

Scalable Edge Cyberinfrastructure for Science-driven Al Workflows

Yongho Kim yongho.kim@anl.gov Assistant Computer Scientist Mathematics and Computer Science division Argonne National Laboratory

Invited Talk May 19th, 2023

Wildfire Detection and Prediction

Al@Edge for wildfire detection linked to HPC simulations

Ilkay Altintas, UCSD, Co-PI for SAGE

source: controlled burn with Sage in Konza (https://sagecontinuum.org/news/sage-neon-deploy-konza)

Sage^(beta)

Edge (Field cameras)

.....

Cloud (SDSC)

2. Wildfire simulations to determine the severity and

.....

HPC (Utah)

3. Pollution Concentration maps to support decision-

source: a scientific workflow on understanding air pollution caused by wildfires, Daniel Balouek-Thomert, Scientific Computing and Imaging (SCI) Institute, University of Utah

direction of fires making

source: WIFIRE: wildfire detection and monitoring (https://wifire.ucsd.edu/)

Sage project will move Pan-Tilt-Zoom cameras toward suspected outbreaks, and use infrared cameras to build self-supervised AI training

DOE VTO: Understanding traffic type, flow, and density

Dual cameras to capture approaching and leaving traffic for in-situ analysis.

DOE CRADA with Exelon: Advanced Sensors for Grid Stress and Load Forecasting

NNSA: Advanced radiation sensors for safer cities

Physical sensors include - Temp, Pressure & Humidity, Rain Gauge, Microphone, Camera, LiDAR, and Rad/Nuc Detector

K3S PANDA-DAWN Beehive Data **III**ROS store Software Beehive (time-serie: Cloud Service and object Architecture: store) ROSbags containing Commands, undates all measurements for training and Deploying 20+ and configuration Sensor/Inference Data Stream DAWN Node Waggle messaging system **ROS** messaging system Object detection and tra adiation pluging - nlugin-dbaserh planin-env. plugin-raingauge plugin-calibration - plugin-background-lea - plugin-camera - plugin-lida - plugin-BAD Jetson NX (c letson NX (agent Raspberry Pi2 **Raspberry Pi1** Instrument Mic Rad/Nuc Rain gauge Vitals (T&H) Victor Negut (LBNL) Detector LIDAR RGB camera

DOE ASCR - Migratory Computation for the Wireless 5G Digital Continuum

mmWave enabled Waggle nodes will connect with Nokia's NDAC solution with a 5G non-standalone configuration to offload computation on the MEC.

Extend anytime networks to be anywhere/anytime. Explore approaches where ensemble is executed on multiple parts of the continuum, and may use a variety of inputs.

micro synchrophaser

er

thermal imaging camera with a pan-tilt mount

camera

Lidar

AI/ML Status

* Nodes **108** () Active Jobs **62**

■ Recent Apps 16

App Data **1,683,730**Records in the last 24 hours*

Source: https://sagecontinuum.org/

↓Sa	Be ^(beta) Nodes • App Catalog • Job Status • I	Data 👻		Docs 🕒 yonghokim -					
S Explore	Q Search			=					
B My Apps	C Featured Apps								
	weather-classification O		O avian-diversity-monitoringO	water-depth-estimator O					

An app for identifying c coverage from the ARM rjackson 15 tags	Ication		Cloud Motion Estimator (Optic the Sky Camera. Uploads i bhupendraraut · 10 tags	al Flow) for	-	avian-diversity-mo Records environmental sour birds by such sounds and f dariodematties - 1 tag	nitoring V ads, identifies E data	4 FT 3 INI	Water-depth-estima Water Depth Estimator seonghapark · 3 tags	e data
A general-purpose moti system that locates and seonghapark + 1 tag	r Q		Solar-irradiance Solar Irradiance Estimator Usir seonghapark · 4 tags	ng U-Net		traffic-state Traffic State Estimator seonghapark + 7 tags	C data	AS	object-counter Object Counter yonghokim · 2 tags	C Z data
Surface-water-o Surface Water Classifie seonghapark · 2 tags	r g data		wildfire-smoke-deter Wildfire Smoke Detection iperezx · 3 tags	ction () I data		surface-water-dete Surface Water Detection seonghapark · 8 tags	ection O		motion-analysis Motion Analysis seonghapark · 6 tags	C data
Cloud-cover C 2 2 4 Styber doub 5 5 5 5 5 5 5 5 5 5 5 5 5	Cistimator	weight	Sound-event-detecti Sound event detection (SED) p YAMNet audio classificati dariodematties · 1 tag	on O Ilugin, using						

Source: https://portal.sagecontinuum.org/apps/explore

The Waggle Programming Model

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

7

NATIONAL LABORATORY

Waggle Software Stack and AI@Edge Applications

- Packaging applications including popular machine learning tools
- The Waggle layer ensures that packaged applications access hardware resources including CUDA on Waggle nodes
- Enabling a multi-tenant environment by isolating computing environment and allocating requested resources to individual application

Job Dashboard

Source: https://portal.sagecontinuum.org/jobs/all-jobs

Viewing Data from Cloud (Waggle Beehive)

🗧 🔶 🕐 👔 portal.sagecontinuum.org/query-browser?apps=registry.sagecontinuum.org%2Fyonghokim%2Fobject-counter%3A0.5.1&names=env.count.car&nodes=W015%7CW023%7CW024%7CW026&window=d 🍳 🖞 🖈 🚺 👖 👔

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Credit for the Web UI design and implementation: Neal Conrad, Argonne

NATIONAL LABORATORY

Al@Edge: Digital Continuum

Edge Computing

Scientific Data Analysis & Control

Artificial Intelligence Deep Learning Inference Lightweight Training Autonomous Action

Advanced Networking

New inference (model) Adaptive controls / steering

Computation

Predictive Sim Digital Twins Data Analysis Machine Learning

[^] Image source: Aurora, Argonne Leadership Computing Facility, Argonne National Laboratory (https://www.alcf.anl.gov/aurora)

Challenges for Scalable Edge CI Supporting Science-driven Workflows

- An abstraction to express science-focused workflow execution of applications
 - execution timing and dependencies
- Vertical scaling
 - Self-monitoring and failover mechanisms as edge nodes are resource limited and suffered from dynamic environmental conditions
 - Dynamic parameter tuning supported by applications
- Horizontal scaling
 - Science-level scaling over multiple edge nodes

Waggle Edge Scheduler and Science Goals

- Users submit a job and creates corresponding science goal. The science goal is validated within Waggle context and propagated to target Waggle nodes for execution
- Science goal describes conditions on when and how to run user plugins
- To prevent resource conflicts between user jobs, we schedule user plugins and control their execution on Waggle nodes

Life Cycle of A Plugin

- Plugins specified in science goals are downloaded from the edge code repository registry
- The edge scheduler,
 - > promotes them from Waiting List based on conditions (Waiting > Ready)
 - > schedules them when the resource is available (Ready > Running)
 - > cleans them up after execution (Running > Waiting)

Science Rules for Application Scheduling

- A set of IF-THEN statements instructing the scheduler to server science goal
 - schedule my plugin if it is O'clock
 - schedule my plugin when there are more than 5 cars in the last minute
 - schedule my plugin when the sun rises
 - schedule my plugin if the dependent plugin has run
 - schedule my plugin when averaged noise level exceeds 50 dB

Science rules can also do other actions (currently in alpha testing)

- publish "moderate rain" when total accumulation of rain in the last hour is greater than 3 mm
- set my state to "30, 60" for my plugin to continue sweeping the pan-tilt camera

Science rules documentation at https://github.com/waggle-sensor/edge-scheduler/blob/main/docs/sciencerules/README.md

Example Job 1

name: vto-job

```
plugins:
- name: image-sampler-left
                                      << list of plugins to run</p>
 pluginSpec:
                    << specification of the plugin
- name: image-sampler-right
 pluginSpec:
- name: object-counter-left
 pluginSpec:
- name: object-counter-right
 pluginSpec:
nodeTags
- WSN
          << list of nodes (all Waggle nodes under a project)
- VTO
scienceRules: << conditions on which the plugins run
- "image-sampler-left: cronjob('image-sampler-left', '0 * * * *')"</pre>
- "image-sampler-right: cronjob('image-sampler-right', '0 * * * *')" << run every hour
- "object-counter-left: cronjob('object-counter-left', '15/45 * * * *')"
```

- "object-counter-right: cronjob('object-counter-right', '0/30 * * * *')" successCriteria:

<< name of the job

- WallClock(1d)

<< criteria on when the job is considered as complete</p>

BENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Example Job 2

name: vto-video-sampler plugins:

- name: video-sampler-left

pluginSpec:

image: registry.sagecontinuum.org/theone/video-sampler:0.2.4 args:

- -stream
- rtsp://10.31.81.16:554/0/profile6/media.smp
- -duration
- 60

nodes:

W023: << list of nodes; Waggle node W023 is specified

scienceRules:

- "video-sampler-left: cronjob('video-sampler-left', '*/5 12,13,14,20,21,22 * * *')" successcriteria:

- WallClock(1d)

<< plugin Docker image from ECR

^ run every 5 minutes in rush hours

Example Job 3

name: water-detection plugins: - name: water-detector pluginSpec: image: registry sageor	ontinuum ora/seonabapark/surface.water.detection:0.0.6
selector	Shindum.org/seonghapan/sunace-water-detection.o.o.o
resource.gpu: true	<< the plugin requires GPU resource to run
- WSN - raingauge - camera bottom	st of nodes; all Waggle nodes that have a bottom-facing camera and rain gauge
scienceRules	
- "water-detector: rate("	env.raingauge.total_acc') > 3 and cronjob('water-detector', '*/10 * * * *')"
successcriteria: - WallClock(1d)	^ run every 10 minutes if it is raining

• More science rule functions can be found:

https://github.com/waggle-sensor/sciencerule-checker

Scheduling Policies

- Scheduling policies select the best plugins to run
 round-robin: selects the most starving plugin since
 its last execution
 - > run-all: selects all plugins triggered by science rules
 - > gpu-aware: selects GPU-demand plugins when

there is no GPU-demand plugins running

> and more!

W01E

W023

Job status on Sage nodes. The node (W01E) uses round-robin scheduling and the other (W023) is based on science rules-driven scheduling

Automated Vertical Scaling inside A Node

- Edge scheduler needs performance metrics of applications for resource-aware scheduling.
 Currently all applications are limited by 1000 millicore (1 CPU) and 1 GB memory
- Prototyping performance metrics storage server that constantly monitors performance of application containers
- Application developers can also use this service to ensure the application works on edge
 hardware
 Use case for application developers and users
 Use case for application schedulers

Application Abstraction: Sidecar Approach to Control Applications

Horizontal Scaling of Jobs across Edge Nodes

 Scientific workflows may specify quantitative requirements, e.g., data volume, number of application executions per node

name: water-detection plugins:

- name: water-detector

pluginSpec:

image: registry.sagecontinuum.org/seonghapark/surface-water-detection:0.0.6 selector:

resource.gpu: true

nodeTags:

- WSN
- raingauge
- camera_bottom

scienceRules:

- "water-detector: rate('env.raingauge.total_acc') > 3 and cronjob('water-detector', '*/10 * * * *')" successcriteria:

- DataQuantity(1000, 24h) << specifying desired quantity of measurement to decide scaling

- WallClock(30d)

Horizontal Scaling via Cloud and Edge interactions

- Edge schedulers interact with the cloud scheduler / HPC simulations to understand and drive itself towards the global goal
- Edge updates their local measurements
- Cloud triggers HPC simulations and updates science rules in the job
- HPC simulation may send predicted events to edge schedulers to change their scheduling behavior

