
Pilot-Edge: Distributed Resource
Management Along the Edge-to-Cloud

Continuum
Andre Luckow1, Kartik Rattan2 and Shantenu Jha2,3

1Ludwig-Maximilian University, Munich, Germany
2RADICAL, ECE, Rutgers University, Piscataway, NJ 08854, USA

3Brookhaven National Laboratory, Upton, NY, USA
https://arxiv.org/abs/2104.03374

https://arxiv.org/abs/2104.03374

2

Motivation

The Internet of Things (IoT) is becoming an essential part of many scientific and
industry applications, e.g., light source science, farming, and manufacturing.*
These applications require high performance compute and data capabilities across
multiple layers of infrastructures from the edge-to-cloud.
Main Challenges:

• Heterogeneity:
• Infrastructures and devices: instruments, edge, fog, HPC, cloud,

serverless, accelerators need to be integrated
• Different programming models: Scripting, Serverless (FaaS), HPC

(MPI, OpenMP, CUDA), Data (MapReduce, Streaming)
• Dynamic and distributed environment: Data sources (IoT devices)

geographically distributed, environment constantly changing
• Provisioning and management of resources and tasks: right amount of

resources at right time, optimal execution strategy for applications

Pilot-Edge

Abstraction &
Framework

*see: https://arxiv.org/abs/2104.03368

3

Pilot-Abstraction: A common resource
management abstraction for data and compute

Working Definition: A system that generalizes a placeholder job to provide multi-
level scheduling to allow application-level control over the system scheduler via a
scheduling overlay.

Resource A Resource B Resource C Resource D

User Application

Sy
st

em

Sp
ac

e
U

se
r

Sp
ac

e

Resource Manager

Pilot-Job System Policies

Pilot-Job Pilot-Job

Luckow et al.: P* A Model of Pilot-Abstractions, IEEE eScience 2012, http://arxiv.org/abs/1207.6644

http://arxiv.org/abs/1207.6644

4

Pilot-Data

Compute
Unit

Compute
Unit

Pilot-Job

Compute
Unit

Compute
Unit

Data
Unit

Pilot-Hadoop Pilot-Streaming

Data
Unit

Compute
Unit

Hadoop
Compute

Unit

Spark
Compute

Unit

Data
Unit

Streaming
Compute

Unit

Serverless
Compute

Unit

Streaming
Data Unit

Task-Parallel Data-Parallel Dataflow Iterative StreamingComplex, distributed
and dynamic
applications

Heterogeneous,
distributed &

dynamic
infrastructure

Lack of
abstractions

Lack of
understanding Data

Unit

HPC HTC Cloud Data Infrastructures Serverless

Pilot-Edge

Edge

Streaming

Edge
Compute

Unit

Cloud
Compute

Unit

Streaming
Data Unit

Data
Unit

Pilot-Abstraction: Evolution of the Abstraction

Replica-Exchange [1]

P* Model/Pilot-Job System [5]

Pilot-MapReduce [2]

Pilot-Data [6]

Pilot-Hadoop [7] Pilot-Serverless [8]

MD Trajectories [3] Streaming Performance [4]

[1] Andre Luckow, Shantenu Jha, Joohyun Kim, Andre Merzky, and Bettina Schnor. Adaptive Replica-Exchange Simulations. Royal Society Philosophical Transactions A, 2009.
[2] Pradeep Kumar Mantha, Andre Luckow, and Shantenu Jha. Pilot- MapReduce: An Extensible and Flexible MapReduce Implementation for Distributed Data. In Proceedings of third international workshop on MapReduce and its Applications, MapReduce ’12,
pages 17–24, New York, NY, USA, 2012. ACM.
[3] Ioannis Paraskevakos, Andre Luckow, Mahzad Khoshlessan, George Chantzialexiou, Thomas E. Cheatham, Oliver Beckstein, Geoffrey C. Fox, and Shantenu Jha. Task-parallel analysis of molecular dynamics trajectories. In Proceedings of the 47th
International Conference on Parallel Processing, ICPP 2018, New York, NY, USA, 2018. ACM.
[4] Andre Luckow and Shantenu Jha. Performance characterization and modeling of serverless and hpc streaming applications. In Proceedings of StreamML Workshop at IEEE International Conference on Big Data (IEEE BigData 2019), 2019.
[5] Andre Luckow, Mark Santcroos, Andre Merzky, Ole Weidner, Pradeep Mantha, and Shantenu Jha. P*: A model of pilot-abstractions. IEEE 8th International Conference on e-Science, pages 1–10, 2012. http://dx.doi.org/10.1109/eScience.2012.6404423.
[6] Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha. Pilot-data: An abstraction for distributed data. Journal of Parallel and Distributed Computing, 2014.
[7] Andre Luckow, Pradeep Kumar Mantha, and Shantenu Jha. Pilot- abstraction: A valid abstraction for data-intensive applications on hpc, hadoop and cloud infrastructures? CoRR, abs/1501.05041, 2015.
[8] Andre Luckow, George Chantzialexiou, and Shantenu Jha. Pilot-streaming: A stream processing framework for high-performance computing. IEEE eScience, 2018.

5

Edge-to-Cloud Applications: Common
Deployment Modalities

Edge Fog Cloud

Sensing Preprocessing

Analytics Training

Preprocessing

Inference

Sensing Preprocessing

Sensing

Training

TrainingInference

PreprocessingPreprocessing

InferenceTraining

Preprocessing

C
lo

ud
-

ce
nt

ric
Ed

ge
-c

en
tr

ic
H

yb
rid

(E

dg
e-

to
-C

lo
ud

)

Inference

Analytics

Analytics

Analytics

Edge Fog Cloud

Sensing Preprocessing

Analytics Training

Preprocessing

Inference

Sensing Preprocessing

Sensing

Training

TrainingInference

PreprocessingPreprocessing

InferenceTraining

Preprocessing

C
lo

ud
-

ce
nt

ric
Ed

ge
-c

en
tr

ic
H

yb
rid

(E

dg
e-

to
-C

lo
ud

)

Inference

Analytics

Analytics

Analytics

Edge Fog Cloud

Sensing Preprocessing

Analytics Training

Preprocessing

Inference

Sensing Preprocessing

Sensing

Training

TrainingInference

PreprocessingPreprocessing

InferenceTraining

Preprocessing

C
lo

ud
-

ce
nt

ric
Ed

ge
-c

en
tr

ic
H

yb
rid

(E

dg
e-

to
-C

lo
ud

)

Inference

Analytics

Analytics

Analytics

6

Pilot-Edge Architecture and Interactions

Pilot-Edge Abstraction

Edge Resource

Pilot-Abstraction

Fog/Cloud Cloud

Dask Scheduler

Dask
Worker

Dask
Worker

Kafka
Broker
Kafka
Broker

Zoo-
keeper
Kafka
Broker

Dask Scheduler

Spark
Worker

Spark
Worker

Manager
Dask Plugin Kafka Plugin Flink Plugin

1. Manage
Pilots

2.2 Manage Tasks

3.1 Monitoring

Resource Access

 Spark Plugin

Application

Manager Coordination and
Parameter Service

2. Run Application 3.2 Results

2.1 Run Tasks

3. Monitor State

Pilot-AgentPilot-Agent Pilot-Agent

Pilot-Edge
Fram

ew
ork

Pilot-
Fram

ew
ork

Ressources

7

Pilot-Edge API and Abstraction
C. Pilot-Edge API

Pilot-Edge exposes a Function-as-a-Service (FaaS) API,
that abstracts details about individual resources, allowing the
application to focus on application logic and not infrastructure.
While the framework is suited to support arbitrary IoT edge
applications, we mainly focus on data and machine learning
applications.

Listing 1: Pilot-Edge FaaS API
d e f p roduce edge (c o n t e x t)

d e f p r o c e s s e d g e (c o n t e x t : d i c t = None , d a t a =None)

d e f p r o c e s s c l o u d (c o n t e x t : d i c t = None , d a t a =None)

Listing 1 illustrates the API of the Pilot-Edge-abstraction.
The API is application-centric and lets developers focus on
expressing important application tasks, e. g., sensing and in-
ference, and on selected trade-offs, such as task localities. The
API comprises three functions: (i) for managing sensing and
data generation on the edge, (ii) for edge processing, and (iii)
for cloud processing. While each task must be defined as a
Python function, it is also possible to access native capabil-
ities, e. g., by integrating native code for accessing low-level
sensors on the edge. The API allows the re-use of functions
across the continuum while retaining flexibility and customiz-
ability.

Listing 2: Pilot-Edge API: Instantiation of an Application
p i l o t . E d g e To Cl o u dP i p e l i n e (

p i l o t c l o u d p r o c e s s i n g = p i l o t j o b c l o u d p r o c e s s i n g ,
p i l o t c l o u d b r o k e r = p i l o t j o b c l o u d b r o k e r ,
p i l o t e d g e = p i l o t j o b e d g e ,
p r o d u c e f u n c t i o n h a n d l e r = p roduce b lock edge ,
p r o c e s s e d g e f u n c t i o n h a n d l e r = p r o c e s s b l o c k e d g e ,
p r o c e s s c l o u d f u n c t i o n h a n d l e r = p r o c e s s b l o c k c l o u d ,
f u n c t i o n c o n t e x t = c o n t e x t ,
. . .
) . run ()

Listing 2 shows how an edge-to-cloud application is instan-
tiated. In addition, to passing the function references to the
data generation and processing functions, a references to the
edge and cloud pilot is required. The framework then handles
the dataflow between the instantiations of the defined functions
in these pilots using Kafka.

D. Discussion

Pilot-Edge provides a blueprint for applications and sup-
ports common patterns, e. g., integrating sensing tasks, i. e.,
tasks that capture environmental changes using sensors, and
other types of processing, e. g., pre-processing and machine
learning inference. For example, commonly, the API’s data
source function (produce_edge in Listing 1) is used ei-
ther to deploy data collection code, e. g., code for reading out
a sensor or a data generator. The edge and cloud functions
are used for processing. For example, the edge function fre-
quently serves for data pre-aggregation, outlier detection, and
data compression to ensure that the amount of data movement
is minimal. The cloud functions are often used for more com-
plex analytics, training, and modeling tasks.

1 Partition(s) 2 Partition(s) 4 Partition(s)

Latency
(in Seconds)

Throughput
(in M

B/sec)
Throughput

(in M
essage/sec)

100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

0.0010

0.0100

0.1000

1.0

10.0

100.0

30

100

300

Message Size (in Points)

Broker Cloud Total

Fig. 2: Throughput and Latencies by Message Size and Parti-
tions: The system’s total throughput increases with the number of
edge devices and partitions; every edge device is assigned a dedi-
cated partition. In the four partition scenario, the processing system
becomes the bottleneck determining the overall throughput.

By nature, edge-to-cloud applications are subject to differ-
ent dynamism and variability induced by data sources, infras-
tructures, and applications. If supported by the resource, the
allocated resources can be adapted, i. e., expanded and scaled-
down, dynamically at runtime, e. g., if a bottleneck arises due
to increased data rates or in response to an application event
(e. g., the discovery of a significant data pattern). The pro-
cessing functions can be programmatically replaced at runtime
(without the need to allocate a new pilot), allowing, e. g., the
exchanging low vs. high fidelity models.

III. EXPERIMENTS

This section conducts a performance characterization of
different machine learning workloads using Pilot-Edge. For
our experiments, we use the Leibniz Supercomputing Cen-
ter (LRZ) und XSEDE Jetstream clouds and different VM
types: 4 core/18 GB (medium), 10 cores/44 GB (large) (LRZ)
and 6 cores/16 GB (medium) (Jetstream). Synthetic data is gen-
erated using the Mini-App data generator [11].

1) Baseline Performance: We investigate the throughput
and latency with the edge data source, broker, and process-
ing components deployed on the LRZ cloud. The edge devices
are simulated with a Dask task, allocating one core and about
4 GB of memory, comparable to a current Raspberry Pi. We
use one partition per edge device for simplicity and keep the
ratio of partitions constant between Kafka and Dask. We use
message sizes of 25 to 10,000 points with 32 features each.
Every point has a serialized size of 8 Bytes, i. e., message sizes
are 7 KB to 2.6 MB. We send 512 messages per run and repeat
each experiment at least three times.

Figure 2 illustrates the baseline throughput and latencies.
The framework captures and links comprehensive metrics
across all involved components, particularly the edge data gen-
erator, broker, and cloud processing services (for clarity, data
for edge is not displayed). This data allows the easy identi-
fication of bottlenecks. For example, for four partitions, it is
apparent that the Kafka broker can process more data than the
consuming processing tasks in the cloud.

C. Pilot-Edge API

Pilot-Edge exposes a Function-as-a-Service (FaaS) API,
that abstracts details about individual resources, allowing the
application to focus on application logic and not infrastructure.
While the framework is suited to support arbitrary IoT edge
applications, we mainly focus on data and machine learning
applications.

Listing 1: Pilot-Edge FaaS API
d e f p roduce edge (c o n t e x t)

d e f p r o c e s s e d g e (c o n t e x t : d i c t = None , d a t a =None)

d e f p r o c e s s c l o u d (c o n t e x t : d i c t = None , d a t a =None)

Listing 1 illustrates the API of the Pilot-Edge-abstraction.
The API is application-centric and lets developers focus on
expressing important application tasks, e. g., sensing and in-
ference, and on selected trade-offs, such as task localities. The
API comprises three functions: (i) for managing sensing and
data generation on the edge, (ii) for edge processing, and (iii)
for cloud processing. While each task must be defined as a
Python function, it is also possible to access native capabil-
ities, e. g., by integrating native code for accessing low-level
sensors on the edge. The API allows the re-use of functions
across the continuum while retaining flexibility and customiz-
ability.

Listing 2: Pilot-Edge API: Instantiation of an Application
p i l o t . E d g e To Cl o u d P i p e l i ne (

p i l o t c l o u d p r o c e s s i n g = p i l o t j o b c l o u d p r o c e s s i n g ,
p i l o t c l o u d b r o k e r = p i l o t j o b c l o u d b r o k e r ,
p i l o t e d g e = p i l o t j o b e d g e ,
p r o d u c e f u n c t i o n h a n d l e r = p roduce b lock edge ,
p r o c e s s e d g e f u n c t i o n h a n d l e r = p r o c e s s b l o c k e d g e ,
p r o c e s s c l o u d f u n c t i o n h a n d l e r = p r o c e s s b l o c k c l o u d ,
f u n c t i o n c o n t e x t = c o n t e x t ,
. . .
) . run ()

Listing 2 shows how an edge-to-cloud application is instan-
tiated. In addition, to passing the function references to the
data generation and processing functions, a references to the
edge and cloud pilot is required. The framework then handles
the dataflow between the instantiations of the defined functions
in these pilots using Kafka.

D. Discussion

Pilot-Edge provides a blueprint for applications and sup-
ports common patterns, e. g., integrating sensing tasks, i. e.,
tasks that capture environmental changes using sensors, and
other types of processing, e. g., pre-processing and machine
learning inference. For example, commonly, the API’s data
source function (produce_edge in Listing 1) is used ei-
ther to deploy data collection code, e. g., code for reading out
a sensor or a data generator. The edge and cloud functions
are used for processing. For example, the edge function fre-
quently serves for data pre-aggregation, outlier detection, and
data compression to ensure that the amount of data movement
is minimal. The cloud functions are often used for more com-
plex analytics, training, and modeling tasks.

1 Partition(s) 2 Partition(s) 4 Partition(s)

Latency
(in Seconds)

Throughput
(in M

B/sec)
Throughput

(in M
essage/sec)

100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

0.0010

0.0100

0.1000

1.0

10.0

100.0

30

100

300

Message Size (in Points)

Broker Cloud Total

Fig. 2: Throughput and Latencies by Message Size and Parti-
tions: The system’s total throughput increases with the number of
edge devices and partitions; every edge device is assigned a dedi-
cated partition. In the four partition scenario, the processing system
becomes the bottleneck determining the overall throughput.

By nature, edge-to-cloud applications are subject to differ-
ent dynamism and variability induced by data sources, infras-
tructures, and applications. If supported by the resource, the
allocated resources can be adapted, i. e., expanded and scaled-
down, dynamically at runtime, e. g., if a bottleneck arises due
to increased data rates or in response to an application event
(e. g., the discovery of a significant data pattern). The pro-
cessing functions can be programmatically replaced at runtime
(without the need to allocate a new pilot), allowing, e. g., the
exchanging low vs. high fidelity models.

III. EXPERIMENTS

This section conducts a performance characterization of
different machine learning workloads using Pilot-Edge. For
our experiments, we use the Leibniz Supercomputing Cen-
ter (LRZ) und XSEDE Jetstream clouds and different VM
types: 4 core/18 GB (medium), 10 cores/44 GB (large) (LRZ)
and 6 cores/16 GB (medium) (Jetstream). Synthetic data is gen-
erated using the Mini-App data generator [11].

1) Baseline Performance: We investigate the throughput
and latency with the edge data source, broker, and process-
ing components deployed on the LRZ cloud. The edge devices
are simulated with a Dask task, allocating one core and about
4 GB of memory, comparable to a current Raspberry Pi. We
use one partition per edge device for simplicity and keep the
ratio of partitions constant between Kafka and Dask. We use
message sizes of 25 to 10,000 points with 32 features each.
Every point has a serialized size of 8 Bytes, i. e., message sizes
are 7 KB to 2.6 MB. We send 512 messages per run and repeat
each experiment at least three times.

Figure 2 illustrates the baseline throughput and latencies.
The framework captures and links comprehensive metrics
across all involved components, particularly the edge data gen-
erator, broker, and cloud processing services (for clarity, data
for edge is not displayed). This data allows the easy identi-
fication of bottlenecks. For example, for four partitions, it is
apparent that the Kafka broker can process more data than the
consuming processing tasks in the cloud.

8

Evaluation of Pilot-Edge using Edge-to-Cloud
Machine Learning Application

• Evaluation latency and
throughput and latencies on
Leibniz Supercomputing
Center (EU) and XSEDE
Jetstream Cloud (US) cloud

• Edge tasks are emulated using
1 core / ~2 GB (Raspberry Pi)

• Cloud processing and broker
node 10 cores/44 GB memory

• Mini-App Framework for data
generation*

• Three different machine learning
models: K-Means, Isolation
Forest and AutoEncoder

• Baseline: No compute

LRZ (Europe) XSEDE Jetstream/LRZ (America/Europe)

Latency
(in Seconds)

Throughput
(in M

B/sec)
Throughput

(in M
essage/sec)

100 1,000 10,000 100 1,000 10,000

0.10

1.00

10.00

100.00

1,000.00

0.010

0.100

1.000

10.000

100.000

1.0

10.0

100.0

Message Size (in Points)

AutoEncoder Baseline Isolation Forest K−Means

1. Edge/Cloud (EU) 2. Edge (US) / Cloud (EU)

Network Latency

*https://ieeexplore.ieee.org/document/8588652

9

Evaluation of Pilot-Edge using Edge-to-Cloud
Machine Learning Application

• Evaluation latency and
throughput and latencies on
Leibniz Supercomputing
Center (EU) and XSEDE
Jetstream Cloud (US) cloud

• Edge tasks are emulated using
1 core / ~2 GB (Raspberry Pi)

• Cloud processing and broker
node 10 cores/44 GB memory

• Mini-App Framework for data
generation*

• Three different machine learning
models: K-Means, Isolation
Forest and AutoEncoders

• Baseline: No compute

LRZ (Europe) XSEDE Jetstream/LRZ (America/Europe)

Latency
(in Seconds)

Throughput
(in M

B/sec)
Throughput

(in M
essage/sec)

100 1,000 10,000 100 1,000 10,000

0.10

1.00

10.00

100.00

1,000.00

0.010

0.100

1.000

10.000

100.000

1.0

10.0

100.0

Message Size (in Points)

AutoEncoder Baseline Isolation Forest K−Means

1. Edge/Cloud (EU) 2. Edge (US) / Cloud (EU)

Limited throughput of
intercontinental network

AutoEncoder
compute limited

*https://ieeexplore.ieee.org/document/8588652

10

Evaluation: Result Summary

• Utilized Pilot-Edge abstraction and implementation for an
edge-to-cloud machine learning application on
geographically distributed edge and cloud resources

• Impact of latencies and bandwidths (EU only vs. US/EU)
on the performance of the application

• Model complexity:
• For K-Means throughput is limited by bandwidth
• For AutoEncoders throughput is the limited by compute

11

Conclusion and Future Work

Pilot-Edge addresses the following challenges:
• Heterogeneity: Single abstraction and programming model from the edge to the

cloud
• Dynamic and distributed environment: Handle distributed data flows. Ability to

respond to changes in application and environment
• Provisioning and management of resources and tasks: common abstraction for

resource management. Ability to support dynamic task placement

Future Work:
• Extension of Pilot-Edge abstraction to arbitrary infrastructure topologies
• Resource management and scheduling: Explore advanced task placement and

execution strategies, e.g., energy-aware scheduling
• New workload types, e.g., federated learning

