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Growth in data movement demand
• New bandwidth-intensive and latency-sensitive workloads
• Demand shifts due to new “normal”; connectivity == basic services

high definition video AR/VR SmartCity, automation
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The importance of networks is  
reflected in increased usage
The daily time consumers spent connected 
to fixed broadband increased by two and 
a half hours during the crisis, while the 
time spent connected to mobile broadband 
increased by an average of one hour 
per day. As many as 46 percent have 
spent significantly more time on fixed 
broadband, while 16 percent have done 
the same on mobile broadband. 

In markets with limited penetration of 
fixed residential networks, the mobile 
broadband network was especially valued. 
For example, in India, 33 percent claim 
mobile broadband is more important than 
fixed broadband, as 37 percent only or 
most often rely on mobile broadband  
to connect at home. In South Korea, the US, 
China, Italy and Brazil, almost half of 
respondents claim that the networks are 
equally important to them.  

While most online activities on 
smartphones were mainly done connected 
to Wi-Fi at home, some activities were  
an exception. Thirty-eight percent of all 
respondents in the survey claim that  
they spend half of their overall time  
using social media apps connected to a  
mobile broadband network rather than  
a fixed network.

Networks cope well with  
the increased usage
Compared with before the lockdown 
restrictions, 74 percent experience their 
mobile broadband network as the same  
or better than before the crisis, while  
21 percent say it is worse. About half of 
all consumers say they are very satisfied 
with their fixed broadband’s overall 
performance. This shows that both mobile 
and fixed broadband have coped well with 
the increased internet usage.

Changes in service usage behavior 
Although the pandemic created new 
concerns for consumers, they are still 
buying new devices and expanding their 
usage of ICT services. About 1 in 10  
have bought new devices, and 2 in 10 have 
started to use new services. However, far 
more consumers have increased their 
usage of the online services they already 
use. Across the 11 markets, 87 percent 
have increased their usage of existing 
online services. A majority has increased 
usage of (in descending order):  
web browsing, instant messaging, 
streaming of videos, social media,  
video calls and voice calls.

Analysis of the net changes in app 
usage and new user growth reveals that 
apps for COVID-19 information and 
symptom tracking, e-learning, remote 
working and wellness all experienced an 
increase in usage, as well as a net new 

user growth of at least 8 percent or more. 
In addition, the need to socialize while in 
isolation and avoiding physical visits to 
doctors during the crisis drove users to 
start using remote health consultations 
and social shared experience apps. 
However, apps related to travel and 
booking, sports and navigation decreased 
the most in usage.

Figure 4: Smartphone apps – user growth and net change in usage during COVID-19 lockdown restrictions

The average time spent on Wi-Fi 
increased by two and a half hours 
per day, while mobile broadband 
usage increased by one hour per day.

Methodology
This article is based on data from an 
Ericsson Consumer & IndustryLab 
survey among smartphone users 
aged 15–69 years across  
11 countries: Brazil, China, France, 
Germany, India, Italy, South Korea, 
Spain, Sweden, the UK and the US.  
The data has been collected through 
online questionnaires between  
April 8–24, 2020. The sample of  
1,000 respondents in each country 
– a total of 11,000 respondents – 
statistically represents at least  
700 million smartphone users across 
these markets.
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Growth in data movement demand
• Increase in traffic volume, number of devices, wireless
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What does this mean? 
Just latency and bandwith?

• Past and recent datapoints:
• 70 TWh to run the Internet, LBNL, 06/2016
• 50 TWh to run China’s mobile network, 

Huawei, 07/2020

• Updated traffic predictions – no 
slowdown!
• EB/month cost?

• wide range based on factors: technology, 
distance, system scope, …  *

• 1.8 TWh /EB
• => 1.2 million tons of CO2 (EPA calculator)
• per EB

9 Forecasts Ericsson Mobility Report | November 2020

FWA global connections uptake
In addition to the need driven by the 
pandemic, there are three main factors 
that drive FWA growth. First, demand 
from consumers and businesses for digital 
services continues, driving the need for 
broadband connectivity. Second, FWA 
delivered over 4G or 5G is an increasingly 
cost-efficient broadband alternative in 
areas with limited availability of fixed 
services, such as DSL, cable and fiber. 
Increasing capacity, allowed by greater 
spectrum allocations and technology 
advancements for 4G and 5G networks, 
is driving higher network efficiency in 
terms of the cost per delivered gigabyte. 
Third, governments are fueling broadband 
connectivity through programs and 
subsidies, as it is considered vital for 
digitalization efforts and economic growth. 

The limited reporting from service  
providers and regulators of FWA  
connections, combined with varying  
FWA definitions, results in differences  
in the reported number of connections  
globally. However, we estimate there will 
be more than 60 million FWA connections 
by the end of 2020. This number is forecast 
to grow more than threefold through 2026,  
reaching over 180 million. Out of these,  
5G FWA connections are expected to  
grow to more than 70 million by 2026,  
representing around 40 percent of  
total FWA connections.

FWA data traffic is estimated to represent 
around 15 percent of global mobile 
network data traffic by the end of 2020. 
This is projected to grow 7 times to reach 
67EB in 2026, accounting for around  
25 percent of total mobile network data  
traffic globally.

FWA Middle East and Africa  
connection uptake
Middle East and Africa is a region with 
limited broadband connectivity. We 
estimate that there will be around 65 million  
broadband connections by the end of 2020, 
representing a total household penetration 
of around 18 percent. Out of these 
broadband connections, FWA is estimated 
to represent around 20 percent.

There are several examples of 
service providers in this region that are 
successful in meeting the large demand 
for broadband connectivity. To give one 
example, a leading service provider in 
Turkey experienced 3.5 times growth from 
Q2 2019 to Q2 2020, with the FWA user 
base reaching 0.5 million connections  
in July 2020.

Most of the FWA offerings in this  
region are 4G based. However, in the 
Middle East, there is a growing number 
of 5G FWA offerings, complementing the 
4G FWA offerings. For instance, a leading 
service provider in Oman showed a  
171 percent annual growth in 4G and  

5G FWA connections, representing 
12 percent of their fixed broadband 
connections as of Q2 2020.

FWA is projected to grow more than 
threefold, reaching around 35 million 
connections by 2026 and representing  
around 35 percent of all broadband 
connections in the region. 

FWA in the broadband context 
There are approximately 2 billion 
households in the world. By the end 
of 2019, approximately 1.2 billion 
(60 percent) had a fixed broadband 
connection, and by the end of 2026 this  
will reach approximately 1.5 billion  
(around 70 percent). FWA will then 
represent 12 percent of all fixed broadband 
connections. However, it is worth 
mentioning that FWA is also seen as a 
replacement option for around 300 million 
existing DSL connections. 

The FWA impact in society is larger 
than the number of FWA connections, as it 
brings connectivity to three to five people 
in a household depending on regional 
demographics. The forecast of over  
180 million FWA connections by the end  
of 2026 represents approximately  
650 million individuals having access  
to a wireless broadband connection. 

Figure 7: FWA connections
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What does this mean?

Impact of EB of mobile data @1.8 TWh/EB

2030 forecast:
200-300/month => ~ 3000 EB/year



Edge Computing Opportunities
• Reduce/remove data movement
• 5+G/6+WiFi/…, => new energy-efficient technologies
• Virtualization, software functions/server, …
• Enabler for new applications
• Aligned with UN SDG, Exponential Energy Roadmap
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Systems Software for Edge Computing

Edge-native technologies
Edge          Cloud

• Lightweight containers for the 
edge [HotEdge’20, TECHCON’20]

• Security and privacy [HotEdge’18, 
HotEdge’20, NSF’19-22]

• Systems support for distributed 
analytics and learning @edge 
[SEC’19, SOCC’19]

MEC and 5+G
Are MNO stacks edge ready?

• Kubernetes-based mobile networks 
and MEC stack

• Latency-centric orchestration in 
multi-tenant MEC

• Infrastructure services for edge 
(MEC-L-DNS, MEC-CDN, …) 
[HotNets’20]

Edge use cases
Applications and platforms

• CDN, AR/VR, Video360, IoT 
analytics, Visual computing

• Edge and emerging hardware: 
in-network and in-storage 
accelerators, NVM, … 

• Mostly under SRC JUMP ADA 
center [SRC’19-23]

Demo at: https://tinyurl.com/mec-in-a-box
Cartel



Collaborative Learning for the Edge

Cartel

Harshit Daga

with

Cartel [SOCC’19] with Nokia Bell Labs



(a)

Data
Edge

Cloud

Online learning over data from edge
Centralized System

o Data movement is time consuming and 
uses a lot of backhaul network 
bandwidth.

o Distributed ML across geo-distributed data 
can slow down the execution up to 53X[1].

o Regulatory constraints (GDPR)

o Even federated learning requires continuous 
model updates to be aggregated and propagated

Problems

[1] Kevin et al. Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds. 



An Alternative Approach

• Train machine learning models independently at each edge, in isolation from other edge nodes. 

• The isolated model performance gets heavily impacted in scenarios where there is a need to adapt to 
changing workload.

Isolated System



Solution Overview
Cartel : A System for Collaborative Transfer Learning at the Edge 

E node

E node

E node

E node

E node

Centralized Isolated Cartel

Lightweight Models

Data Transfer

Online Training Time

High Model accuracy

↓

↓

↓

↓

↑

↑

x

x

• Cartel maintains small customized models at each edge node.

• When there is change in the environment or variations in workload patterns, Cartel provides a jump 
start to adapt to these changes by transferring knowledge from other edge(s) where similar patterns 
have been observed.



Key Challenges & Idea

C1 : When to request for model transfer?
C2 : Which node (logical neighbor) to contact? 
C3 : How to transfer knowledge to the target edge node?

• Do not share raw data between any edge nodes or with the cloud.

• => Use metadata
§ Statistics about the network
§ Software configuration
§ Active user distribution by segments
§ Estimates of class priors (probability of certain classes), etc.

Metadata Server (MdS)

E1 node

E2 node



Evaluation
Adaptability to Change in the Workload

Online Random Forest (ORF)Introduction Workload
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Evaluation
Adaptability to Change in the Workload
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Benefits of Cartel:
• Adapts quickly to changes in workload (up to 8x faster compared to an isolated system).
• Reduces total data transfer costs significantly (1500x ↓ compared to a centralized system).
• Enables use of smaller models (3x ↓) at an edge node leading to faster training (5.7x ↓)

when compared to a centralized system.

Ongoing extension and evaluation on NNs



Emerging applications need DNNs

• ORF, OSVM -> knowledge transfer simple

• DNNs, complex and not easily explainable
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Results – Adaptability
MobileNet DenseNet ResNet



Results – Adaptability & Data Transfer Reduction
MobileNet DenseNet ResNet

SOSP’21, October 2021, Koblenz, Germany

Anonymous

Submission Type: Research

Table 1. Raw data transferred (MB) and gains per update per node in FL vs. CLUE. In Federated Learning data is transferred to send and
received model update while in CLUE data is transferred to share metadata information and during knowledge transfer.

CNN Model Million
Parameters

Federated Learning CLUE Data Transfer Gains
Out In KT (In) MdS (Out) No Drift (⇥) With Drift (⇥)

MobileNet 3.54 6.38 7.36 4.57 0.00058 23684 3
DenseNet 8.06 16.18 18.35 8.80 0.00058 59507 4
ResNet 11.69 12.19 13.75 8.55 0.00058 44713 3

Table 2. Ratio of total data transferred (in and out) of a node in
Federated Learning versus CLUE for a 5 node setup for an entire
experiment consisting of 100 request batch.

Model Workload Aggregator(⇥) Member(⇥)

MobileNet Introduction 1062 267
Fluctuation 644 161

DenseNet Introduction 1897 350
Fluctuation 1396 346

ResNet Introduction 1078 271
Fluctuation 1069 268

to an isolated system. For the �uctuation workload and Mo-
bileNet, in Figure 6a we observe a second spike in the model
performance as the class reappears in the later part, while
for DenseNet and ResNet we do not observe any change for
the same workload. This is because the other two models are
larger and are able to retain more information even when
the class was not present for few request batches.
Reduction in data transfer costs. The collaborative learn-
ing technique used by CLUE works on the curve of �nding
a tradeo� at spending few cycles to adapt to the change in
the workload versus the data transfer cost associated in reg-
ularly creating and updating a global model, as done in FL.
We summarize these costs in Table 1. In FL, for each update
period, for a member node the data transfer cost consists of
the delta in the local model since the last batch (Out) and
the received aggregated model update (In). For CLUE, the
per-update data transfer cost at each node consists of the
metadata sent to the MdS server (MdS(Out)). When data drift
is detected on a node, that node also incurs the knowledge
transfer cost (KT). For neural networks, the change in a local
model (Out ) or aggregated model updates (In) are signi�-
cantly larger when compared to the metadata (few kBs) used
by CLUE, and this leads to drastic reductions in the data
transfer costs, compared to FL, up to 104⇥, as seen from the
table. Moreover, since only a fraction of model parameters
are transferred as part of knowledge transfer in CLUE, this
too could result in data saving of up to 4⇥ when compared
to a single model update request in FL.

In Table 2, we compare the total data transfer for the same
experiment with 5 edge nodes with FL and CLUE as used in
Figures 5 and 6. As the collaborative approach requires model
data to be exchanged only when there is a drift in the model
performance at a target node, while in FL all nodes frequently
receive model update across the system the outcome is an

Table 3. Overhead in performing mechanisms described in Sec-
tion 5 normalized with the time required to process a request batch.

Model Continuous (⇥)
per batch

On-Demand (⇥)
per request

Helper
Model (⇥)

MobileNet 0.70 0.98 0.08
DenseNet 0.65 1.35 0.11
ResNet 0.70 0.95 0.14

overall data transfer reduction of 2-3 orders of magnitude,
depending on the the workload and model.

7.3 Cost of CLUE Mechanisms
Extracting signi�cant parameters. Using CLUE to per-
form knowledge transfer introduces runtime overheads asso-
ciated with the execution of the necessary mechanisms. We
present these costs in the context of the same experiments
as above using the introductory workload.

The continuous method for parameter selection stores the
sensitivity value of all parameters for all of the classes, and
its overheads depend on the number of layers and param-
eters of the model. For our dataset and given models, this
introduces additional memory overhead of 140MB, 320MB,
470MB for MobileNet, DenseNet and ResNet, respectively.
The on-demand approach creates a local datastore which is
only used when a request from a target node is received. For
our dataset, with an average of 600 data points in a request
batch, storing only the most recent request batch was suf-
�cient and required an addition of 6.8MB of memory. We
performed the same experiments for di�erent batch sizes,
starting from as low as 50 data points, and, across workloads,
observed similar gains in the overall bene�ts of CLUE, with
expected reduction in the runtime overheads.

In terms of the compute overhead, the on demand approach
adds an overhead in the response time of 0.9 to 1.35⇥ the
time required to process a request batch. The continuous
approach by pre-calculating these values avoids such delays
in the critical path of response, however, adds an overhead
of up to 0.7⇥ the time required to process a request batch,
for every request, as shown in Table 3.
Helpermodel creation. The time taken to create the model
depends on the size of the portion of model transferred from
the helper node, as shown in Table 1, and the time taken
to create a model at the target node. Upon receiving the
signi�cant parameters creating a helper model takes only up
to 0.14⇥ the time required to process a request batch.
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No elasticity, Maximize resource efficiency
Pocket: Featherweight Containers for the Edge

Misun Park, Ketan Bhardwaj, Ada Gavrilovska
Georgia Institute of Technology

Abstract
Edge computing environments, being resource-limited, can-
not tolerate the bloat in size of edge applications due to the
use of thick, complex software runtimes and hardware accel-
eration support. But such capabilities are critical to support
rich, diverse, and high performance applications. Performance
includes deployment time, responsiveness and scalability, and
is impacted by the bloat if using cloud-native container-based
systems at the edge. If not addressed, this will limit the ability
of the edge to scale to an increasing number of workloads.

This paper presents Pocket– a new approach to creating
lightweight containers for the edge. Pocket addresses the lim-
itations in current container-based systems while retaining
their benefits. Pocket achieves this by splitting containerized
applications into two parts, an application container and a
bloat-causing execution environment container, and by en-
abling their efficient interactions. However, with the design
splitting an application into two parts, fatal questions arise on
the matter of resource management between both parts and of
communication mechanism in terms of both control paths and
data path. We suggest our design to deal with communication
and resource management in a resource-scarce computing
environment such as the edge servers. Experimental evalua-
tions show that by sharing the execution environment contain-
ers across multiple application containers, Pocket is able to
achieve significant reductions of the resource pressure at the
edge and to deliver benefits to emerging edge applications,
compared to approaches being developed for certain classes
of containerized data center services.

1 Introduction

Edge computing promises to enable next generation of ap-
plications like AR/VR (e.g., Unity [29]), machine learn-
ing [1, 7, 8], event streaming [18, 31], etc. Applications en-
abled by edge computing are as rich and diverse if not more
than cloud applications and developing them raises the need
for using complex software runtimes. For instance, intelli-

Figure 1: Increasing resource usage of vanilla docker based YoloV3
TensorFlow applications. KB: I think making a line graph here would
be cleaner

gent analytics applications using machine learning frame-
works [20, 21]. At the same time, those applications have
performance requirements such that they require hardware
acceleration support [5, 12, 13, 15]. As a result, the soft-
ware/hardware requirements of these application lead to bloat
in their sizes, which has detrimental impact on their deploy-
ment time, responsiveness (launch time) and resource foot-
print they need for execution. Lack of a solution to any of
those problems poses an existential threat for edge computing
which would not be able to support the very applications it
promises to enable.

As a concrete instance, Table ?? shows that the size of a
Docker container, the leading contender light-weight cloud-
native technology proposed to be used in edge computing [?]
supporting a CPU-based TensorFlow library increases by
nearly 17⇥ compared to the latest “vanilla” Linux container.
This factor will only increase once support for GPU acceler-
ators, such as the CUDA runtime, is added [20]. 1 Misun:
going to add table comparing the sizes of docker images such
as minimal ubuntu, and with heavy support .

The state of art in cloud-native fails to address this problem.
While there exists considerable prior research work that has

Inefficient resource sharing 
with cloud-native technologies

Launch-time optimizations 
exacerbate problems 

Recent advances not designed 
for complex runtimes 



Edge-Native Technology

• Having shared long-running backends as runtime for multiple applications 
and instances reduced 
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File System Devices
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More new problems: Latency contention problem at the edge

• Running IA and ML application together at an edge location (result is from LTE)
• IA (IoT+ROS) is at RAN, and ML (visual analytics) is moved progressively closer
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More new problems: Latency contention problem in MEC

• Transport-level flow control engines clocked by RTT lead to longer and denser 
packet bursts
• Need a solution independent of endpoint protocols and in-network QoS 

support
10ms60ms100ms

• MEC-based collocated workloads trigger latency contention that can 
obviate the edge benefits for LC applications



Need new fine-grained latency-aware packet burst management 
for a multi-tenant edge
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Figure 9. a) Normalized number of conforming packets for LC for
different workload mixes b) LC and LS performance gain

IA workload, which requires 10ms e2e latency, a packet will
be deemed conforming if its e2e latency is lower or equal
to 10ms. Non-conforming packets are treated as dropped at
the user end, or as SLA violations. Hence, high number of
conforming packets relates to low level of SLA violations.

The figure shows that for LC applications, ShapeShifter is
successful at maintaining the LC SLAs. It results in only 1.4%
violations on average, with completely eliminating them in
some cases, and experiencing at most 4.7%. In contrast, with-
out ShapeShifter, MEC drastically loses the latency benefits
due to multi-tenancy, resulting in 50.7-73.5% packets which
violate the expected SLA. For LC applications this can have
disastrous consequences. ShapeShifter is particularly impor-
tant in scenarios where there is significant disproportion be-
tween the data volume and rate of the applications, such as in
the CDN/IA and ML/IA scenarios, since there the SLA degra-
dation without ShapeShifter is most severe. Even for scenar-
ios where both applications have comparable or equal data
volume and rate, such CDN/AR and ML/AR, ShapeShifter
is able to deliver most of the latency requirements of the
LC (AR) application, whereas without ShapeShifter it suffers
more than 50% violations.
Up to 3.8x better LC performance. Figure 9b shows the
normalized performance for each of the applications in a
mix, relative to the case without ShapeShifter. The perfor-
mance for the LC application is measured as the number
of conforming packets and for the LS application as aver-
age latency (response time) and throughput. ShapeShifter
improves the LC performance, by up to 3.8x. Furthermore,
ShapeShifter also improves by more that 1.5x the latency of
the LS applications. For the LC latency performance gain,
similar conclusions hold as for Figure 9a, i.e., ShapeShifter
provides biggest improvements when there exists greatest
disproportion in the data volume and rate of the LC and LS
applications. For the LS applications, ShapeShifter provides
comparable performance gains for every scenario pair.
Impact on LS application performance. ShapeShifter re-
stores the SLA of the LC workload at the expense of de-
grading the throughput of the LS workloads in the mix. The
degradation is more significant for the scenarios where the LC
application requires higher throughput. This is expected be-
cause the capacity of the RF link is limited and ShapeShifter
must decrease the LS throughput in order to provide the re-
quired resources for the LC applications.

(a) without ShapeShifter (b) with ShapeShifter
Figure 10. LC application packet spacing

Impact on wireless network efficiency. Without ShapeShifter,
the only way to facilitate the required performances for the
LC applications is by shutting down the active LS applica-
tions. Hence, although ShapeShifter degrades the throughput
of the LS application, it provides the possibility to run both
LS and LC in the most efficient manner based on the under-
lying network resource conditions [32]. For scenarios where
the RF capacity is able to accommodate both LC and LS
applications there will be no LS throughput performance
degradation. However, without using ShapeShifter, even if
the RF capacity is high enough, both applications will still ex-
perience significant latency degradations, as discussed above.
Verifying the root cause: Inter-packet spacing analysis. In
Figure 10a and Figure 10b we show the packet spacing effect
with and without ShapeShifter, and verify that ShapeShifter
is successful in reshaping the burst pattern of the LS flows,
and providing the adequate spacing for the LC packets. As
can be seen in Figure 10a, when the systems does not use
ShapeShifter, the packet spacing of the LS application ex-
hibits bursty packet behaviour. This effect is observed by
the thicker blue lines (multiple packets at the same time).
As a result of the LS burst, the LC packets are delayed, re-
sulting in sporadic variable LC packet spacing. When using
ShapeShifter, both applications experience significantly more
even packet spacing. This behavior contributes to the perfor-
mance benefits described earlier in this section.
RF-driven dynamic adaptation. ShapeShifter adapts to the
underlying RF, and proactively shapes the active applications.
Without RF reporting, ShapeShifter would not be able to per-
form the adaptation, and the underlying applications would
suffer significant performance degradation when the RF chan-
nel conditions worsen. Figure 11 shows the LC end-to-end
latency and achieved LS throughput for a scenario where the
RF capacity decreases, for ShapeShifter with and without RF
reporting. At approximately 5s on the time axis, we degrade
the channel quality by 20dB and reduce its capacity by almost
a half, down to 10 Mbps. Figure 11a shows that without RF
reporting, the LC application suffers significant performance
degradation. The LC latency increases approximately 5x after
RF degradation. When ShapeShifter uses RF reporting, the
latency degradation is only observed in a short adaptation
period. frame, during which ShapeShifter and the application
flows adapt to the underlying RF condition.
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Figure 1: A Common IoT application dataflow.

Motivated by these observations, we build Vasado – a
hardware-software co-designed framework for inline acceler-
ation of IoT workloads. Vasado exposes to IoT application a
programming interface that allows them to isolate and offload
their time-critical components to an in-network accelerator
core, resulting in low and predictable latency for the applica-
tions’ critical path. The Vasado Core represents a systolic array
of programmable streaming engines specialized for the com-
mon classes of IoT kernels, and integrates native support for
the topic abstraction in the form of topic-centric programma-
bility. This makes it possible for offloaded components to
operate at line rates, even under multi-tenant operation. The
Vasado runtime, when configuring applications for offload,
further deploys topic-specific compression and batching strate-
gies outside of the applications’ critical path, achieving both
low latency latency and improved end-to-end throughput.

Vasado is implemented for server systems with Mellanox
Innova Flex [3] smart NICs integrating a Xilinx FPGA. Its
evaluation with a number of representative IoT benchmarks
shows Vasado is able to achieve up to 68⇥ speed-up of the ap-
plications’ critical path compared to a general-purpose system,
and a 13⇥ improved throughput.

In summary, this paper makes the following contributions:
• We identify several unique properties of the backend com-

ponents powering IoT applications, and make observations
on how their distinct components can benefit from hardware
acceleration. (§2)

• We present Vasado, the first software-hardware co-designed
framework for in-network acceleration for IoT application
backends (§3) and present a new hardware accelerator tem-
plate specialized for IoT (§4).

• Using experimental analysis on a Vasado prototype for a
Xeon server and a Mellanox InnovaFlex SmartNIC, we
demonstrate that Vasado can deliver more than an order of
magnitude improvements in the critical path latency and
analytics throughput, while serving different representative
IoT applications. (§5)

2. IoT Acceleration Opportunities

2.1. IoT Workload Characteristics

While the term IoT refers to a broad range of applications,
most IoT applications are characterized by ingesting large

volumes of sensor data, analyzing it, and delivering updates
to one or more subscribers. Sensor data processing involves
a common set of steps, shown in Figure 1, forming a critical
path which comes with stringent real-time latency constraints
varying from 250 µs to 100 ms [4], and an analytics path,
which operates at longer time scales.

Typical sensors generate small updates of 10s to 1000s of
bytes, with existing IoT protocols designed for 20-1600 byte
message sizes [5, 6, 7]. We analyzed several representative
IoT applications, and Table 1 shows the number of data el-
ements (attributes) and the overall message size for each of
them. These small message are notoriously difficult to ingest
at high rates given the per-message processing overheads that
consume compute resources away from other application-level
processing and quickly start overwhelming the CPU.

In IoT, data rates are in range of hundreds of messages a
day for air quality sensory, to tens of thousands messages
per second for industrial IoT, with very diverse frequency
distributions [8,9]. Furthermore, leading IoT service providers
like AWS IoT, Google IoT Core and Azure IoT limit their
services to 10000 inbound and 20000 outbound messages
per second and 500 subscribers [10, 11, 12]. However, service
providers host many such applications, making it reasonable to
expect that IoT serving infrastructure must be provisioned for
hundreds of thousands of messages per second across hosted
workload.
The case for co-design and acceleration. Processing
these message rates and processing latency requirements with
general-purpose server systems is not sustainable, particularly
given the small message sizes common in IoT. Realizing a
scalable and performant infrastructure for IoT will therefore
have to seek efficiency through software/hardware co-design
and acceleration.

2.2. IoT Modules and Kernels

IoT applications are very modular. They are frequently ex-
pressed in a static pipeline of high level compute kernels that:
• parses data coming from sensors in a byte format to server-

side friendly format like JSON;
• filters data by range of max-min values, token, device id etc.,

in order to eliminate outliers, or to enrich data with filter
models such as Kalman Filter, Bloom Filter or interpolation
models that can fill in missing values;

• perform statistical analytics such as average, max and min
values, count, aggregation;

• uses trained machine learning models to generate actions or
to predict future events based on current measurements;

• train machine learning models to be used in the predictive
analytics kernel; and

• store data in persistent memory for future analysis.
Table 1 also lists the processing kernels of different classes

which appear in each of the four IoT applications used in
this work. Given the prevalence of these kernels, IoT service
providers typically integrate in their IoT streaming engines
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Figure 4: Overview of Vasado Core and Vasado Runtime. IoT applications interface with Vasado via

the Programming Interface that completely abstracts away the hardship of accelerators.

Figure 5: Vazado Core architecture.

a major way, by including separate copies of shared
context state with each topic. Instead, context state
in stored in a similar hierarchical fashion, thus keeping
single copy of common data. The increase in number of
memory accesses can be diminished by overlapping the
loads with the pipelined execution. In addition, caching
only the state for the first two engines allows the pipeline
execution to start executing at cache speeds, while the
remaining context state is fetched from memory, and
requires significantly lower on-chip memory (Table 3).

5.2 Accelerating Critical-Path Computations
Front End Engine. The Front End Engine plays three
roles in Vazado: packet processing, topic matching, and
configuration of the SEs. The current prototype of the
system is built around a simple un-authenticated UDP-
over-Ethernet network transport, making it practical to
integrate all of these functionalities into a single engine.
A more general design of Vazado can separate the packet
processing engine and leverage PPE implementations
such as what is provided by Intel’s COPA project [28]
to provide support for other types of transport.

The Front End also intercepts control message from
the host CPU for special Vazado configuration packets
used to add or remove accelerated topics for Vazado

Core. The instructions for each topic contain an array
of instructions per each SE using the following format:

[SE � ID][instruction� length][instruction� array]

The Front End processes this array and configures each
SE before the execution of the incoming published mes-
sage begins. Thus, the instructions for each topic are
distinct, which enables Vazado Core to support a wide
range of IoT workload that need a diverse set of compu-
tations for each topic.
Front End extracts the incoming IoT message from

the network packet, checks the topic hash to see if the
pipeline is properly configured, writes the message to o↵-
chip DRAM, and triggers the execution of the systolic
SEs.
Systolic Execution. The SEs in Vazado Core process
a published IoT message in a systolic fashion, using a
single bank of the topic register file to contain the entire
working set required to process the published message
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Motivated by these observations, we build Vasado – a
hardware-software co-designed framework for inline acceler-
ation of IoT workloads. Vasado exposes to IoT application a
programming interface that allows them to isolate and offload
their time-critical components to an in-network accelerator
core, resulting in low and predictable latency for the applica-
tions’ critical path. The Vasado Core represents a systolic array
of programmable streaming engines specialized for the com-
mon classes of IoT kernels, and integrates native support for
the topic abstraction in the form of topic-centric programma-
bility. This makes it possible for offloaded components to
operate at line rates, even under multi-tenant operation. The
Vasado runtime, when configuring applications for offload,
further deploys topic-specific compression and batching strate-
gies outside of the applications’ critical path, achieving both
low latency latency and improved end-to-end throughput.

Vasado is implemented for server systems with Mellanox
Innova Flex [3] smart NICs integrating a Xilinx FPGA. Its
evaluation with a number of representative IoT benchmarks
shows Vasado is able to achieve up to 68⇥ speed-up of the ap-
plications’ critical path compared to a general-purpose system,
and a 13⇥ improved throughput.

In summary, this paper makes the following contributions:
• We identify several unique properties of the backend com-

ponents powering IoT applications, and make observations
on how their distinct components can benefit from hardware
acceleration. (§2)

• We present Vasado, the first software-hardware co-designed
framework for in-network acceleration for IoT application
backends (§3) and present a new hardware accelerator tem-
plate specialized for IoT (§4).

• Using experimental analysis on a Vasado prototype for a
Xeon server and a Mellanox InnovaFlex SmartNIC, we
demonstrate that Vasado can deliver more than an order of
magnitude improvements in the critical path latency and
analytics throughput, while serving different representative
IoT applications. (§5)

2. IoT Acceleration Opportunities

2.1. IoT Workload Characteristics

While the term IoT refers to a broad range of applications,
most IoT applications are characterized by ingesting large

volumes of sensor data, analyzing it, and delivering updates
to one or more subscribers. Sensor data processing involves
a common set of steps, shown in Figure 1, forming a critical
path which comes with stringent real-time latency constraints
varying from 250 µs to 100 ms [4], and an analytics path,
which operates at longer time scales.

Typical sensors generate small updates of 10s to 1000s of
bytes, with existing IoT protocols designed for 20-1600 byte
message sizes [5, 6, 7]. We analyzed several representative
IoT applications, and Table 1 shows the number of data el-
ements (attributes) and the overall message size for each of
them. These small message are notoriously difficult to ingest
at high rates given the per-message processing overheads that
consume compute resources away from other application-level
processing and quickly start overwhelming the CPU.

In IoT, data rates are in range of hundreds of messages a
day for air quality sensory, to tens of thousands messages
per second for industrial IoT, with very diverse frequency
distributions [8,9]. Furthermore, leading IoT service providers
like AWS IoT, Google IoT Core and Azure IoT limit their
services to 10000 inbound and 20000 outbound messages
per second and 500 subscribers [10, 11, 12]. However, service
providers host many such applications, making it reasonable to
expect that IoT serving infrastructure must be provisioned for
hundreds of thousands of messages per second across hosted
workload.
The case for co-design and acceleration. Processing
these message rates and processing latency requirements with
general-purpose server systems is not sustainable, particularly
given the small message sizes common in IoT. Realizing a
scalable and performant infrastructure for IoT will therefore
have to seek efficiency through software/hardware co-design
and acceleration.

2.2. IoT Modules and Kernels

IoT applications are very modular. They are frequently ex-
pressed in a static pipeline of high level compute kernels that:
• parses data coming from sensors in a byte format to server-

side friendly format like JSON;
• filters data by range of max-min values, token, device id etc.,

in order to eliminate outliers, or to enrich data with filter
models such as Kalman Filter, Bloom Filter or interpolation
models that can fill in missing values;

• perform statistical analytics such as average, max and min
values, count, aggregation;

• uses trained machine learning models to generate actions or
to predict future events based on current measurements;

• train machine learning models to be used in the predictive
analytics kernel; and

• store data in persistent memory for future analysis.
Table 1 also lists the processing kernels of different classes

which appear in each of the four IoT applications used in
this work. Given the prevalence of these kernels, IoT service
providers typically integrate in their IoT streaming engines
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Figure 7: Latency comparison.

Figure 8: Latency variation for Baseline. The figure shows

minimum, 25th
percentile, 75th

percentile, and maximum la-

tency for each benchmarked application. For the same work-

load Vasado 99th
percentile latency is less than 60 µs

of an IoT message for various evaluated applications to the
time when the last IoT response for subscribers is received. To
measure stable throughput, we measure the total number of
messages in a span of 10 minutes.

5.2. Experimental Results

5.2.1. Latency Comparison. Figure 7 compares the reduction
in latency of Baseline, Baseline+Batch, Offload, Offload+Batch,
and Vasado compared to Baseline for the four benchmarked
IoT applications shown in Table 1. Note that we compare av-
erage latency in this figure. As shown in the figure, batching
has an adverse impact on the latency for the critical path and
increases the critical path latency. The Offload, Offload+Batch,
and Vasado all use the Vasado Core to yield a significant reduc-
tion in latency by completely subsuming the operations of the
critical path in IoT applications. The FIT benchmark sees the
highest reduction in critical path latency using Vasado Core

since this benchmark has the highest number of parameters
used for computations of the critical path. The GRID and TAXI

benchmarks see the lowest reduction in latency since these
benchmarks have fewer number of parameters that are pro-
cessed for the critical path. Nevertheless, all benchmarks see
more than 28.8⇥ reduction in latency. Furthermore, none of
the benchmarks show a significant degradation in latency from
batching in Offload+Batch and batching+compression in Vasado,
compared to Offload, reinforcing the insight the analytics path
in IoT applications is latency tolerant.

Interestingly, all the benchmarks show ⇡60 µs latency
across the board with Vasado Core, while latency for the CPU
baselines – Baseline and Baseline+Batch– show variation from
message to message, from 600 µs to 12,000 µs, depending
on the workload. Average latency for CPU baselines varies

from and 1,800 µs (GRID) to 4,200 µs (FIT).
5.2.2. Latency variation in CPU baseline. Figure 8 summa-
rizes the variation in latency for Baseline for the benchmarked
applications. The figure shows the minimum, 25th percentile,
75th percentile, and maximum latency for a thousand randomly
sampled messages over a period of 1 minute. As the figure
show, the CPU-only baseline has a high variation in latency,
where the maximum latency is between 31⇥ (GRID) to 14⇥
(TAXI) the minimum latency for the critical path. Cloud IoT
services often provide SLAs for the 99th percentile latency,
and limit the number of messages per second that can be pro-
cessed to not violate the SLAs. Vasado, on the other hand
has a 99th percentile that is far more stable and lower than the
the CPU baselines by completely circumventing the CPU and
generating a response directly in the FPGA-equipped NIC.
5.2.3. Throughput Comparison. Figure 9 compares the
throughput in messages-per-second, across the different con-
figurations - Baseline, Baseline+Batch, Offload, Offload+Batch,
and Vasado. Baseline+Batch shows a geomean 1.3⇥ increases
in throughput from batching multiple IoT messages into a
single network packet. However, the cost of this increased
throughput is an approximate 2⇥ increase in latency as we
show in the previous figure (Figure 7). Further, hardware ac-
celeration alone does not provide a significant improvement in
throughput. Offload provides a 2.1⇥ improvement in through-
put over Baseline and a 1.6⇥ improvement in throughput over
Baseline+Batch.

By combining the benefits from hardware accelerating us-
ing Vasado Core with system-level optimizations for batching
and compressing IoT messages on-the-fly, Offload+Batch and
Vasado provide a geomean 10.6⇥ and 13.5⇥ increase in per-
formance over Baseline. Unlike the CPU-only Baseline+Batch,
neither Offload+Batch not Vasado show a significant increase in
latency since the entire critical path is accelerated in Vasado

Core to generate a reply before applying batching and com-
pression. FIT sees the highest increase in throughput of 14.5⇥
with Vasado since the size of the IoT message is highest in that
benchmark. GRID sees the lowest throughput improvement of
around 12.8⇥ with Vasado since this benchmark does not see
a significant compression.
5.2.4. Co-running multiple applications. Figure 10 studies
the impact of multiple applications accelerated simultaneously
using Vasado. Isolated execution accelerates only the topics for
a single application, shown in the x-axis. Note that each ap-
plication (eg. CITY) consists of 5,000 topics, where each topic
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Figure 9: Throughput comparison.

Figure 10: Latency for critical path when running a single ap-

plication vs. running multiple applications.

performs the exact same computations. Co-running execution
accelerates multiple applications by randomly interleaving
messages from topics in all four benchmarked application.
As Figure 10 shows, Vasado has no noticeable degradation
in latency when co-running multiple IoT applications. The
slight variation in latency across different applications for
both isolated execution and co-running multiple applications
stems from the networking stack and software overheads when
measuring latency. The actual variation in latency within the
Vasado Core, measured through simulations, is less than a tenth
of a µs (about 10 cycles @150MHz) between the application
with the most computations FIT, and the application with the
least computations TAXI.

6. Related Work

SmartNIC acceleration frameworks. NICA [19] provides
a framework for general server application acceleration on
FPGA-based SmartNICs. It uses a low-level socket interface
for steering traffic to accelerators, while Vasado uses the more
high-level topic abstraction, which is more suitable for IoT
workloads. sPIN [30] and INCA [31] provide programming
models for in-line message processing in HPC systems. INCA
uses tag-matching for selecting instructions, analogously to
Vasado’s topic abstraction. iPipe [32] provides an actor-based
model for offloading distributed applications to SmartNICs.
Floem [33] is a Python embedded domain-specific language
for describing SmartNIC-offloaded applications. Changing ex-
isting IoT applications to use a Portals-based interface or a new
programming model may require a significant effort, therefore
Vasado tries to conform to existing PubSub infrastructure.

The Click [34] framework has been ported to Smart-
NICs [35, 36], allowing the composition of network functions
from modular components. As they are intended for packet

processing and NFV, they lack the higher level abstractions
and host interfaces that Vasado provides.

FlexNIC [37] offers a SmartNIC design based on reconfig-
urable match-action tables, and COPA [20] presents a generic
architecture for integration of inline or lookaside accelerator
cores with the SmartNIC packet processing path. Yet some
components of IoT critical path such as cryptographic filtering
and predictive analysis may be too complex to be expressed in
the computational model exposed by these frameworks.

Several works use multi-core SoCs such as [38, 39, 40]
to offload tasks to the SmartNIC. E3 [41] offers a platform
for running microservices on SmartNICs, mapping dataflow
graphs of services to multiple CPUs and SmartNICs. Vasado
focuses on accelerating IoT applications within a single server,
and may utilize existing cloud schedulers.
Accelerators for IoT. Several works have demonstrated
SmartNIC accelerators that may be utilized within individual
SEs. Optimus Prime [42] accelerates data format transforma-
tion, and NICA [19] includes an IoT cryptographic message
authentication engine. Previous work has created sketch and
statistics accelerators [43, 44], predictive engines [45, 46, 47],
accelerators for AI-based IoT device management [48], or for
acceleration of common operators in the IoT critical path [49].
These engines can be implemented within Vasado Core.
PubSub acceleration. Several works have accelerated
publish-subscribe systems for XML documents, whose topics
are custom XPath predicates or similar XML queries [50, 51,
52, 53]. While these are more expressive than Vasado’s front-
end unit, we find the simpler design suitable for current IoT
applications.

7. Conclusion

The rapid increase in the number of IoT devices and the real-
time ultra-low latency requirements of new 5G applications
challenges IoT service providers. By careful examination
of IoT applications our work carves common latency criti-
cal operations and throughput-optimized interfaces to build a
framework for IoT application acceleration that is generic, per-
formant, and shareable. Vasado’s PubSub-based abstraction
simplifies accelerated IoT service development, and allows
painless integration with existing code. Our results on 4 real-
world applications improve CPU-bound throughput by 13.5⇥
and reduce critical path latency by 43⇥.
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Regional subscriptions outlook

Mobile broadband subscriptions currently make 
up 77 percent of all mobile subscriptions.

In Sub-Saharan Africa, LTE accounted 
for around 11 percent of subscriptions 
in 2019. Over the forecast period mobile 
broadband1 subscriptions are predicted to 
increase, reaching over 70 percent of mobile 
subscriptions. LTE share will reach around 
30 percent by the end of the forecast period, 
but HSPA will remain the dominant 
technology with a share of around  
40 percent, which is similar to 2019.  
Driving factors behind the growth of mobile 
broadband subscriptions include a young, 
growing population with increasing digital 
skills, and more affordable smartphones. 
Over the forecast period, discernible 
volumes of 5G subscriptions are expected 
from 2022, reaching 3 percent by 2025. 

In the Middle East and North Africa  
region, around 23 percent of mobile 
subscriptions were for LTE at the end of 
2019. The region is anticipated to evolve 
over the forecast period, and by 2025,  
77 percent of subscriptions are expected  
to be for mobile broadband. Commercial  

5G deployments with leading service 
providers have taken place here during 
2019 and 5G subscriptions have  
already passed 500,000, mainly in the  
Gulf countries. Significant volumes are 
expected in 2021 and the region is likely  
to reach around 80 million 5G subscriptions 
by 2025, representing around 10 percent  
of total mobile subscriptions.

In Latin America, LTE remains the 
dominant radio access technology  
during the forecast period, accounting  
for 51 percent of subscriptions at the end  
of 2019 and a predicted 68 percent in 
2025. A steady decline in WCDMA/HSPA 
is forecast as users migrate to LTE and 5G, 
falling from 36 to 13 percent. The first 5G 
network deployments are expected during 
2020 in the region, with Argentina, Brazil, 
Chile, Colombia and Mexico anticipated 
to be the first countries. The subscription 
uptake is forecast to commence in 2020 
and, by the end of 2025, 5G is set to make  
up 13 percent of mobile subscriptions. 

Figure 10: Mobile subscriptions by region and technology (percent)

1  Mobile broadband includes radio access technologies HSPA (3G), LTE (4G), 5G, CDMA2000 EV-DO, TD-SCDMA and Mobile WiMAX

Note: Technologies with 
less than 1 percent of 
subscriptions are not 
shown in the graph

72%
Mobile broadband subscriptions 
are set to account for 72 percent 
of all mobile subscriptions in 
Sub-Saharan Africa in 2025.

In the India region, LTE subscriptions are 
forecast to increase from 550 million in 
2019 to 820 million in 2025, increasing at 
a compound annual growth rate (CAGR) 
of 7 percent. LTE remains the dominant 
technology, accounting for 49 percent 
of mobile subscriptions in 2019. LTE will 
continue to be dominant, representing  
64 percent of mobile subscriptions in 2025. 
5G will represent around 18 percent  
of mobile subscriptions in India at  
the end of 2025. Mobile broadband 
technologies accounted for 58 percent 
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