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Edge Computing

Azure reported max latency ~400ms between different regions

*Azure network round-trip latency statistics, 2020

Latency in the closer regions < 50ms

Latency largely reduced when regions are i Edge
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Edge Computing

* Applications with low latency requirements benefits from edge computing
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Problem Statement
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Proposed Solution

* Network-aware task scheduling
* Consider network conditions to make optimal scheduling decisions
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Proposed Solution

* Network-aware task scheduling
* Consider network conditions to make optimal scheduling decisions
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Proposed Solution

* Traditional methods of network monitoring are inadequate
* SNMP, NetFlow

* Lower sampling rate = reduced network visibility = reduced capacity
to make optimal decisions




Proposed Solution

* Traditional methods of network monitoring are inadequate
* SNMP, NetFlow

* Lower sampling rate = reduced network visibility = reduced capacity
to make optimal decisions

* Programmable data plane & In-band Network Telemetry (INT) to the
rescue




Related Work

 Compute resources availability of edge node influences performance
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e Cache-awareness can significantly improve the task completion time




Related Work

* Production jobs are usually recurring with predictable characteristics

* Planning the data and job placement = enhances job locality = enhances
performance

* Network load balancing using INT
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Programmable data plane

» Custom packet processing routine directly at data plane = line rate

Programmable Match-Action Pipeline
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In-band Network Telemetry (INT)

* Framework for collection and reporting of network data by data plane
* No intervention/work from control plane

*INT Payload: switch id, ingress/egress queue
occupancy, ingress/egress timestamps
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* Access to fine granular network telemetry at line rate = increased
network visibility = increased ability to detect network changes




Network-Aware Task Scheduler
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Ranking Algorithm

e Ranking algorithms uses available network capacity for ranking

* Two node ranking algorithms proposed
* Bandwidth-based node ranking
e Delay-based node ranking




Bandwidth-based node ranking

 Sort the available nodes based on the bandwidth availability of each
node from the querying node
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Delay-based node ranking

* Sort the available nodes based on the delay of each node from
guerying node
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Experiment Setup

* Mininet (distributed)

e Behavioral Model (BMv2) switch

* P4 programming language

* 4 x servers: 4 core CPU, 32GB
RAM running Ubuntu 18.04

 HP Procurve switches to provide
physical connectivity
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Experiment Setup

* Node selection methods in comparison
* Physically near node selection
 Random node selection
* Network-Aware node selection (ranking method)




Results (Delay-based ranking)

* Average task completion time on various workload sizes for
serverless computing workload

* Avg task completion time reduced by ~31% compared against near
selection strategy for very small workloads
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Results (Delay-based ranking)

* Average task completion time on various workload sizes for
distributed computing workload

* Avg task completion time reduced by ~13% compared against near
selection strategy for small workloads
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Results (Bandwidth-based ranking)

* Average data transfer time on various workload sizes for distributed
computing workload

* Avg data transfer time reduced by ~40% compared against near
selection strategy for very small workloads
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Impact of Probing frequency

e Determine the impact of the probing frequency on the results

* Experiment
* Distributed workload
* delay-based ranking strategy
* Varying probing period [0.15-30s]
* Variable traffic scenario ( frequent, infrequent changes, workload size)




Impact of Probing frequency

* Lower probing period = Lower average data transfer time
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Impact of Probing frequency

* Lower probing period = Lower average data transfer time
* Likelihood of capturing subtle changes in the network increased
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Conclusion

* High precision telemetry received with INT at higher rate provides
better picture of network = detect network congestion events

* Proposed two strategies to rank the available nodes based on the
network state to implement network-aware task scheduling

* network-aware task scheduling
* Up to 40% reduction in average data transfer time
* Up to 30% reduction in average task completion time




Future Work

 Combine network-awareness and compute-awareness
* Improve delay and bandwidth usage inference with machine learning

* Heterogenous computing scenario where tasks might have
requirements such as GPGPU

e Store information at each node =2 eliminate dependency on central
controller for scheduling
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