INT Based Network-Aware Task
Scheduling for Edge Computing

Bibek Shrestha Richard Cziva Engin Arslan

University of Nevada, Lawrence Berkeley University of Nevada,
Reno National Laboratory Reno

Edge Computing

Azure reported max latency ~400ms between different regions

*Azure network round-trip latency statistics, 2020

Latency in the closer regions < 50ms

Latency largely reduced when regions are i Edge

Compute
C|Ose r Nodes

-
-
-
-
-
-
-
v

. . - - : ~~
Edge computation brings data and - latency further 'ruﬁa L O @
computation closer to the source reduced Edge devices

N

Edge Computing

* Applications with low latency requirements benefits from edge computing

]
o/

Streaming virtual reality :

Machine Learning*
Edge Computing

RO — *Generic use cases
.fj\

Autonomous vehicles

Distributed computing*

Problem Statement

B Uncongested
Bl Congested

Drone

Compute node is nearest
one, offloading task to it

7
Got the task = here are ' .
Got it, thanks!
the results [
Smartphone

Compute Node

Problem Statement

B Uncongested
Bl Congested

Geell | was much

Drone closer

possible
optimization

— N -~ M S
G ™ | want to offload some task!]
Webcam

Compute node is nearest
one, offloading task to it
{ R it’s been quite J
sometime
Smartphoneé
\{ Finally!! Thanks!]

[Receiving the task]L
— X

Done, here are the
results

Compute Node

Can we use network parameters to optimally
schedule tasks?

Proposed Solution

* Network-aware task scheduling
* Consider network conditions to make optimal scheduling decisions

No congestion,
min hops

“ | want to offload some task! J
No congestion, P " D

Webcam
multiple hops

away /‘\\ \\\\\\ ,'/'
Congested network ~ Smartphone

device & link(s)

Compute Node

Proposed Solution

* Network-aware task scheduling
* Consider network conditions to make optimal scheduling decisions

N Got the task = here are
TN the results

optimal node, offloading

[Iw;ttoofﬂoad some task! J
Smartphone _
Got it, thanks!]

Drone seems to be the J

Compute Node

Proposed Solution

* Traditional methods of network monitoring are inadequate
* SNMP, NetFlow

* Lower sampling rate = reduced network visibility = reduced capacity
to make optimal decisions

Proposed Solution

* Traditional methods of network monitoring are inadequate
* SNMP, NetFlow

* Lower sampling rate = reduced network visibility = reduced capacity
to make optimal decisions

* Programmable data plane & In-band Network Telemetry (INT) to the
rescue

Related Work

 Compute resources availability of edge node influences performance

[| have resol@!/_] Task wfload some task! J

& —pr— ! ~~~~
L
I Running low on compute
W resources!!

e Cache-awareness can significantly improve the task completion time

Related Work

* Production jobs are usually recurring with predictable characteristics

* Planning the data and job placement = enhances job locality = enhances
performance

* Network load balancing using INT

High Congestion!! J

Programmable data plane

» Custom packet processing routine directly at data plane = line rate

Programmable Match-Action Pipeline

Programmable Programmable

Parser (A \ Deparser
e e e (e
% e e (e e | =5
NI N SN SN)=
= -E -E -E -E —m =
= -.D -D -D -D —10 =

Protocol-Independent Switch Architecture (PISA)

In-band Network Telemetry (INT)

* Framework for collection and reporting of network data by data plane
* No intervention/work from control plane

*INT Payload: switch id, ingress/egress queue
occupancy, ingress/egress timestamps

Network device with

- — programmable data - -
plane

v ' p
INT Packet INT Payload INT Packet

* Access to fine granular network telemetry at line rate = increased
network visibility = increased ability to detect network changes

Network-Aware Task Scheduler

I Normal packet
Il Probe packet
1 INT payload

[] Update Hop n [Update Hop n+1 -
e usage

INT collection — i B
! !
N v T g T Register(s) Register(s)
Network mapping e
M vpdaterink AN [T updatelink u‘;t:e:nd (I

. R\\ / lateny qlue:ei fo | latenoy linkinfo | Scheduler

Nodes ranking Tasks'\‘:\ \' /‘
offloading W Vi

query
Task offloading

oo
~
~——

Network-aware
Scheduler

' B e W
P e Vr S ef(s‘)
A= ran Ing

< (A & \
7’
g INGLL G4
, 7 off@a@jrm esponse
/ 'l] / \
/ ! l’ l' ! N
/ / I
/ i i1 N
’ / (] \
/ ! i { ! AN
! [}
/ | %4 ;‘J

Ranking Algorithm

e Ranking algorithms uses available network capacity for ranking

* Two node ranking algorithms proposed
* Bandwidth-based node ranking
e Delay-based node ranking

Bandwidth-based node ranking

 Sort the available nodes based on the bandwidth availability of each
node from the querying node

0 20 40 60 80 100
Bandwidth Utilization(%)

Delay-based node ranking

* Sort the available nodes based on the delay of each node from
guerying node

300 T T T T
25071
N 3200}
% """""" g
@ Gew ™ > 1507}
G _________________ - o)
< \ , \ A 100
1]//’/ \\::\ 50
0

0 20 40 60 80 100
Bandwidth Utilization(%)

Delay(en, em) = Zle delay(l;) +Z§=1 delay(h;)

Experiment Setup

* Mininet (distributed)

e Behavioral Model (BMv2) switch

* P4 programming language

* 4 x servers: 4 core CPU, 32GB
RAM running Ubuntu 18.04

 HP Procurve switches to provide
physical connectivity

]

Node

]

Node

-
\ / Scheduler
+ I8 » SRR PN A
:_) '\ _ / \ 7 ’ I“\%e/'
4 ‘ﬁ? 7 'ﬁ? ________
@ O T Te-d
) ‘l’ Node 7
SN
{ {
- [

Experiment Setup

* Node selection methods in comparison
* Physically near node selection
 Random node selection
* Network-Aware node selection (ranking method)

Results (Delay-based ranking)

* Average task completion time on various workload sizes for
serverless computing workload

* Avg task completion time reduced by ~31% compared against near
selection strategy for very small workloads

w
o

Néar EZZZZ

— T

T
°E’ 25| Random : 30r KX
= Network-Aware 3 9%
- p 2 8 L D>
K]
S . AT 0]
220 B <26F [
= < L K]
) R S KX]
= RSHEE - XXX
Q 15} A c 24 K]
- o = bote%
= R ® ro
8 XA I O 22 (o]
10} i G N e KX
X~ KA | R 0]
® RO focp 20 <
(1] XL LXH "0.0‘
— 5t T e 0545 R
F R R 18+ KX
[@)) o, ’.‘ o ,.‘ o)‘0’0‘

2 ol R B B 16 B B

VS S M L S M L
Workload Workload

20

Results (Delay-based ranking)

* Average task completion time on various workload sizes for
distributed computing workload

* Avg task completion time reduced by ~13% compared against near
selection strategy for small workloads

S0 Near BO00 i 13 ' ' I I
e
v Random EEEEH -:-I
— (757 o
o 25| Network-Aware =1 3 i 1 12+ T
= 7 KA
s . O
- B
i 2 I et | . 1
I .0.4 o .0" o, o
= o I S
3 N B =
a 15} R R c 101]
£ R | K ‘T
o e e Nt
< 10¢ s Nl MR N, o '
@ SN Nl
@ < e
= s Nl
o 5| i e . 8r]
S ROEE] [
SNl NI 7 £
i :
0 S M L VS S M
Workload Workload

21
GGG

Results (Bandwidth-based ranking)

* Average data transfer time on various workload sizes for distributed
computing workload

* Avg data transfer time reduced by ~40% compared against near
selection strategy for very small workloads

,-\45 Near B3y 40
2L 40t Random Souk
GE’ Network-Aware E===3 § 35F
=
5 <30T 5
X K]
n < XX
£ 25¢ K]
© %)
XX
© S
20 2090
1R
XX
oo
1o S5
(X XX
‘ Ko
i KR R B 10 o
5 VS S M L Vs S L
Workload Workload

22

Impact of Probing frequency

e Determine the impact of the probing frequency on the results

* Experiment
* Distributed workload
* delay-based ranking strategy
* Varying probing period [0.15-30s]
* Variable traffic scenario (frequent, infrequent changes, workload size)

Impact of Probing frequency

* Lower probing period = Lower average data transfer time

Tl’af:ﬁC 1 _.I_ | /

Traffic 2 ——

| I

5 10 15 20 25 30

Probing period(s)

Impact of Probing frequency

* Lower probing period = Lower average data transfer time
* Likelihood of capturing subtle changes in the network increased

| Traffic2 ——

g8 —

Tl’af:ﬁC 1 _.I_ | /

| I

5 10 15 20 25 30

Probing period(s)

Conclusion

* High precision telemetry received with INT at higher rate provides
better picture of network = detect network congestion events

* Proposed two strategies to rank the available nodes based on the
network state to implement network-aware task scheduling

* network-aware task scheduling
* Up to 40% reduction in average data transfer time
* Up to 30% reduction in average task completion time

Future Work

 Combine network-awareness and compute-awareness
* Improve delay and bandwidth usage inference with machine learning

* Heterogenous computing scenario where tasks might have
requirements such as GPGPU

e Store information at each node =2 eliminate dependency on central
controller for scheduling

Bibek Shrestha

bibek.shrestha@nevada.unr.edu
University of Nevada, Reno

Thank You!

Richard Cziva

richard@es.net
Lawrence Berkeley National
Laboratory

)

rrerrrmTr H

BERKELEY LAB

Engin Arslan

earslan@unr.edu
University of Nevada, Reno

28

