Data Assimilation for Numerical Weather Prediction

[NWP] Project

Ahmed Attia

Statistical and Applied Mathematical Science Institute (SAMSI) 19 TW Alexander Dr, Durham, NC 27703 attia@ {vt.edu || samsi.info}

> Department of Mathematics North Carolina State University amattia2@ncsu.edu

SAMS/NCSU UG-Workshop May 15, 2017

Motivation: Advection-Diffusion

Consider the concentration of a contaminant *u* in the domain Ω ∈ R²:

- Simulation: given the initial condition x₀, a forward discretized model *F*, integrate/solve the PDEs forward in time!
- ► Forward problem: given model state x, predict model observations b = H(x)

[NWP] Project Motivation [2/14] May 15, 2017: {DA 4 NWP} SAMS/NCSU UG-Workshop , Ahmed Attia. (http://samsi.info)

Motivation: Advection-Diffusion

Consider the concentration of a contaminant *u* in the domain Ω ∈ R²:

- ► Simulation: given the initial condition x₀, a forward discretized model *F*, integrate/solve the PDEs forward in time!
- ► Forward problem: given model state x, predict model observations b = H(x)
- Inverse problem: given noisy, and sparse observation y, and "possibly" uncertain model state x^b, recover/estimate the unknown model state x^{true}
- Design of experiments:

e.g. : sensor placement for optimal reconstruction of parameter

May 15, 2017: {DA 4 NWP} SAMS/NCSU UG-Workshop , Ahmed Attia. (http://samsi.info)

Motivation

"All models are wrong but some are useful"

Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201 – 236.

[NWP] Project Motivation [4/14] May 15, 2017: {DA 4 NWP} SAMS/NCSU UG-Workshop , Ahmed Attia. (http://samsi.info)

Motivation

▶ Inverse problems and Data Assimilation (DA):

 Applications include: atmospheric forecasting, power flow, oil reservoir, volcano simulation, etc.

DA: Statistical Inverse Problems

Statistical formulation:

- The prior $\mathcal{P}^{b}(\mathbf{x})$: encapsulates our knowledge about the system state prior to incorporating additional information.
- The likelihood P(y|x): describes the mismatch between what is observed and what the model predicts to be observed.
- The posterior P(x|y): probability distribution of the system state conditioned by the collected observations. This is the probabilistic solution of the inverse problem!
- ► Bayes' theorem $\rightarrow \mathcal{P}^{\mathrm{a}}(\mathbf{x}) = \mathsf{P}(\mathbf{x}|\mathbf{y}) = \frac{\mathsf{P}(\mathbf{y}|\mathbf{x})\mathcal{P}^{\mathrm{b}}(\mathbf{x})}{\mathsf{P}(\mathbf{y})} \propto \mathsf{P}(\mathbf{y}|\mathbf{x})\mathcal{P}^{\mathrm{b}}(\mathbf{x}).$
- Simplifying assumptions are imposed on the error distribution (e.g. background error, observation errors, etc.).
- "*Typically*", errors are assumed to be Gaussian (*Easy, tractable,* ...).

The Gaussian Framework

► The Gaussian framework: errors are modeled as Gaussian random variables:

$$\begin{split} \textbf{x}^{\rm b} - \textbf{x}^{\rm true} &\sim \mathcal{N}(0,\textbf{B}), \quad \textbf{y} - \mathcal{H}(\textbf{x}^{\rm true}) \sim \mathcal{N}(0,\textbf{R})\,, \\ \textbf{x} \in \mathbb{R}^{\rm N_{state}}, \, \textbf{y} \in \mathbb{R}^{\rm N_{obs}}, \, {\rm N}_{\rm obs} \ll {\rm N}_{\rm state}\,. \end{split}$$

- ► For linear dynamics *F*, and linear observation operator *H*, the posterior is Gaussian.
- So what?

- The posterior PDF represents improved knowledge about x
- The MAP (posterior mode/mean) can be taken as best estimate (analysis) of the unknown truth x^{true}
- The posterior variance/covariance can be taken to express the uncertainty associated with the analysis.

The Gaussian Framework: Limitations

Remember the Gaussian PDF $\mathcal{N}(\overline{x}, \Sigma)$?

$$\mathsf{P}(\mathbf{x}) \propto e^{-rac{1}{2}(\mathbf{x}-\overline{x})^T \Sigma^{-1} (\mathbf{x}-\overline{x})}$$

The Gaussian Framework: Limitations

Consider atmospheric forecasting:

- 1. Assume we are interested in 3 prognostic/physical variables; e.g. humidity, pressure, vertical and wind-speed, at points of a grid of size 1000×1000 in the XY plane. The discrete state is of size 3×10^6 .
- 2. The uncertainty, e.g. covariance matrix is of size $9\times 10^{12}.$
- 3. Storing (36 TB), and manipulating (e.g. inverting) such matrix is infeasible!
- Monte-Carlo (ensemble-based) approach is followed in practice,
 i.e. probability distributions are approximated by samples/ensembles!
- Popular/Practical algorithms:
 - + E.g.: EnKF, MLEF, IEnKF, RIP, PF, EnKS, \ldots
 - + By far, the most popular is EnkF,
 - + Many flavors of EnKF exist.

A Standard EnKF algorithm

Given an ensemble of N_{ens} states ($\mathbf{x}_{k-1}^{a}(e)$, $e = 1, ..., N_{ens}$) representing the analysis probability distribution at time t_{k-1} .

Forecast: each member of the ensemble is propagated to t_k using the dynamical model to obtain the "forecast" ensemble:

$$\mathbf{x}_k^{\mathrm{b}}(e) = \mathcal{M}_{t_{k-1} \to t_k}(\mathbf{x}_{k-1}^{\mathrm{a}}(e)) + \eta_k(e), \ \ e = 1, \dots, \mathrm{N}_{\mathrm{ens}}.$$

the ensemble mean and covariance approximate approximate the moments of the prior distribution at the next time point t_k:

$$\begin{aligned} \bar{\mathbf{x}}_{k}^{\mathrm{b}} &= \frac{1}{\mathrm{N}_{\mathrm{ens}}} \sum_{e=1}^{\mathrm{N}_{\mathrm{ens}}} \mathbf{x}_{k}^{\mathrm{b}}(e) \,, \\ \mathbf{X}_{k}^{\mathrm{b}} &= \left[\mathbf{x}_{k}^{\mathrm{b}}(1) - \overline{\mathbf{x}}_{k}^{\mathrm{b}}, \dots, \mathbf{x}_{k}^{\mathrm{b}}(\mathrm{N}_{\mathrm{ens}}) - \overline{\mathbf{x}}_{k}^{\mathrm{b}}\right], \\ \mathbf{B}_{k} &= \left(\frac{1}{\mathrm{N}_{\mathrm{ens}} - 1} \left(\mathbf{X}_{k}^{\mathrm{b}} \left(\mathbf{X}_{k}^{\mathrm{b}}\right)^{T}\right)\right) \circ \rho. \end{aligned}$$

- To reduce sampling error due to the small ensemble size, *localization* is performed by taking the point-wise product of the ensemble covariance and a decorrelation matrix ρ.
- To avoid ensemble collapse, inflation is applied!

A Standard EnKF algorithm

► Analysis: each member of the forecast (ensemble of forecast states {x_k^b(e)}_{e=1,...,Nens}) is analyzed/updated separately using the Kalman filter formulas

$$\begin{aligned} \mathbf{x}_{k}^{\mathrm{a}}(e) &= \mathbf{x}_{k}^{\mathrm{b}}(e) + \mathbf{K}_{k} \left([\mathbf{y}_{k} + \zeta_{k}(e)] - \mathcal{H}_{k}(\mathbf{x}_{k}^{\mathrm{b}}(e)) \right), \\ \mathbf{K}_{k} &= \mathbf{B}_{k} \mathbf{H}_{k}^{T} \left(\mathbf{H}_{k} \mathbf{B}_{k} \mathbf{H}_{k}^{T} + \mathbf{R}_{k} \right)^{-1}. \end{aligned}$$

- ▶ We will learn, and implement another flavor of EnKF, namely LETKF!
- For that, we will use DATeS, an extensible Python-based Data Assimilation Testing Suite.

DATeS: Data Assimilation Testing Suite

- Our vision at the Computational Science Laboratory (CSL) Virginia Tech, is to provide an "extensible open-source high-level language DA package" that enables DA researchers to collaborate effectively and avoid reinventing the wheel.
- ► DATeS:
 - 1. is intended to be a work-in-progress testing environment for DA,
 - 2. it separates the different building blocks so that they can be integrated with new and also legacy codes as easy as possible,
 - 3. it enables researchers to focus on implementing their own ideas/algorithms without worrying much about other components of the DA system.

DATeS Website:

http://people.cs.vt.edu/~attia/DATeS/ or https://sibiu.cs.vt.edu/dates/index.html

DATeS: Data Assimilation Testing Suite

[NWP] Project DATeS: Data Assimilation Testing Suite [13/14] May 15, 2017: { DA 4 NWP} SAMS/NCSU UG-Workshop , Ahmed Attia. (http://samsi.info)

NWP Project: Goal & Plan

Goal: Learn, and implement the Local Ensemble Transform Kalman Filter (LETKF), and test it with a Quasi-Geostrophic model (see-surface elevation).

Proposed Plan:

- Monday & Tuesday: read the paper: Harlim, John, and Brian R. Hunt. "Local ensemble transform kalman filter: An efficient scheme for assimilating atmospheric data."
- Tuesday: general Python hands-on tutorial (for everyone)
- ► Tuesday: DATes hands-on tutorial, and discuss the LETKF paper
- Wednesday & Thursday: implementing the LETKF filter, visualize the results and write a short report/presentation

