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Deep Learning in Edge
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Figure: Deep Learning on Device, Edge Server, and
Cloud Data Center

Distributed deep learning is essential to
support various edge computing-based
applications which incur a significantly
increased workload on cloud servers.

Applications using Deep Neural Network
have been widely deployed on mobile
devices like smartphones and IoT sensors.

A lot of training workloads will be
assigned on Edge servers and cloud. So
the deep training performance is critical
on both edge and cloud.
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Existing Solutions in Cloud and Edge Deep Learning

GPU-accelerated deep learning on Edge and Cloud

A cluster computing system with highperformance distributed file systems like Hadoop
Distributed File System (HDFS)

accessing HDFS data involves local access and remote access.
remote data access includes network transfer delay.
Local data access time cost includes local Hard Drive Disk (HDD) or Solid State Drives
(SSD) access time
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Multi-Process and Distributed Training in PyTorch

As a deep learning framework developed by Facebook, PyTorch offers multi-process data
loading function that is able to load training dataset in parallel by using customizable
number of processes as “DataLoader” workers.

Although the multi-process data loading accelerates data I/O in training stage by creating
multiple processes, it also increases the usage of CPU and memory on host computers.

Furthermore, such multi-processing does not always improve performance when the
overhead of context switching is high or the I/O bandwidth limit has been achieved.

PyTorch also supports Distributed Deep Learning on a cluster of GPU servers.
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Storage Systems – Hard Drive Disks and Solid State Drives

HDDs are still widely adopted in data
centers for large capacity, low cost, and
high sequential access performance.

HDDs’ performance is significantly
affected by seeking and rotation delays,
I/O performance could be a significant
bottleneck when the training applications
are accessing data on HDDs.

SSDs are more capable of serving random
accesses. Smaller capacity. Higher cost
per GB. Frequent erasure rations reduce
SSDs life, also cause write amplification
which degrades I/O performance
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Distributed File Systems and Virtual Distributed File Systems

Hadoop Distributed File System, or
HDFS, is the most popular open-source
distributed file system which offers high
performance, reliability, and security.

Alluxio, the first Virtual Distributed File
System, was developed to use memory as
the file system which significantly
improves both local and remote data
access for storing and caching data in
local memory

Xiaojun Ruan1 and Haiquan Chen2 PAISE 2021 May 21, 2021 9 / 24



Outline

1 Introduction

2 Preliminaries

3 Limitation of Existing Distributed Deep Learning Frameworks

4 System Design and Implementation

5 Performance Evaluation

Xiaojun Ruan1 and Haiquan Chen2 PAISE 2021 May 21, 2021 10 / 24



I/O Bottleneck on Single GPU Server
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0 and 1: No noticeable difference.
2: Worse Performance
4 and 8: improve some batches’ performance

However, more data loader workers accessing
one HDD in parallel may cause frequent head
movements which causes frequent access time
fluctuations for 4 and more workers.

The average response, training every 10 batches, original PyTorch Data Loader, Tiny
ImageNet, Batch size 128, Resnet-18, Nvidia GTX 1070 Ti, 12GB main memory.
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I/O Bottleneck in Deep Learning Cluster

1 0 2 0 3 0 4 0
0

1

2

3

4

5

6

7

8

9

Tim
e (

se
c)

N u m b e r  o f  I t e r a t i o n s

 P T D L ( 0 )
 P T D L ( 1 )
 P T D L ( 2 )
 P T D L ( 4 )
 P T D L ( 8 )

No. of Extra Data Loader Worker

2 performs much better than 1 and 0
4 and 8 can achieve the best performance
without performance fluctuation

Reasons

1) Distributed storage system has higher
bandwidth
2) VDFS Alluxio is memory based so it handles
parallel I/O requests much better than HDDs

The average response, training every 10 batches, original PyTorch Data Loader, Tiny
ImageNet, Batch size 128, Resnet-18, 2 Training Node, 1 Nvidia RTX 2060/node, Alluxio
DFS, 16GB, 10 Storage Nodes.
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Memory Architecture

Distributed File System
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Figure: Memory Architecture of Informed Prefetching Data Loader in Distributed Deep Learning

IPDL fetches the batch for next iteration when GPU is training the current batch. Each
training node has an individual IPDL for data prefetching from DFS to local main memory.
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Informed Prefetching Data Loader Flow Chart
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At each iteration of deep learning, a thread is
created to fetch the next iteration’s batch in
parallel with training the current batch. If
prefetching is not complete by the end of
training, the program needs to pause until the
data is completely loaded into main memory
then start the next iteration.
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Algorithm 1 Informed Prefetching Data Loader

1: for each epoch do
2: for each batch in current epoch do
3: if is the first iteration of the epoch then
4: fetch current batch
5: create a new thread to prefetch next batch
6: else
7: current batch ← prefetched batch
8: create a new thread to prefetch next batch
9: end if

10: end for
11: Training batch...
12: if Prefetching is not complete then
13: wait till prefetching thread is complete
14: end if
15: end for
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System Implementation

IPDL is implemented on PyTorch 1.4 by inheriting DataLoader and
SingleProcessDataLoaderIter classes.

Since the file access pattern is decided at the beginning of each epoch, the prefetch of the
next batch will start in parallel with the training of the current batch.

A separate prefetching thread starts to prefetch the next batch of data at the beginning
of each batch.

If the prefetching is incomplete the iteration has to wait until the prefetching thread is
complete.

If the prefetching could not complete, it still reduces time cost since the data loading of
the next batch was partially in parallel with the current training.
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Testbeds

Table: Testbeds Configuration

1-Node Server 10-Node Cluster

Intel Xeon E3-1225 V3 Intel i7-9700

12GB Main Memory 16GB Main Memory

Nvidia GTX 1070 Ti with 8GB Nvidia RTX 2060 with 6GB

1 HDD, NTFS HDFS 2.7.3, Alluxio 2.2
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One Training Node, PyTorch Dataloader vs. Informed Prefetching
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Average Time cost of 10 iterations. Tiny ImageNet, Batch size 128 ResNet-18 Left) One
Server, One HDD, Nvidia GTX 1070 Ti; Right) 1 Training Node, Nvidia RTX 2060, 10
Storage Nodes

Xiaojun Ruan1 and Haiquan Chen2 PAISE 2021 May 21, 2021 20 / 24



Distributed Training Environment
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Figure: 10-node homogeneous cluster computing system, HDFS on all 10 nodes, Alluxio is built on top
of HDFS. Each node can serve as both storage and computing node. Both the default PTDL and IPDL
load batches via Alluxio.
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Distributed Training, PyTorch Dataloader vs. Informed Prefetching
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Average Time cost of 10 iterations. Distributed Training, Batch Size 128, Tiny ImageNet,
ResNet-18. Left) 2 Training Nodes; Right) 4 Training Nodes, 10 Storage Nodes
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Performance Comparison of IPDL and PTDL
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(b) Median CPU Utilization.
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(c) Median Memory Usage.

Batch Size 128, Tiny ImageNet, ResNet-18, PyTorch Data Loader number 0, 1, 2, 4, 8, 16.
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