
Performance Evaluation of Deep Learning Compilers
for Edge Inference

21st May, PAISE 2021

Gaurav Verma1, Yashi Gupta1, Abid M. Malik2, Barbara Chapman1,2

1Stony Brook University, NY, 2Brookhaven National Laboratory, NY

Acknowledgement: This research work is supported in part by the U.S. Office of the Under Secretary of Defense for Research and Engineering
(OUSD(R&E)) under agreement number FA8750-15-2-0119.

1

Highlights And Contributions

❑ This work presents a detailed performance analysis of TensorFlow Lite and
TensorFlow-TensorRT (TF-TRT) inference compilers by comparing throughput,
latency, and power consumption

❑ It describes inference compilers’ behavior specific to DL model's architecture and
computing hardware

❑ It recognizes a need for a standardized benchmark suite to analyze the inference
compilers’ optimization pipeline for edge computing

❑ The results presented in this paper will provide scientific computing community
solutions to optimize the inference performance at Edge

2

Background And Motivation

❑ Challenges in the cloud-based inference
❑ Limited bandwidth when compared to volume of data
❑ Undesirable high latency
❑ Security and privacy concerns

❑ Together with our colleagues at
PVAMU, we perform research
to build the capabilities addressing
complex problems posed by IoT, ML
and Big Data.

3

An Industrial IOT Example

Can we “efficiently” bring
computation to the Edge??

CREDIT: Center of excellence in Research and Education for big

military Data InTelligence

http://credit.pvamu.edu/

Edge Computing And Deep Learning

❑ Edge Computing
❑ “It is a distributed computing paradigm that brings computation and data

storage closer to the location where it is needed to improve response times
and save bandwidth”

❑ A surge in the Deep Learning-based
applications on edge
❑ Object detection
E.g., UAV tracking a moving target

❑ Image Classification
E.g., Surveillance tech using CCTV

❑ Application in high energy physics
❑ Real-time image analysis in HL-LHC and DUNE

4

Cloud Computing Edge Computing

Computation

takes place here

Paradigm

Shift

Resource-Constrained

Edge Devices

Improving Efficiency Of Inference-on-Edge

❑ Computing hardware of the edge devices is usually CPUs, GPUs, or ASICs
❑ These xPUs are limited in compute and power resources compared to the cloud

servers
❑ Research to enable efficient deep learning inference on the resource-constrained

edge devices
❑ Development of low-power SoCs specialized for deep learning. E.g., Google’s

TPU, Intel’s VPU
❑ Model compression techniques, like quantization, layer pruning
❑ Design of lightweight models like MobileNet, YOLO

❑ The above approaches have limitations in addressing heterogeneous hardware
and models

❑ Need for frameworks to implement fine-grained optimizations common across
DL models

5

Need For Compiler Frameworks For Inference-on-Edge

❑ Diversified DL compute hardware/backend
❑ Challenges in deploying DL models in varying input formats
❑ Need for DL-oriented multi-IR to apply commonly adopted frontend and backend optimization

techniques

6

DNN in the supported

frameworks

TF, PyTorch, Caffe, …

Compiler Framework

• Performs target independent optimizations.

• Precision

Calibration

• Layer Fusion

• Kernel Auto-tuning

• Dynamic Tensor

Memory …

…

Optimized Graph

Runtime

To be deployed on the

Edge Devices

Resource-Constrained

Edge Devices

Fast, Memory & Power-

Efficient Execution

Compiler Frameworks For Inference-on-Edge

❑ The development of compilers for DNN is currently a hot research topic
❑ GLOW, nGraph, TF XLA, TensorRT, TVM…

❑ Edge computing systems and tools

❑ Cloudlet, SpanEdge, AirBox, Apache Edgent, Azure IoT Edge

❑ Critical design issues like multi-user fairness, security, privacy, so on

❑ Inference on the edge is hindered by resource-constrained devices – introducing
bandwidth, throughput, power, or efficiency-related challenges

❑ Development of TensorFlow-TensorRT (TF-TRT) integrated solution and
TensorFlow Lite (TFLite) to optimize inference on the edge

7

Overview Of DL Compilers For Inference-on-Edge

❑ TensorFlow-TensorRT Integrated Solution (TF-TRT)

❑ TensorFlow Lite (TFLite)

8

TensorFlow-TensorRT Integrated Solution

❑ TensorRT – CUDA-based SDK for high-performance deep learning inference

❑ It is tightly integrated with TensorFlow

❑ Provides ONNX support

❑ Supports input in various frameworks like Caffe, MxNet, Chainer, PyTorch, etc

❑ Performs optimizations specific to Nvidia GPUs only

9

TensorRT Workflow

Import and optimize trained models to generate optimized plans

10Source: NVIDIA TensorRT Documentation

Deployment of generated inference engines

TensorFlow Lite

11

Architecture of TensorFlow Lite

Pivotal Optimizations

❑ Quantization – FP16, INT8, MIXED Precision

❑ Horizontal and vertical layer and tensor fusion

❑ Dynamic tensor memory allocation

❑ TensorRT performs calibration to reduce the accuracy loss

❑ TensorRT performs kernel autotuning

❑ TFLite performs weights clustering, reducing the number of individual weights

12

Vertical And Horizontal Layer Fusion – An Example

13Source: https://developer.nvidia.com/blog/deploying-deep-learning-nvidia-tensorrt/

An example of CNN

Vertical Layer Fusion Horizontal Layer Fusion

1

2 3

Experimental Setup

❑ Evaluated Models

❑ Dataset

❑ Hardware Specifications

❑ Software Specifications

14

❑ Image Classification ❑ Object Detection

15

Evaluated Models

ResNet50_v2

MobileNet_v2

SSD_MobileNet_v2

Source: ResNet_v2 – cv-tricks.com; MobileNet_v2 – Mark Sandler et al., “MobileNetV2: Residuals
and Linear Bottlenecks”; SSD_MobileNet_v2 – machinethink.net

Dataset

❑ ImageNet

❑ Collection of human-annotated images organized according to the WordNet
Hierarchy

❑ Suited for computer vision applications such as image classification and object
detection

❑ Over 14 million images organized into 21,000 subcategories

❑ Common Object in Context (COCO)

❑ Microsoft’s COCO dataset is large-scale object detection, segmentation, and
captioning dataset

❑ Consists of everyday scenes comprising common objects in their natural context

❑ 165K+ train, 81K+ test and 81K+ validation images

16

Hardware And Software Specifications

17

❑ Compute Backend

❑ NVIDIA GPUs

❑ GeForce RTX 2080

❑ Tesla T4

❑ Android Studio Emulator

❑ Android Studio v4.0.1

❑ Pixel 3a XL w/ android 10 and API 29

❑ TFLite

TFLite v2.3

TF v2.4
CUDA v10.1
CuDNN v7.5

❑ TF-TRT Integrated Solution

TensorRT v5.1
TF-GPU v2.0
CUDA v10.1
CuDNN v7.5

Results and Discussion

18

Evaluation Metrics

❑ Throughput: volume of inferences within a given period (images/sec)

❑ Latency: execution time to perform inference on one image (milliseconds, ms)

❑ Power: refers to the power drawn by the GPU to perform one inference
(watt, W)

❑ Model Size: saved model’s (.pb or .tflite) size on the disk (MB)

19

Comparison Between TFLite And TF-TRT On
GeForce RTX 2080

20

ResNet50_v2 model trained on ImageNet dataset

0

200

400

600

800

1000

1200

1400

1600

1800

FP32 FP32 FP16 INT8 MIXED
NATIVE TF-TRT TFLite TF-TRT TFLite TF-TRT TFLite TF-TRT TFLite

Comparison Between TFLite And TF-TRT On
GeForce RTX 2080 – Avg Power And Model Size

21

SSD_MobileNet_v2 model pre-trained on COCO Dataset provided by MLPerf.

0

10

20

30

40

50

60

70

FP32 FP32 FP16 INT8 MIXED
NATIVE TF-TRT TFLite TF-TRT TFLite TF-TRT TFLite TF-TRT TFLite

Comparison Between GeForce 2080 And Tesla T4

22

Average Throughput (imgs/sec) on GeForce 2080 (non-tensor core) vs. Tesla T4 (tensor core) GPU

0

500

1000

1500

2000

2500

3000

3500

4000

FP32 FP16 INT8 MIXED
GeForce Tesla T4 GeForce Tesla T4 GeForce Tesla T4 GeForce Tesla T4

A
vg

_T
h

ro
u

gh
p

u
t

(i
m

gs
/s

e
c)

Execution Of TFLite Models On An Android Device

23

* 4 Threads; NS: Not Supported

Backend Model Precision Avg_Throughput (imgs/sec) Avg_latency (ms) Model_Size (MB)

GPU MobileNet Floating 745 11 17

CPU MobileNet Floating 311 26 17

GPU MobileNet Quantized NS NS NS

CPU MobileNet Quantized 571 15 4

GPU SSD_MobileNet Floating 42 24 27

CPU SSD_MobileNet Floating 20 53 27

Conclusions And Future Research Directions

❑ Compiler frameworks have been proved vital in applying fine-grained and low-
level optimizations to the DL models at the edge

❑ TF-TRT-integrated solution consistently displays better performance with
different computing backend, especially with GPUs using tensor cores

❑ TFLite performs better with lightweight DL models compared to the deep CNN
models

❑ Inference compilers such as TF-TensorRT and TensorFlow Lite under a scientific
ML workload can prove crucial for the scientific community

❑ Extend this experimentation for modern AI accelerators. For example,
Application-Specific Integrated Circuit (ASIC) such as Vision Processing Unit (VPU),
and Tensor Processing Unit (TPU), and FPGAs

24

Thank You!

25Gaurav Verma: gverma@cs.stonybrook.edu

Acknowledgement: This research work is supported in part by the U.S. Office of the Under Secretary of Defense for Research and Engineering
(OUSD(R&E)) under agreement number FA8750-15-2-0119.

