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Highlights And Contributions

❑ This work presents a detailed performance analysis of TensorFlow Lite and
TensorFlow-TensorRT (TF-TRT) inference compilers by comparing throughput,
latency, and power consumption

❑ It describes inference compilers’ behavior specific to DL model's architecture and
computing hardware

❑ It recognizes a need for a standardized benchmark suite to analyze the inference
compilers’ optimization pipeline for edge computing

❑ The results presented in this paper will provide scientific computing community
solutions to optimize the inference performance at Edge
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Background And Motivation

❑ Challenges in the cloud-based inference
❑ Limited bandwidth when compared to volume of data
❑ Undesirable high latency
❑ Security and privacy concerns

❑ Together with our colleagues at
PVAMU, we perform research
to build the capabilities addressing
complex problems posed by IoT, ML
and Big Data.
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An Industrial IOT Example

Can we “efficiently” bring 
computation to the Edge??

CREDIT: Center of excellence in Research and Education for big 

military Data InTelligence

http://credit.pvamu.edu/



Edge Computing And Deep Learning

❑ Edge Computing
❑ “It is a distributed computing paradigm that brings computation and data

storage closer to the location where it is needed to improve response times
and save bandwidth”

❑ A surge in the Deep Learning-based
applications on edge
❑ Object detection
E.g., UAV tracking a moving target

❑ Image Classification
E.g., Surveillance tech using CCTV

❑ Application in high energy physics
❑ Real-time image analysis in HL-LHC and DUNE
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Improving Efficiency Of Inference-on-Edge

❑ Computing hardware of the edge devices is usually CPUs, GPUs, or ASICs
❑ These xPUs are limited in compute and power resources compared to the cloud

servers
❑ Research to enable efficient deep learning inference on the resource-constrained

edge devices
❑ Development of low-power SoCs specialized for deep learning. E.g., Google’s

TPU, Intel’s VPU
❑ Model compression techniques, like quantization, layer pruning
❑ Design of lightweight models like MobileNet, YOLO

❑ The above approaches have limitations in addressing heterogeneous hardware
and models

❑ Need for frameworks to implement fine-grained optimizations common across
DL models
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Need For Compiler Frameworks For Inference-on-Edge 

❑ Diversified DL compute hardware/backend
❑ Challenges in deploying DL models in varying input formats
❑ Need for DL-oriented multi-IR to apply commonly adopted frontend and backend optimization

techniques
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TF, PyTorch, Caffe, …
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Compiler Frameworks For Inference-on-Edge 

❑ The development of compilers for DNN is currently a hot research topic
❑ GLOW, nGraph, TF XLA, TensorRT, TVM…

❑ Edge computing systems and tools

❑ Cloudlet, SpanEdge, AirBox, Apache Edgent, Azure IoT Edge

❑ Critical design issues like multi-user fairness, security, privacy, so on

❑ Inference on the edge is hindered by resource-constrained devices – introducing
bandwidth, throughput, power, or efficiency-related challenges

❑ Development of TensorFlow-TensorRT (TF-TRT) integrated solution and
TensorFlow Lite (TFLite) to optimize inference on the edge
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Overview Of DL Compilers For Inference-on-Edge

❑ TensorFlow-TensorRT Integrated Solution (TF-TRT)

❑ TensorFlow Lite (TFLite)
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TensorFlow-TensorRT Integrated Solution

❑ TensorRT – CUDA-based SDK for high-performance deep learning inference

❑ It is tightly integrated with TensorFlow

❑ Provides ONNX support

❑ Supports input in various frameworks like Caffe, MxNet, Chainer, PyTorch, etc

❑ Performs optimizations specific to Nvidia GPUs only
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TensorRT Workflow

Import and optimize trained models to generate optimized plans

10Source: NVIDIA TensorRT Documentation

Deployment of generated inference engines



TensorFlow Lite
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Architecture of TensorFlow Lite



Pivotal Optimizations

❑ Quantization – FP16, INT8, MIXED Precision

❑ Horizontal and vertical layer and tensor fusion

❑ Dynamic tensor memory allocation

❑ TensorRT performs calibration to reduce the accuracy loss

❑ TensorRT performs kernel autotuning

❑ TFLite performs weights clustering, reducing the number of individual weights

12



Vertical And Horizontal Layer Fusion – An Example

13Source: https://developer.nvidia.com/blog/deploying-deep-learning-nvidia-tensorrt/

An example of CNN

Vertical Layer Fusion Horizontal Layer Fusion
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Experimental Setup

❑ Evaluated Models

❑ Dataset

❑ Hardware Specifications

❑ Software Specifications
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❑ Image Classification ❑ Object Detection
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Evaluated Models

ResNet50_v2

MobileNet_v2

SSD_MobileNet_v2

Source: ResNet_v2 – cv-tricks.com; MobileNet_v2 – Mark Sandler et al., “MobileNetV2: Residuals 
and Linear Bottlenecks”; SSD_MobileNet_v2 – machinethink.net



Dataset

❑ ImageNet

❑ Collection of human-annotated images organized according to the WordNet
Hierarchy

❑ Suited for computer vision applications such as image classification and object
detection

❑ Over 14 million images organized into 21,000 subcategories

❑ Common Object in Context (COCO)

❑ Microsoft’s COCO dataset is large-scale object detection, segmentation, and
captioning dataset

❑ Consists of everyday scenes comprising common objects in their natural context

❑ 165K+ train, 81K+ test and 81K+ validation images
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Hardware And Software Specifications
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❑ Compute Backend

❑ NVIDIA GPUs

❑ GeForce RTX 2080

❑ Tesla T4

❑ Android Studio Emulator

❑ Android Studio v4.0.1

❑ Pixel 3a XL w/ android 10 and API 29

❑ TFLite

TFLite v2.3

TF v2.4
CUDA v10.1
CuDNN v7.5

❑ TF-TRT Integrated Solution

TensorRT v5.1
TF-GPU v2.0
CUDA v10.1
CuDNN v7.5



Results and Discussion

18



Evaluation Metrics

❑ Throughput: volume of inferences within a given period (images/sec)

❑ Latency: execution time to perform inference on one image (milliseconds, ms)

❑ Power: refers to the power drawn by the GPU to perform one inference 
(watt, W)

❑ Model Size: saved model’s (.pb or .tflite) size on the disk (MB) 
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Comparison Between TFLite And TF-TRT On 
GeForce RTX 2080
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ResNet50_v2 model trained  on ImageNet dataset
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Comparison Between TFLite And TF-TRT On 
GeForce RTX 2080 – Avg Power And Model Size
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SSD_MobileNet_v2 model pre-trained on COCO Dataset provided by MLPerf.
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Comparison Between GeForce 2080 And Tesla T4
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Average Throughput (imgs/sec) on GeForce 2080 (non-tensor core) vs. Tesla T4 (tensor core) GPU 
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Execution Of TFLite Models On An Android Device
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* 4 Threads; NS: Not Supported

Backend Model Precision Avg_Throughput (imgs/sec) Avg_latency (ms) Model_Size (MB)

GPU MobileNet Floating 745 11 17

CPU MobileNet Floating 311 26 17

GPU MobileNet Quantized NS NS NS

CPU MobileNet Quantized 571 15 4

GPU SSD_MobileNet Floating 42 24 27

CPU SSD_MobileNet Floating 20 53 27



Conclusions And Future Research Directions

❑ Compiler frameworks have been proved vital in applying fine-grained and low-
level optimizations to the DL models at the edge

❑ TF-TRT-integrated solution consistently displays better performance with
different computing backend, especially with GPUs using tensor cores

❑ TFLite performs better with lightweight DL models compared to the deep CNN
models

❑ Inference compilers such as TF-TensorRT and TensorFlow Lite under a scientific
ML workload can prove crucial for the scientific community

❑ Extend this experimentation for modern AI accelerators. For example, 
Application-Specific Integrated Circuit (ASIC) such as Vision Processing Unit (VPU), 
and Tensor Processing Unit (TPU), and FPGAs
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Thank You!
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