
Suggested line of text (optional): 

WE START WITH YES.

Scalable Edge 
Cyberinfrastructure for 
Science-driven AI 
Workflows

Yongho Kim
yongho.kim@anl.gov
Assistant Computer Scientist
Mathematics and Computer Science division
Argonne National Laboratory Invited Talk

May 19th, 2023



Suggested line of text (optional): 

WE START WITH YES.

source: a scientific workflow on understanding air pollution caused by wildfires,
             Daniel Balouek-Thomert, Scientific Computing and Imaging (SCI) Institute, University of Utah

source: controlled burn with Sage in Konza 
(https://sagecontinuum.org/news/sage-neon-deploy-konza) source: WIFIRE: wildfire detection and monitoring (https://wifire.ucsd.edu/)



Suggested line of text (optional): 

WE START WITH YES.

DOE VTO: Understanding traffic type, flow, and density 

VTO

W023

Dual cameras to capture approaching and leaving traffic for in-situ analysis.

Deploying 25+ 
at O’Hare, Chicago

NNSA: Advanced radiation sensors for safer cities

Physical sensors include - Temp, 
Pressure & Humidity, Rain Gauge, 
Microphone, Camera, LiDAR, and 
Rad/Nuc Detector

A deployment 
illustration by
Victor Negut (LBNL).

Rad/Nuc detector

Deploying 20+
Sensors in 
Chicago

DOE CRADA with Exelon: Advanced Sensors for Grid 
Stress and Load Forecasting

uPMU

Simulations predicting locations 
for sensor deployments.

Analysis to quantify 
stress and forecast 
load (weather data, 
traffic data) at the 
edge. 

DOE ASCR - Migratory Computation for the Wireless 5G 
Digital Continuum 

Extend anytime networks to be anywhere/anytime. Explore approaches 
where ensemble is executed on multiple parts of the continuum, and may use 
a variety of inputs.

mmWave enabled 
Waggle nodes will 
connect with 
Nokia’s NDAC 
solution with a 5G 
non-standalone 
configuration to 
offload computation 
on the MEC.

sources: Street view in Google Maps 
(https://www.google.com/maps)



4
micro synchrophaser thermal imaging camera

with a pan-tilt mount
LiDAR

Attachable sensors and actuators

air-quality sensor

< image credit: Scott Collis, 
CROCUS project, Argonne 
National Laboratory



5Source: https://sagecontinuum.org/



6Source: https://portal.sagecontinuum.org/apps/explore



7

The Waggle Programming Model



8

Waggle Software Stack and AI@Edge Applications

• Packaging applications including popular machine learning tools

• The Waggle layer ensures that packaged applications access hardware resources 

including CUDA on Waggle nodes

• Enabling a multi-tenant environment by isolating computing environment and allocating 

requested resources to individual application

Host OS

Kubernetes (K3S) CUDA Driver

Waggle 
Software Stack OpenCV

Application Layer

Waggle Layer

Host Layer

PyTorch TensorFlow

AI app 1 AI app 2 Simple app 1



9

Job Dashboard

Source: https://portal.sagecontinuum.org/jobs/all-jobs



10

Viewing Data from Cloud (Waggle Beehive)

Credit for the Web UI design and implementation: Neal Conrad, Argonne



11

Sensors

Edge Computing

Advanced Networking

New inference (model)
Adaptive controls / steering

AI@Edge: Digital 
Continuum

LIDAR

Software
Defined
Radios

Thermal Imaging

Scientific Data
Analysis & Control

Motors

Actuators
Dynamic
adaptation

Facilities

HPC

Cloud

Data
Center

Artificial Intelligence
Deep Learning 
Inference
Lightweight Training
Autonomous Action

Computation

Predictive Sim
Digital Twins
Data Analysis
Machine Learning

^ Image source: Aurora, Argonne Leadership 
Computing Facility, Argonne National 
Laboratory (https://www.alcf.anl.gov/aurora)

< image credit: Scott 
Collis, CROCUS 
project, Argonne 
National Laboratory

source: Freepik.com

NEON tower

NEON mobile 
deployment platform



12

Challenges for Scalable Edge CI Supporting Science-driven Workflows

● An abstraction to express science-focused workflow execution of 
applications
○ execution timing and dependencies

● Vertical scaling
○ Self-monitoring and failover mechanisms as edge nodes are 

resource limited and suffered from dynamic environmental 
conditions

○ Dynamic parameter tuning supported by applications
● Horizontal scaling

○ Science-level scaling over multiple edge nodes



13

Waggle Edge Scheduler and Science Goals

• Users submit a job and creates corresponding science goal. The science goal is 

validated within Waggle context and propagated to target Waggle nodes for execution

• Science goal describes conditions on when and how to run user plugins

• To prevent resource conflicts between user jobs, we schedule user plugins and control 

their execution on Waggle nodes

More details: Yongho Kim, et. al, 2022, “Goal-driven scheduling model in edge computing for smart 
city applications”, Journal of Parallel and Distributed Computing



14

Life Cycle of A Plugin

• Plugins specified in science goals are downloaded from the edge code repository registry

• The edge scheduler,

     > promotes them from Waiting List based on conditions (Waiting > Ready)

     > schedules them when the resource is available (Ready > Running)

     > cleans them up after execution (Running > Waiting)

Registered

Downloaded Waiting

ReadyRunning

Context-aware triggers
by science rules

Resource scheduling policy

Download
a science goal

(de)Register the science goal



15

Science Rules for Application Scheduling 

• A set of IF-THEN statements instructing the scheduler to server science goal

    - schedule my plugin if it is O’clock

    - schedule my plugin when there are more than 5 cars in the last minute

    - schedule my plugin when the sun rises

    - schedule my plugin if the dependent plugin has run

    - schedule my plugin when averaged noise level exceeds 50 dB

Science rules can also do other actions (currently in alpha testing)

    - publish “moderate rain” when total accumulation of rain in the last hour is greater than 3 mm

    - set my state to “30, 60” for my plugin to continue sweeping the pan-tilt camera

Science rules documentation at https://github.com/waggle-sensor/edge-scheduler/blob/main/docs/sciencerules/README.md 

https://github.com/waggle-sensor/edge-scheduler/blob/main/docs/sciencerules/README.md


16

Example Job 1

---
name: vto-job
plugins:
- name: image-sampler-left
  pluginSpec:
  ...
- name: image-sampler-right
  pluginSpec:
  ...
- name: object-counter-left
  pluginSpec:
   ...
- name: object-counter-right
  pluginSpec:
   ...
nodeTags:
- WSN
- VTO
scienceRules:
- "image-sampler-left: cronjob('image-sampler-left', '0 * * * *')"
- "image-sampler-right: cronjob('image-sampler-right', '0 * * * *')"
- "object-counter-left: cronjob('object-counter-left', '15/45 * * * *')"
- "object-counter-right: cronjob('object-counter-right', '0/30 * * * *')"
successCriteria:
- WallClock(1d)

<< name of the job

<< list of plugins to run

<< list of nodes (all Waggle nodes under a project)
<< conditions on which the plugins run

<< criteria on when the job is considered as complete

<< run every hour

<< specification of the plugin



17

---
name: vto-video-sampler
plugins:
- name: video-sampler-left
  pluginSpec:
  image: registry.sagecontinuum.org/theone/video-sampler:0.2.4
  args:
  - -stream
  - rtsp://10.31.81.16:554/0/profile6/media.smp
  - -duration
  - 60
nodes:
  W023:
scienceRules:
- "video-sampler-left: cronjob('video-sampler-left', '*/5 12,13,14,20,21,22 * * *')"
successcriteria:
- WallClock(1d)

Example Job 2

^ run every 5 minutes in rush hours

<< list of nodes; Waggle node W023 is specified

<< plugin Docker image from ECR



18

---
name: water-detection
plugins:
- name: water-detector
  pluginSpec:
  image: registry.sagecontinuum.org/seonghapark/surface-water-detection:0.0.6
  selector:
    resource.gpu: true
nodeTags:
- WSN
- raingauge
- camera_bottom
scienceRules:
- "water-detector: rate('env.raingauge.total_acc') > 3 and cronjob('water-detector', '*/10 * * * *')"
successcriteria:
- WallClock(1d)

Example Job 3

<< the plugin requires GPU resource to run

^ run every 10 minutes if it is raining

<< list of nodes; all Waggle nodes that have a bottom-facing camera and rain gauge

• More science rule functions can be found: 

https://github.com/waggle-sensor/sciencerule-checker



19

Scheduling Policies

• Scheduling policies select the best plugins to run

    > round-robin: selects the most starving plugin since 

its last execution

    > run-all: selects all plugins triggered by science rules

    > gpu-aware: selects GPU-demand plugins when 

there is no GPU-demand plugins running

    > and more!

Job status on Sage nodes. The node (W01E) uses round-robin scheduling 
and the other (W023) is based on science rules-driven scheduling



20

Automated Vertical Scaling inside A Node

• Edge scheduler needs performance metrics of applications for resource-aware scheduling. 

Currently all applications are limited by 1000 millicore (1 CPU) and 1 GB memory

• Prototyping performance metrics storage server that constantly monitors performance of 

application containers

• Application developers can also use this service to ensure the application works on edge 

hardware



21

Application Abstraction: Sidecar Approach to Control Applications

AI@Edge Application 
container

P
yW

ag
gl

e

Sidecar 
container

H
TT

P 
se

rv
er

init

inference

postProcess

updateConfig

performancMetric

Execution control

Parameter control

Log streaming

performance streaming

Kubernetes Metrics server jetson-exporter GPU Metrics



22

Horizontal Scaling of Jobs across Edge Nodes

• Scientific workflows may specify quantitative requirements, e.g., data volume, 

number of application executions per node
---
name: water-detection
plugins:
- name: water-detector
  pluginSpec:
  image: registry.sagecontinuum.org/seonghapark/surface-water-detection:0.0.6
  selector:
    resource.gpu: true
nodeTags:
- WSN
- raingauge
- camera_bottom
scienceRules:
- "water-detector: rate('env.raingauge.total_acc') > 3 and cronjob('water-detector', '*/10 * * * *')"
successcriteria:
- DataQuantity(1000, 24h)
- WallClock(30d)

<< specifying desired quantity of measurement to decide scaling



23

Horizontal Scaling via Cloud and Edge interactions

• Edge schedulers interact with the cloud 

scheduler / HPC simulations to understand and 

drive itself towards the global goal

• Edge updates their local measurements

• Cloud triggers HPC simulations and updates 

science rules in the job

• HPC simulation may send predicted events to 

edge schedulers to change their scheduling 

behavior


