr(Σpost(w)) = −
m∑
k=1

Npred∑
j=1

ζk,j � ζk,j ,

where

ζk,j = R
− 1

2
k F0,k [H(w)]

−1
P
∗

ei

and

* ei is the ith coordinate vector in RNpred

* F0,k is the forward operator that maps the parameter to the equivalent observation at time instance
tk ; k = 1, 2, . . . ,m
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GOODE: D-Optimality
4D-Var formulation

The G-O D-optimal design (wGD
opt )

w
GD

opt
= arg min

w∈RNs

log det (Σpost(w)) + α ‖w‖

s.t. 0 ≤ wi ≤ 1, i = 1, . . . ,Ns

I The gradient (discarding the regularization term):

∇w (log det (Σpost(w))) = −
m∑
k=1

Npred∑
j=1

ξk,j � ξk,j

where
ξk,j = R

−1/2

k F0,k [H(w)]
−1

P
∗
Σ
−1/2

post (w)ej

and

1. ei is the ith coordinate vector in RNpred

2. Σ−1
post(w) = Σ

−1/2
post (w) Σ

−1/2
post (w)
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GOODE: D-Optimality
Alternative 4D-Var formulation

I Efficient computation of the gradient: for temporally-uncorrelated observational noise, the
gradient is equivalent to:

∇w (log det (Σpost(w))) = −
m∑
k=1

Ns∑
i=1

ei
(
η

T

k,iΣ
−1

postηk,i

)
with

ηk,i = P [H(w)]
−1

F
∗
k,0 R

−1/2

k ei

where ei is the ith coordinate vector in RNs , i.e. in the observation space
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GOODE
Experiments using Advection-Diffusion Model: Setup I

I Numerical model (A-D): u solves:

ut − κ∆u+ v · ∇u = 0 in Ω× [0, T ]

u(0, x) = u0 in Ω

κ∇u · n = 0 on ∂Ω× [0, T ]

* Ω ∈ R2 is an open and bounded domain
* u the concentration of a contaminant in the domain Ω
* κ is the diffusivity, and v is the velocity field

I Observations: Ns = 22 candidate sensor locations, with
* t0 = 0, and T = 0.8
* and observations are taken at time instances {tk} = {0.4, 0.6, 0.8}

respectively

Domain, observational
grid, and velocity field

B1

B2

GOODE Experiments are implemented in hIPPYlib

- https://hippylib.github.io/
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GOODE
Experiments using Advection-Diffusion Model: Setup II

Predictions: P predicts u at the degrees of freedom of the FE discretization withing distance ε from one or

both buildings at tpred.

Vector-valued prediction Scalar-valued prediction
u within distance ε from the internal boundaries
at time tpred

the “average” u within distance ε from the inter-
nal boundaries at time tpred

B1 Pv0 Ps0 ≡ vTPv0

B2 Pv1 Ps1 ≡ vTPv1

B1 & B2 Pv2 Ps2 ≡ vTPv2

The vector-valued operators, predict the value of u at the prediction grid-points, at prediction time. The

scalar-valued operators average the vector-valued prediction QoI, i.e. v =
(

1
Npred

, . . . , 1
Npred

)T
∈ RNpred

Here, we show A-GOODE results for:

Prediction operator tpred ε Npred

Pv0 1.0 0.02 164

Pv1 1.0 0.02 138

Pv2 1.0 0.02 302

Regularization: `1 norm is used

Attia, Ahmed, Alen Alexanderian, and Arvind K. Saibaba. ”Goal-Oriented Optimal Design of Experiments for Large-Scale Bayesian Linear Inverse

Problems.” Inverse Problems, Vol . 34, Number 9, Pages 095009 (2018).
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Numerical Results: P = Pv∗; A-GOODE

0.0
0.1
0.2
0.3

Weights
    (w)

(c) Pv0 ; α = 10−4

0.0
0.1
0.2
0.3

Weights
    (w)

(d) Pv1 ; α = 10−4

0.0
0.1
0.2
0.3

Weights
    (w)

(e) Pv2 ; α = 10−4

(f) Pv0 ; α = 10−4 (g) Pv1 ; α = 10−4 (h) Pv2 ; α = 10−4

The optimal weights {wi}i=1,...,Ns are plotted on the z-axis, where the weights are normalized to add up to 1
(top row); the corresponding active sensors are plotted on the bottom row.
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Choosing the penalty parameter: P = Pv∗; A-GOODE
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(d) Pv1

A-GOODE results with a sequence of 75 penalty parameter values spaced between [10−7, 0.2].
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(b) Pv2

Test with a prediction operator Pv2.
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Outline

Motivation

Bayesian Inversion & Data Assimilation

A Resampling Family for Non-Gaussian DA

1- HMC sampling filter

2- Cluster sampling filters

3- HMC sampling smoother

4- Reduced-order HMC smoother

Optimal Design of Experiments (ODE)

Bayesian inversion & sensor placement

Goal-Oriented approach for ODE (GOODE)

EnKF Inflation & Localization

OED-based inflation & localization

Concluding Remarks & Future Plans
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Ensemble Kalman Filter (EnKF)
Assimilation cycle over [tk−1, tk]; Forecast step

I Initialize: an analysis ensemble {xa

k−1
(e)}e=1,...,Nens

at tk−1

I Forecast: use the discretized model Mtk−1→tk to generate a forecast ensemble at tk:

x
b

k(e) =Mtk−1→tk (x
a

k−1
(e)) + ηk(e), e = 1, . . . ,Nens

I Forecast/Prior statistics:

x
b

k =
1

Nens

Nens∑
e=1

x
b

k(e)

Bk =
1

Nens − 1
X

b

k

(
X

b

k

)T
; X

b

k = [x
b

k(1)− x
b

k, . . . ,x
b

k(Nens)− x
b

k]

Model 
State

Time

!"#$

Ensemble data assimilation

Initial/Analysis 
Ensemble ~ &' ("#$

Initialize
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Ensemble Kalman Filter (EnKF)
Assimilation cycle over [tk−1, tk]; Analysis step

I Given an observation yk at time tk

I Analysis: sample the posterior (EnKF update)

Kk = BkH
T

k

(
HkBkH

T

k + Rk

)−1

x
a

k(e) = x
b

k(e) + Kk

(
[yk + ζk(e)]−Hk(x

b

k(e))
)

I The posterior (analysis) error covariance matrix:

Ak = (I−KkH) Bk ≡
(
B
−1

k + H
T

kR
−1

Hk

)−1

Model 
State

Forward 
Model
!"#$%,→ "#

Observation
&

Likelihood

Time

"#(% "#

Ensemble data assimilation
Analysis step

Observation: )#; 
Likelihood: * )#|,#
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Ensemble Kalman Filter (EnKF)
Sequential EnKF Issues

I Limited-size ensemble results in sampling errors, explained by:

- variance underestimation

- accumulation of long-range spurious correlations

- filter divergence after a few assimilation cycles

I EnKF requires inflation & localization

Model 
State

Forward 
Model
!"#$%,→ "#

Corrected 
Model State

(Analysis)

Time

"#(% "#

Observation
&

Likelihood

Ensemble data assimilation
Analysis step

"#)%

Assimilation Cycle

Forward 
Model
!"#,→ "#*%

Analysis Ensemble 
~ ,- .#

Sequentially
Repeat the Assimilation Cycle
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EnKF: Inflation

Space-independent inflation:

X̃b =
[√
λ
(
x

b
(1)− x

b
)
, . . . ,

√
λ
(
x

b
(Nens)− x

b
)]

; 0 < λ
l ≤ λ ≤ λu

B̃ =
1

Nens − 1
X̃b

(
X̃b

)
T

= λB

Space-dependent inflation: Let D := diag (λ) ≡
∑Nstate
i=1

λieie
T
i,

X̃b = D
1
2 X

b
,

B̃ =
1

Nens − 1
X̃b

(
X̃b

)
T

= D
1
2 BD

1
2 .

The inflated Kalman gain K̃, and analysis error covariance matrix Ã

K̃ = B̃H
T
(
HB̃H

T
+ R

)−1

; Ã =
(
I− K̃H

)
B̃ ≡

(
B̃
−1

+ H
T
R
−1

H
)−1
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EnKF: Schur-Product Localization
State-space formulation; B−Localization

Covariance localization:

B̂ := C�B; s.t. C = [ρi,j ]i,j=1,2,...,Nstate

Entries of C are created using space-dependent localization functions †:

→ Gauss:

ρi,j(L) = exp

(−d(i, j)2

2L2

)
; i, j = 1, 2, . . . ,Nstate ,

→ 5th-order Gaspari-Cohn:

ρi,j(L) =


− 1

4

(
d(i,j)

L

)
5

+ 1

2

(
d(i,j)

L

)
4

+ 5

8

(
d(i,j)

L

)
3

− 5

3

(
d(i,j)

L

)
2

+ 1 , 0 ≤ d(i, j) ≤ L
1

12

(
d(i,j)

L

)
5

− 1

2

(
d(i,j)

L

)
4

+ 5

8

(
d(i,j)

L

)
3

+ 5

3

(
d(i,j)

L

)
2

− 5
(
d(i,j)

L

)
+ 4− 2

3

(
L

d(i,j)

)
, L ≤ d(i, j) ≤ 2L

0 . 2L ≤ d(i, j)

†

- d(i, j): distance between ith and jth grid points

- L ≡ L(i, j): radius of influence, i.e. localization radius, for ith and jth grid points
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EnKF: Schur-Product Localization
Observation-space formulation; R−Localization

I Localization in observation space (R−localization):

I HB is replaced with ”HB = Cloc,1 �HB, where

C
loc,1

=
[
ρ
o|m
i,j

]
; i = 1, 2, . . .Nobs ; j = 1, 2, . . .Nstate

I HBHT can be replaced with HBHT
∧

= Cloc,2 �HBHT, where

C
loc,2 ≡ C

o|o
=
[
ρ
o|o
i,j

]
; i, j = 1, 2, . . .Nobs

- ρ
o|m
i,j is calculated between the ith observation grid point and the jth model grid point.

- ρ
o|o
i,j is calculated between the ith and jth observation grid points.

I Assign radii to state grid points vs. observation grid points:

- Let L ∈ RNobs to model grid points, and project to observations for Cloc,2 [hard/unknown]

- Let L ∈ RNobs to observation grid points; [efficient; followed here]

The parameters λ ∈ RNstate , L ∈ (RNstate or RNobs), are generally tuned empirically!

We proposed an OED approach to automatically tune/ these parameters.
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OED Approach for Adaptive Inflation

The A-optimal design (inflation parameter, λA−opt) minimizes:

min
λ∈RNstate

Tr
(
Ã(λ)

)
− α ‖λ− 1‖

1

subject to 1 = λ
l
i ≤ λi ≤ λ

u
i , i = 1, . . . ,Nstate

Remark: we choose the sign of the regularization term to be negative, unlike the traditional formulation

I Let H = H = I with uncorrelated observation noise, the design criterion becomes:

Ψ
Infl

(λ) := Tr
(
Ã
)

=

Nstate∑
i=1

(
λ
−1
i σ

−2
i + r

−2
i

)−1

I Decreasing λi reduces ΨInfl, i.e. the optimizer will always move toward λl
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OED Approach for Adaptive Inflation

Solving the A-OED problem, requires evaluating the objective, and the gradient:

I The design criterion:

Ψ
Infl

(λ) := Tr
(
Ã
)

= Tr
(
B̃
)
− Tr

((
R + HB̃H

T
)−1

HB̃B̃H
T

)

I The gradient:

∇λΨ
Infl

(λ) =

Nstate∑
i=1

λ
−1

i eie
T

i (z1 − z2− z3 + z4)

z1 = B̃ei

z2 = H
T
(
R + HB̃H

T
)−1

HB̃z1

z3 = B̃H
T
(
R + HB̃H

T
)−1

Hz1

z4 = H
T
(
R + HB̃H

T
)−1

HB̃z3

ei ∈ RNstate is the ith cardinality vector
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OED Adaptive B−Localization (State-Space)

min
L∈RNstate

Ψ
B−Loc

(L) + γ Φ(L) := Tr
(
Â(L)

)
+ γ ‖L‖

2

subject to l
l
i ≤ li ≤ l

u
i , i = 1, . . . ,Nstate

I The design criterion:

Ψ
B−Loc

(L) = Tr
(
B̂
)
− Tr

((
R + HB̂H

T
)−1

HB̂B̂H
T

)

I The gradient:

∇LΨ
B−Loc

=

Nstate∑
i=1

ei lB,i
(
I + H

T
R
−1

HB̂
)−1

(
I + B̂H

T
R
−1

H
)−1

ei

lB,i = l
T

i �
(
e

T

iB
)

li =

(
∂ρi,1(li)

∂li
,
∂ρi,2(li)

∂li
, . . . ,

∂ρi,Nstate (li)

∂li

)T

ei ∈ RNstate is the ith cardinality vector
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OED Adaptive: Observation-Space Localization

I Assume L ∈ RNobs is attached to observation grid points

I HB is replaced with ”HB = Cloc,1 �HB, with

C
loc,1

=
[
ρ
o|m
i,j (li)

]
; i = 1, 2, . . .Nobs ; j = 1, 2, . . .Nstate

I HBHT can be replaced with ’HBHT = Cloc,2 �HBHT, with

C
o|o

:=
1

2

(
C
o
r + C

o
c

)
=

1

2

[
ρ
o|o
i,j (li) + ρ

o|o
i,j (lj)

]
i,j=1,2,...,Nstate

I Localized posterior covariances:

I Localize HB:

Â = B−”HB
T(

R + HBH
T
)−1”HB

I Localize both HB and HBHT:

Â = B−”HB
T
(

R + ’HBHT

)−1”HB
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OED Adaptive: Observation-Space Localization

I Assume L ∈ RNobs is attached to observation grid points

I HB is replaced with ”HB = Cloc,1 �HB, with

C
loc,1

=
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]
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I Localized posterior covariances:
I Localize HB:
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T
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OED Adaptive R−Localization
Decorrelate HB

I The design criterion:

Ψ
R−Loc

(L) = Tr (B)− Tr
(”HB”HB

T(
R + HBH

T
)−1
)

; L ∈ RNobs

I The gradient:

∇LΨ
R−Loc

= −2

Nobs∑
i=1

ei l
T

HB,i ψi

ψi =”HB
T(

R + HBH
T
)−1

ei

lHB,i =
(
l
s
i

)
T �

(
e

T

iHB
)

l
s
i =

(
∂ρi,1(li)

∂li
,
∂ρi,2(li)

∂li
, . . . ,

∂ρi,Nstate (li)

∂li

)T

ei ∈ RNobs is the ith cardinality vector
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OED Adaptive R−Localization
Decorrelate HB and HBHT

I The design criterion:

Ψ
R−Loc

(L) = Tr (B)− Tr

(”HB”HB
T
(
R + HBHT

∧)−1
)

; L ∈ RNobs

I The gradient:

∇LΨ
R−Loc

=

Nobs∑
i=1

ei

(
η
o
i − 2 l

T

HB,i

)
ψ
o
i

ψ
o
i =”HB

T
(
R + HBHT

∧)−1

ei

η
o
i = l

o
B,i

(
R + HBHT

∧)−1”HB

l
o
B,i =

(
l
o
i

)
T �

(
e

T

iHBH
T
)

l
o
i =

(
∂ρi,1(li)

∂li
,
∂ρi,2(li)

∂li
, . . . ,

∂ρi,Nobs
(li)

∂li

)T
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Experimental Setup

I The model (Lorenz-96):

dxi

dt
= xi−1 (xi+1 − xi−2)− xi + F ; i = 1, 2, . . . , 40 ,

◦ x ∈ R40 is the state vector, with x0 ≡ x40

◦ F = 8

I Initial background ensemble & uncertainty:

◦ reference IC: xTrue
0 =Mt=0→t=5(−2, . . . , 2)T

◦ B0 = σ0I ∈ RNstate×Nstate , with σ0 = 0.08
∥∥∥xTrue

0

∥∥∥
2

I Observations:

◦ σobs = 5% of the average magnitude of the observed reference trajectory

◦ R = σobsI ∈ RNobs×Nobs

◦ Synthetic observations are generated every 20 time steps, with

H(x) = Hx = (x1, x3, x5, . . . , x37, x39)
T ∈ R20

.

I EnKF flavor used here: DEnKF with Gaspari-Cohn (GC) localization

Experiments are implemented in DATeS

- http://people.cs.vt.edu/~attia/DATeS/

- Ahmed Attia and Adrian Sandu, DATeS: A Highly-Extensible Data Assimilation Testing Suite, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-30, in review, 2018.
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Numerical Results: Benchmark
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Figure 2: Data assimilation results with DEnKF applied to Lorenz-96 system. RMSE, on a log-scale, and analysis rank
histogram with fitted uniform and Beta distributions, are shown. An ideal, i.e. uniform, uniform distribution, and a fitted Beta
distributions are added to the rank histogram. The localization radius is set equal to 4, and the inflation factor is 1.05.

5.1. Adaptive inflation results

Solving the OED A-optimal adaptive inflation problem (15) requires presetting the penalty parameter
α. To analyze the behaviour of the proposed algorithm, we solve the space-time adaptive inflation prob-
lem with various choices of the penalty parameter. Specifically, we solve (15), for α = 0, 0.01, . . . , 0.24,
and use the optimal solution in the inflation step of DEnKF.

In what follows, we detail the results of DEnKF with adaptive inflation, for ensemble size Nens =

25. Figure 3 shows RMSE and analysis rank histogram results of EnKF experiment with adaptive
space-time inflation for two choices of the regularization parameter α = 0.14, and α = 0.04. Our first
notice was that for values of α near zero, specifically 0 ≤ α ≤ 0.03, DEnKF with adaptive inflation
diverged. Moreover, for these small values, as alpha is pushed away from zero, the average RMSE of
the experiment decreased considerably. For all values of α ≥ 0.04, the filter performance was similar for
all experiments with slight differences in results. Specifically, by increasing the penalty parameter, the
rank histogram shape changed from mound to roughly uniform, where the RME was always below the
benchmark RMSE.

15

The minimum average RMSE over
the interval [10, 30], for every
choice of Nens, is indicated by red
a triangle. Blue tripods indicate
the minimum KL distance between
the analysis rank histogram and a
uniformly distributed rank
histogram. Space-independent
radius of influence L = 4 is used.

Analysis RMSE and rank histogram of DEnKF with
L = 4, and λ = 1.05.

Benchmark EnKF Results
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Numerical Results: A-OED Adaptive Space-Time Inflation I
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(b) Rank histogram; α = 0.14
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(d) Rank histogram; α = 0.04

Figure 3: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 system. The localization
radius is fixed to 4. RMSE, on a log-scale, and analysis rank histogram with fitted uniform and Beta distributions, are shown.
The optimization penalty parameter is indicated under each panel.

Another effect of increasing the value of the penalty parameter, is the decrease in variability of the
space-time inflation parameter. The evolution of the adaptive inflation factor over space and time is
shown in Figure 4. The results depicted in this Figure suggest that varying the penalty parameter affects
the variability of λ entries, while the mean behavior of these parameter is not affected.

16

The localization radius is fixed to L = 4. The optimization penalty parameter α is indicated under each panel.
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Numerical Results: A-OED Adaptive Space-Time Inflation II
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(b) Rank histogram; α = 0.14
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Figure 3: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 system. The localization
radius is fixed to 4. RMSE, on a log-scale, and analysis rank histogram with fitted uniform and Beta distributions, are shown.
The optimization penalty parameter is indicated under each panel.

Another effect of increasing the value of the penalty parameter, is the decrease in variability of the
space-time inflation parameter. The evolution of the adaptive inflation factor over space and time is
shown in Figure 4. The results depicted in this Figure suggest that varying the penalty parameter affects
the variability of λ entries, while the mean behavior of these parameter is not affected.
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Figure 3: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 model. The localization
radius is fixed to l = 4. Analysis RMSE, on a log-scale, and analysis rank histogram are shown. The optimization penalty
parameter α is indicated under each panel.

Another effect of increasing the value of the penalty parameter α, is the decrease in both magnitude
and variability of the space-time inflation parameter. A Box-plot demonstrating the evolution of the
adaptive inflation factor over space and time is shown in Figure 4. The results depicted in this Figure
suggest that varying the penalty parameter affects the magnitude and the variability of λ entries, while
the temporal behavior of these parameter is not affected.
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Figure 4: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 model. Box-plots ex-
pressing the range of values of the inflation coefficients at each time instant, over the testing timespan [10, 30]. The optimization
penalty parameter α is indicated under each panel.

In what follows, we show the results of the proposed adaptive localization algorithm, followed by

16

Box plots expressing the range of values of the inflation coefficients at each time instant, over the testing
timespan [10, 30].
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Numerical Results; A-OED Inflation Regularization I
Choosing α
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L-curve plots are are plotted for 25 equidistant values of the penalty parameter, at every assimilation time
instant over the testing timespan [0.03, 0.24]. The values of the penalty parameter α that resulted in the 5
smallest average RMSEs, over all experiments carried out with different penalties, are highlighted on the plot
and indicated in the legend along with the corresponding average RMSE.
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Numerical Results; A-OED Inflation Regularization II
Choosing α
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Figure 11: Data assimilation results of DEnKF, with adaptive space-time inflation, applied to Lorenz-96 system. L-Curve plots
are shown for 25 equidistant values of the penalty parameter in the interval [0.03, 0.24]. The localization function are indicated
under each panel.

Based on the discussion in the Section 5.1, and the results revealed by Figures (10, 11), we notice
that all values of ↵ lying on the wiggling portion of L-curve give similar and desirable results. This
behavior suggests a preliminary strategy to selecting the adaptive inflation penalty parameter ↵.
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Figure 12: Average RMSE and KL-divergence from a uniform rank histogram resulted for 25 equidistant values of the penalty
parameter in the interval [0.03, 0.24]. The localization function are indicated under each panel. Penalty parameters that led to
filter or optimizer divergence are marked by red x marks.

Regularization for adaptive localization. As discussed earlier, while regularization might not be re-
quired here, for the sake of completion, we show L-curve plots in the case of adaptive covariance local-
ization. A surface of L-curves, over time, is shown in Figure 13. This plot shows the L2 norm of the
optimal solution, i.e. optimal localization radii ⇢, on the x-axis, assimilation time on the y-axis, and the
value of Infl corresponding to this optimal solution, on the z-axis. The values of the penalty parameter �
that resulted in analysis trajectory with minimum average RMSE, are indicated by the red circles. Here,
the values of the penalty parameter � increase in the opposite direction of the x-axis, i.e. in the direction
of decreasing k⇢k2. The results here support our claim that no-to-little regularization is needed in the
case of adaptive localization.

21

L-curve plots are are plotted for 25 equidistant values of the penalty parameter at assimilation cycles 100 and
150, respectively.
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Numerical Results: A-OED Adaptive Space-Time Localization I
State-space formulation
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(b) Rank histogram; γ = 0
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Figure 5: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. The inflation
factor is fixed to 1.05. RMSE, on a log-scale, and analysis rank histogram with fitted uniform and Beta distributions, are shown.
The optimization penalty parameter γ is shown under each panel.

The results in Figure 5 suggest that the penalty term in (21) is not necessarily required to achieve
good performance of the adaptive filter. Moreover, while increasing the penalty parameter γ may result
in more uniform rank histogram, it might also degrade the filter accuracy. This is supported by the
results in Figure 5, along with results in Figure 6 which shows results for a penalty parameter value of
γ = 0.04,

18

The inflation factor is fixed to λ = 1.05. The optimization penalty parameter γ is shown under each panel.
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Numerical Results: A-OED Adaptive Space-Time Localization II
State-space formulation

100 130 160 190 220 250 280
Time (assimilation cycles)

10−1

4× 10−2

6× 10−2

lo
g-

R
M

S
E

Optimal DEnKF

OED-DEnKF

(a) RMSE

0 10 20
Rank

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
F

re
qu

en
cy

(b) Rank histogram

Figure 6: Same as Figure 5, with the optimization penalty parameter is γ = 0.04.

Figure 7 shows the space-time evolution of the localization radii over the testing timespan.
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Figure 9: Same as Figure 8, with the optimization penalty parameter is � = 0.04.
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(b) � = 0.001
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Figure 10: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.

From (A.4, A.5), it follows immediately that

@ Infl(�)
@�i

= ��1
i eT

i
eAei � ��1

i eT
i HT

⇣
R +HeBHT

⌘�1
HeBeAei . (A.6)

The derivative (A.6) can be e�ciently evaluated given the matrices of ensemble anomalies of both the
forecast and analysis respectively. Moreover, we can proceed further as follows to avoid constructing
the analysis ensemble at every iteration

eA =
⇣
I + eBHTR�1H

⌘�1 eB =
✓
I � eBHT

⇣
R +HeBHT

⌘�1
H

◆
eB = eB � eBHT

⇣
R +HeBHT

⌘�1
HeB . (A.7)

Then,
eB�1eAeAi =

✓
I �HT

⇣
R +HeBHT

⌘�1
HeB

◆✓
eB � eBHT

⇣
R +HeBHT

⌘�1
HeB

◆

= eB � eBHTG�1HeB �HTG�1HeBeB +HTG�1HeBeBHTG�1HeB ,
(A.8)
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Figure 7: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.

As indicated by the results in Figures 6 and 7, unlike the case with adaptive inflation, forcing regu-
larization by increasing the penalty parameter γ, restricts the values of the localization radii, as well as
its variability, and can result in degradation of the filter accuracy.

5.2.1. Localization in different spaces

Following the discussion in Section 3.3, we show here the results of adaptive localization carried out
in the observation space. Figure 8 shows the RMSE results of EnKF with Gaspari-Cohn localization, and
optimal localization radii l found by solving the OED-localization problems (21, 26, 29), respectively.
Here, we solve the adaptive localization problem at each assimilation cycle with penalty parameter
γ = 0, i.e. without forcing regularization.
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Results for λ = 1.05, and γ = 0.04.
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Figure 6: Same as Figure 5, with the optimization penalty parameter is γ = 0.04.

Figure 7 shows the space-time evolution of the localization radii over the testing timespan.
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Figure 9: Same as Figure 8, with the optimization penalty parameter is � = 0.04.
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(b) � = 0.001
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Figure 10: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.

From (A.4, A.5), it follows immediately that

@ Infl(�)
@�i

= ��1
i eT

i
eAei � ��1

i eT
i HT

⇣
R +HeBHT

⌘�1
HeBeAei . (A.6)

The derivative (A.6) can be e�ciently evaluated given the matrices of ensemble anomalies of both the
forecast and analysis respectively. Moreover, we can proceed further as follows to avoid constructing
the analysis ensemble at every iteration

eA =
⇣
I + eBHTR�1H

⌘�1 eB =
✓
I � eBHT

⇣
R +HeBHT

⌘�1
H

◆
eB = eB � eBHT

⇣
R +HeBHT

⌘�1
HeB . (A.7)

Then,
eB�1eAeAi =

✓
I �HT

⇣
R +HeBHT

⌘�1
HeB

◆✓
eB � eBHT

⇣
R +HeBHT

⌘�1
HeB

◆

= eB � eBHTG�1HeB �HTG�1HeBeB +HTG�1HeBeBHTG�1HeB ,
(A.8)

20

Figure 7: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 system. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the interval [10, 30]. The penalty
parameter, and the localization function are indicated under each panel.

As indicated by the results in Figures 6 and 7, unlike the case with adaptive inflation, forcing regu-
larization by increasing the penalty parameter γ, restricts the values of the localization radii, as well as
its variability, and can result in degradation of the filter accuracy.

5.2.1. Localization in different spaces

Following the discussion in Section 3.3, we show here the results of adaptive localization carried out
in the observation space. Figure 8 shows the RMSE results of EnKF with Gaspari-Cohn localization, and
optimal localization radii l found by solving the OED-localization problems (21, 26, 29), respectively.
Here, we solve the adaptive localization problem at each assimilation cycle with penalty parameter
γ = 0, i.e. without forcing regularization.
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Figure 6: Same as Figure 5, with the optimization penalty parameter is γ = 0.04.
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(a) γ = 0.0
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(b) γ = 0.001
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Figure 7: Data assimilation results of DEnKF, with adaptive space-time localization, applied to Lorenz-96 model. Matrix
of pixels expressing the range of values of the localization radii at each time points, over the testing timespan [10, 30]. The
optimization penalty parameter γ is shown under each panel.

As indicated by the results in Figures 6 and 7, forcing regularization by increasing the penalty
parameter γ, restricts the values of the localization radii, as well as its variability, and can result in
degradation of the filter accuracy. Further discussion on the choice of the penalty parameter γ is given
in 5.3.

5.2.1. Localization in different spaces

Following the discussion in Section 3.3, we show here the results of adaptive localization carried
out in the observation space. We choose the observation localization kernel that localizes the projected
covariances HBHT, to be Co|o = 1

2

(
Co|o

r + Co|o
c

)
. Figure 8 shows the RMSE results of EnKF with GC lo-

calization, and optimal localization radii L found by solving the OED-localization problems (21, 26, 29),
respectively. Here, we solve the adaptive localization problem at each assimilation cycle with penalty
parameter γ = 0, i.e. without forcing regularization.
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Localization radii at each time points, over the testing timespan [10, 30]. The optimization penalty parameter
γ is shown under each panel.
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Numerical Results: A-OED Adaptive Space-Time Localization
Choosing γ
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L-curve plots are shown for values of the penalty parameter γ = 0, 0.001, . . . , 0.34.
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Numerical Results: A-OED Adaptive Space-Time Localization I
Observation-space formulation
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A-OED optimal localization radii L found by solving the OED localization problems in model state-space, and
observation space respectively. No regularization is applied, i.e., γ = 0
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Numerical Results: A-OED Adaptive Space-Time Localization II
Observation-space formulation

Rank histogram for A-OED localization solved in model state-space, and observation space respectively.

Space-time optimal localization radii over the testing timespan.
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Concluding Remarks

I A family of sampling algorithms for Non-Gaussian DA

- HMC sampling filter, and Cluster sampling filters

- HMC smoother, and Reduced HMC smoothers

I Goal oriented Optimal Design of Experiments (GOODE)

- Mathematical and algorithmic foundations for goal-oriented optimal design of experiments, for
PDE-based Bayesian linear inverse problems

I OED framework for adaptive localization and inflation

- Either A-OED inflation or localization is carried out each cycle

- Can create a weighted objective to account for both inflation and localization

- Unlike localization, regularization is a must for adaptive inflation
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