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Spatiotemporal Data in Hydrology
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Approaches to Extract Pattern

1. Domain:
• Use domain-specific theories and 

equations
• Too complicated
• Difficult to solve deterministically
• Requires massive computational 

resources
• Not scalable 

2. Data-driven:
• Purely data driven
• Lack of domain knowledge tends 

to sub-optimal performance
• Difficult for policy makers to 

interpret – “black box”
• Can be expensive for large 

dataset
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Use Case: Flood Prediction

• The most frequent natural 
disaster

• Irreparable damages to 
farmlands and 
infrastructure

• In 2019, ¼ million acres of 
farmland was underwater 
for 4 months

• Performance still low 
(notoriously tricky)
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Problem Statement and Dataset

• Pixelated map of a mid-west U.S. state at 5 
arc min ~ 2000 pixels
• 23 Watersheds with USGS1 observation 

sites (   )
• They vary characteristically

Jones, Christopher S., et al. "Iowa stream nitrate and the Gulf of Mexico."

PloS one 13.4 (2018): e0195930.

1 United States Geological Survey
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Challenges

• Low prediction performance
• Each region needs separately trained 

models for more accurate prediction -- 
expensive
• Both deep learning and domain models 

take days to train on the whole data

Jones, Christopher S., et al. "Iowa stream nitrate and the

Gulf of Mexico." PloS one 13.4 (2018): e0195930.
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Problem Statement and Dataset

• Input – Pixelated map, Distance, 
Precipitation
• Goal – To predict water discharge 

Jones, Christopher S., et al. "Iowa stream nitrate and the

Gulf of Mexico." PloS one 13.4 (2018): e0195930.

1 United States Geological Survey
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Introducing Dom-ST

Domain-Aware Spatiotemporal Network
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Introducing Dom-ST

Domain-Aware? Spatiotemporal Network
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Domain-aware Deep Learning

Utilizing additional domain knowledge during learning

Hybrid ModellingDomain-based loss 
function

Domain-guided 
design of the 

model
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Network Architecture of Dom-ST
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Multi-head Multi-channel CNN-LSTM
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Domain-aware Distribution Strategy
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Evaluation
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Limitations and Future Work

• Need more climate data at high-frequency
• More domain-awareness
• More advanced distribution strategies
• Introduce Mixed Precisions
• Introduce Pipelining during training
• Mitigate load balancing issues in IDP
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Conclusion

• A novel distributed training approach to accelerate a domain-aware 
spatiotemporal network
• Achieves an overall speedup of 22.7x in our study region
• The highest increase in individual NSE has been 93%
• Highest individual watershed speedup of 4.11x
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Thank You!
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