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Computer Science in 6/10ths of a second




few milliseconds

Computer Science in-6/0ths-ofa-second—
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Growth in data movement demand

* New bandwidth-intensive and latency-sensitive workloads

SMART CITY

high definition video AR/VR SmartCity, automation




Growth in data movement demand

* New bandwidth-intensive and latency-sensitive workloads

* Demand shifts due to new “normal”;

high definition video

User growth (percentage growth in number of users within app category)
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Growth in data movement demand

* Increase in traffic volume, number of devices, wireless
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What does this mean?
Just latency and bandwith?

e Past and recent datapoints:
e 70 TWh to run the Internet, LBNL, 06/2016

50 TWh to run China’s mobile network, |
Huawei, 07/2020 e

* Updated traffic predictions — no
slowdown!

* EB/month cost?

* wide range based on factors: technology,
distance, system scope, ... *

« 1.8 TWh /EB
e => 1.2 million tons of CO2 (EPA calculator)
* per EB

* https://www.wholegraindigital.com/blog/website-energy-consumption/

Figure 8: Mobile data and FWA traffic
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https://www.wholegraindigital.com/blog/website-energy-consumption/

What does this mean?

The sum of the grecak

ou entered above is of Carbon Dioxide Equivalent. This is equivalent to: 1,275,628 Metric Tons +

ouse gas emissions from
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Edge Computing Opportunities

Reduce/remove data movement

5+G/6+WiFi/..., => new energy-efficient technologies

Virtualization, software functions/server, ...

Enabler for new applications

13 5
Aligned with UN SDG, Exponential Energy Roadmap %E

INDUSTRY

Time-critical use cases common across multiple industries

Deployment scenarios

Industrial control
Open or closed-loop

control of industrial
automation systems

Real-time media

Real, virtual and
combined
environments

Control to control
in production line

Process
monitoring

Machine vision
for robotics Closed-loop

process control

PLC to robot controller

z Motion control
Smart grid control

Local area
Confined wide area-,
General wide area

Industries

Automated container
transport in port
C

Cloud motion
control of AGVs

Cooperative maneuvering
of vehicles

AGVsin Machine vision for  Collab

a production line

intersection safety  mobile robots

Remote control with

video/audio

Remote control with
haptic feedback

Remote control with
AR overlay

Cloud-assisted
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Premium experience

: ’ Cloud-rendered
d AR VI

cloud:

cloud gaming

Cloud gamin
9 9 Media production

b
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Systems Software for Edge Computing

Edge-native technologies Edge use cases MEC and 5+G
Edge #& Cloud Applications and platforms Are MNO stacks edge ready?

 Lightweight containers for the CDN, AR/VR V|deo360 IoT
edge [HotEdge’20, TECHCON’20] analyiicervivers

. Securlty and prlvacy [HotEdge 18,

ased mobile networks

Latency-centric orchestration in
multi-tenant MEC

dge and emerging hardware®
in-network and in-storage
accelerators, NVM, ...

* |In , e
(MEC L-DNS, MEC-CDN, ...)

ystems support for distributed

analytics and learning @edge . bl
center [SRC 19- 23] [HotNets’20]
e & - )
il _
B0 P‘\% — A EPC  eNB st
| - A

Mobile |[9) (| RAN server |- MEC server

Cartel |

Demo at: https://tinyurl.com/mec-in-a-box



Collaborative Learning for the Edge
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Cartel

Cartel [SOCC’19] with Nokia Bell Labs — ! I 1ol | I
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Online learning over data from edge

Centralized System
Problems

o Data movement is time consuming and
uses a lot of backhaul network
bandwidth.

o Distributed ML across geo-distributed data
can slow down the execution up to 53Xu.

o Regulatory constraints (GDPR)

o Even federated learning requires continuous
model updates to be aggregated and propagated

[1] Kevin et al. Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds.

Edge
. Data ((( )))
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An Alternative Approach

Isolated System

* Train machine learning models independently at each edge, in isolation from other edge nodes.

* The isolated model performance gets heavily impacted in scenarios where there is a need to adapt to
changing workload.
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Solution Overview

Cartel : A System for Collaborative Transfer Learning at the Edge

B ﬁ""
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e (Cartel maintains small customized models at each edge node.

* When there is change in the environment or variations in workload patterns, Cartel provides a jump
start to adapt to these changes by transferring knowledge from other edge(s) where similar patterns
have been observed.



Key Challenges & |dea

C1 : When to request for model transfer?
C2 : Which node (logical neighbor) to contact? ﬁ )
C3 : How to transfer knowledge to the target edge node?
Metadata Server (MdS)

* Do not share raw data between any edge nodes or with the cloud. az-xg
e
* => Use metadata =" S
= Statistics about the network = . a{'{‘}‘
L

= Software configuration E, node
= Active user distribution by segments .

= Estimates of class priors (probability of certain classes), etc.




Evaluation
Adaptability to Change in the Workload

30- Centralized
AT L
% | [ S 30- Isolated
S I
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) § | | | ' '
@ 30- M Cartel
)
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Class 1 Class 2 10— SV AAAMN NN A -
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Time
Introduction Workload

Batch ID
Online Random Forest (ORF)



Evaluation

Adaptability to Change in the Workload

Number of Requests

Benefits of Cartel:
1 » Adapts quickly to changes in workload (up to 8x faster compared to an isolated system).

when compared to a centralized system.

Ongoing extension and evaluation on NNs

| * Reduces total data transfer costs significantly (1500x {, compared to a centralized system).
* Enables use of smaller models (3x (/) at an edge node leading to faster training (5.7x { )

>
_

20 40 60 80
Batch ID
Online Random Forest (ORF)

Time
Introduction Workload

100



Emerging applications need DNNs

 ORF, OSVM -> knowledge transfer simple

R R
AR AR

o000 OO0
A
0@
* DNNs, complex and not easily explainable

LeNet (1998)

mmamaELI ELILE 1 plin BON §y ROROR SOS0y gil
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. vy Relime Eeriiis Bar | pogey Solies Eaili’™" Ralies N & i RSN - " B8 v SLiee RRU i | ST I e B0 o
_ROR B OROR ROR RS R R BT L - ST M i iati 87 | i Kl iy g il 3 -

W i | S L % 18 | . | B i i

Inception V3 (2015)
ResNet (2015)

http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/



Collaborative Learning with DNNs

Knowledge Selection Applying Knowledge
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Collaborative Learning with DNNs

Knowledge Selection Applying Knowledge
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Model Error

Results — Adaptability

MobileNet

30
25
20

FEDERATED

50 60
Batch ID

DenseNet
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Time
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Results — Adaptability & Data Transfer Reduction

MobileNet

30r
25}
20¢F
151

FEDERATED

10r /\dV“Vﬁf\J\\/\/\JVUN,~ﬁ\uMI\J\AA/NﬁthANPANP
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Model Error
=
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Model Error
w
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DenseNet ResNet
201
FEDERATED FEDERATED
15+
10+
/\‘W/\/\/\/\/\W\,\/\N\ 5¢ PMA A S AN A A A
. 20
ISOLATED ISOLATED

—

CLUE (30) 20r

10 20 30 40 50

60 70 80

CLUE

90 100

20 30 40 50 60

70 80 90 100

Batch ID Batch ID Batch ID
Million Federated Learning CLUE Data Transfer Gains
CNN Model - - -
Parameters Out In KT (In) MdS (Out) No Drift (X) With Drift (X)
MobileNet 3.54 6.38 7.36 4.57 0.00058 23684 3
DenseNet 8.06 16.18 18.35 8.80 0.00058 59507 4
ResNet 11.69 12.19 13.75 8.55 0.00058 44713 3




Support for Multi-tenancy
at the Edge

with

CarolHsu  Misun Park Ketan Bhardwaj
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No elasticity, Maximize resource efficiency

m C/R = Cold Boot

200
NSDI ‘20
150 paper
Memory
200 Limit 256mb
gm‘ " 1 CPU Core 1
2: = kernel 4.13
2 ° F125 & .
: A File system empty
O F100 8 50 : :
E 75 3 image size o
£ 2 .
% rs0 ” b0f)t time | Bootup
: 25 0 window
O et et ™ Boot ti
° ’ # of é‘ont:urreni5 instancei3 10 max_mem_usage 00 me 200ms
g Inefficient resource sharing TRl Launch-time optimizations ‘I Recent advances not designed
docker with cloud-native technologies exacerbate problems for complex runtimes



Edge-Native Technology

 Having shared long-running backends as runtime for multiple applications
and instances reduced

resource pressure, application size
improved responsiveness / warmed-up runtime

4 Y g g— fg—
4 N
e Y
A1 A2 AN
Application
‘ o N
\\




Pocket Model

Application Application Application
. . 000 .
Container Container Container
Q
response A request
§ Pocket Interface
‘\ o~ N ‘\ R - I
4 \ 2 . 1 R
y Service Container I
ad
\_/ \__/
Python Tensorflow PyTorch
J
™
[ File System } [ Devices
J
. J

Anyone say Enclaves?

Workload Isolation

Lightweight IPC

Concurrency and
Dynamic Resource
Scaling in Runtime

27



More new problems: Latency contention problem at the edge

* Running IA and ML application together at an edge location (result is from LTE)

* |A (loT+ROS) is at RAN, and ML (visual analytics) is moved progressively closer

+2.5x [:]LA

' Lower is better
- Kubernetes 11
ROS
Ay (B T N -
s s 0
P

10 35 60
End-to-end link delay (ms)



More new problems: Latency contention problem in MEC

* Transport-level flow control engines clocked by RTT lead to longer and denser
packet bursts

* Need a solution independent of endpoint protocols and in-network QoS

support
100ms 60ms 10ms
R I R LR L LA O (AL LA LRI AL T Y 0 7 YOI M CLLLRLALRERL LR R R LR LA R AR R LA A
— |A packet — ML packet — |A packet — ML packet — |A packet — ML packet
55 55.05 55.1 55.15 34.7 34.75 34.8 34.853.8 3.85 3.9 3.95
Packet timestamp (s) Packet timestamp (s) Packet timestamp (s)

* MEC-based collocated workloads trigger latency contention that can
obviate the edge benefits for LC applications



Need new fine-grained latency-aware packet burst management
for a multi-tenant edge

of conforming packets

Normalized number
o
N

o
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\

o
(0]
\

©
~
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. Jw/ Shapeshifter ||
[ lw/o Shapeshifter
- 95 percentile
- 99 percentile

CDN/IA CDN/AR ML/IA ML/AR
Application pairs

ShapeShifter can support latency-centric QoS
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(&) w (&) EEN
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Performance gain

—

-
]
-

]LC app latency
LS app latency
LS app throughput
- 95 percentile

- 99 percentile

CDN/IA CDN/AR ML/IA
Application pairs

ML/AR

ShapeShifter provides benefits to latency-
critical and latency-sensitive applications




In-network Analytics

with
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Accelerating Edge Analytics

Machine Learning
and Analytics

Vasado: accelerate loT analytics

with Smart NICs:

- latency of critical path
benefits from in-network
offload engine

- throughput of analytics path
benefits from in-network
application-specific batching
and compression

Aggregation

loT Subscribers

Sensors %—’ {

|

Monitoring

Actuator
Ca"
o,
[\

Latency Critical Path L
Human monitoring

~ FPGA-based
Smart NIC

with current network and cloud => network-bound

28 slow latency Fast
. B Newor 1y T T T TASSmoooomommmm oo ¢
ﬂ %ﬂ: : Interface | Host CPU appliltgaTtion 1 applil:oa-l';ion 2 e appli(lg[ion ) |
e am - lﬁ' | Card (NIC) | |
Teljrwperature = ' '
10T sensors : | Vasado API |
Sensors Network Server I | _ |
| : Vasado Runtime :
. opic Table Decom;_)re_ss
with 5G network and edge => compute-bound Drivers TopleTable " and serialize !
|
* Fast Ultra-low latency sfow = T==== 7 ST TS T T T T T T s T e e
Gl em e mimem e, > B Vasado Core:
ﬂ @l _____________________________ ) - programmable domain-specific core
el 155 : —b - fast, lightweight multiplexing (ctx_switching)

Sensors Network Server



Accelerating Edge Analytics

Adaregation Machine Learning
ggreg and Analytics

loT a_.@ Subscribers T een)
Sensors @

|

Vasado: accelerate loT analytics

with Smart NICs:

- latency of critical path
benefits from in-network

b

a® :
ffload engine

b

2

Monitoring

D)

Actuator

e~ FPGA-base

- throughput of analytics path

o Smart NIC benefits from in-network
Human monitoring
application-specific batching
and compression
[] Baseline &l Baseline + batch B Offload [l Offload + batch B Vasado

80.0x
66.5x67.6x68.9x

48.6x47.8x49.8x
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[] Baseline [l Baseline + batch [ Offload [l Offload + batch M Vasado
14.5%

16.0x

13.7x 12.7x12.8x
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X

9.8x

Throughput
increase over
CPU Baseline
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Science too!
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Edge Computing Challenges

e Growth in demand
e Huawei estimate 5G transition from
50TWh to 100TWh mobile network
e Datacenter-native technologies

* Software stack, accelerators
* Natural cooling? PUE efficiency?

* Deployment cost, scale, and challenges
 O(US$1000) per location -

* Densification of infrastructure, urban
deployment, ensuring coverage

 Sustainability of access

FCC registered cellular tower
"= Y4 locations (Crown Castle, ...)

‘{ Total 217,346, as of Mar. 2017

‘1 -100 ® 1000 () 4683
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