Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
tensor.c
Go to the documentation of this file.
1 #include "moab/FindPtFuncs.h"
2 
3 /*--------------------------------------------------------------------------
4  Matrix-Matrix Multiplication
5 
6  mxm_ab (A,na,B,nb,C,nc) :
7  gives C = A B where A is na x nb, B is nb x nc, C is na x nc
8  a := r | c to indicate A is in row- or column- major format
9  b := r | c to indicate B is in row- or column- major format
10  C is always column-major
11  --------------------------------------------------------------------------*/
12 
13 static void mxm_cc( const realType* A, unsigned na, const realType* B, unsigned nb, realType* C, unsigned nc )
14 {
15  unsigned i, j, k;
16  realType* Ccol = C;
17  const realType* Bcol = B;
18  for( j = 0; j < nc; ++j, Ccol += na, Bcol += nb )
19  {
20  const realType* Acol = A;
21  for( i = 0; i < na; ++i )
22  Ccol[i] = 0;
23  for( k = 0; k < nb; ++k, Acol += na )
24  for( i = 0; i < na; ++i )
25  Ccol[i] += Acol[i] * Bcol[k];
26  }
27 }
28 
29 static void mxm_rc( const realType* A, unsigned na, const realType* B, unsigned nb, realType* C, unsigned nc )
30 {
31  unsigned i, j, k;
32  realType* Ccol = C;
33  const realType* Bcol = B;
34  for( j = 0; j < nc; ++j, Ccol += na, Bcol += nb )
35  {
36  const realType* Arow = A;
37  for( i = 0; i < na; ++i, Arow += nb )
38  {
39  Ccol[i] = 0;
40  for( k = 0; k < nb; ++k )
41  Ccol[i] += Arow[k] * Bcol[k];
42  }
43  }
44 }
45 
46 static void mxm_cr( const realType* A, unsigned na, const realType* B, unsigned nb, realType* C, unsigned nc )
47 {
48  unsigned i, j, k;
49  const realType *Acol = A, *Brow = B;
50  for( i = 0; i < na * nc; ++i )
51  C[i] = 0;
52  for( k = 0; k < nb; ++k, Acol += na, Brow += nc )
53  {
54  realType* Ccol = C;
55  for( j = 0; j < nc; ++j, Ccol += na )
56  for( i = 0; i < na; ++i )
57  Ccol[i] += Acol[i] * Brow[j];
58  }
59 }
60 
61 /*
62 static void mxm_rr(const realType *A, unsigned na,
63  const realType *B, unsigned nb,
64  realType *C, unsigned nc)
65 {
66  unsigned i,j,k;
67  realType *Ccol = C;
68  const realType *Bcol = B;
69  for(j=0;j<nc;++j,Ccol+=na,++Bcol) {
70  const realType *Arow = A;
71  for(i=0;i<na;++i,Arow+=nb) {
72  const realType *Bkj = Bcol;
73  Ccol[i]=0.0;
74  for(k=0;k<nb;++k,Bkj+=nc)
75  Ccol[i] += Arow[k] * *Bkj;
76  }
77  }
78 }
79 */
80 
81 /*--------------------------------------------------------------------------
82  Matrix-Vector Multiplication
83 
84  mxv_f (y,ny,A,x,nx) :
85  gives y = A x where A is ny x nx
86  f := r | c to indicate A is in row- or column- major format
87  --------------------------------------------------------------------------*/
88 
89 static void mxv_c( realType* y, unsigned ny, const realType* A, const realType* x, unsigned nx )
90 {
91  realType *yp = y, *y_end = y + ny;
92  const realType* x_end = x + nx;
93  realType xk = *x;
94  do
95  {
96  *yp++ = *A++ * xk;
97  } while( yp != y_end );
98  for( ++x; x != x_end; ++x )
99  {
100  xk = *x;
101  yp = y;
102  do
103  {
104  *yp++ += *A++ * xk;
105  } while( yp != y_end );
106  }
107 }
108 
109 static void mxv_r( realType* y, unsigned ny, const realType* A, const realType* x, unsigned nx )
110 {
111  realType* y_end = y + ny;
112  const realType* x_end = x + nx;
113  do
114  {
115  const realType* xp = x;
116  realType sum = *A++ * *xp++;
117  while( xp != x_end )
118  {
119  sum += *A++ * *xp++;
120  }
121  *y++ = sum;
122  } while( y != y_end );
123 }
124 
125 /*--------------------------------------------------------------------------
126  Vector-Vector Multiplication
127 
128  inner (u,v,n) : inner product
129  --------------------------------------------------------------------------*/
130 
131 /* precondition: n>=1 */
132 static realType inner( const realType* u, const realType* v, unsigned n )
133 {
134  const realType* u_end = u + n;
135  realType sum = *u++ * *v++;
136  while( u != u_end )
137  {
138  sum += *u++ * *v++;
139  }
140  return sum;
141 }
142 
143 /*--------------------------------------------------------------------------
144  1-,2-,3-d Tensor Application
145 
146  the 3d case:
147  tensor_f3(R,mr,nr, S,ms,ns, T,mt,nt, u,v, work1,work2)
148  gives v = [ R (x) S (x) T ] u
149  where R is mr x nr, S is ms x ns, T is mt x nt,
150  each in row- or column-major format according to f := r | c
151  u is nr x ns x nt in column-major format (inner index is r)
152  v is mr x ms x mt in column-major format (inner index is r)
153  --------------------------------------------------------------------------*/
154 
155 void tensor_c1( const realType* R, unsigned mr, unsigned nr, const realType* u, realType* v )
156 {
157  mxv_c( v, mr, R, u, nr );
158 }
159 
160 void tensor_r1( const realType* R, unsigned mr, unsigned nr, const realType* u, realType* v )
161 {
162  mxv_r( v, mr, R, u, nr );
163 }
164 
165 /* W holds mr*ns reals */
166 void tensor_c2( const realType* R,
167  unsigned mr,
168  unsigned nr,
169  const realType* S,
170  unsigned ms,
171  unsigned ns,
172  const realType* u,
173  realType* v,
174  realType* W )
175 {
176  mxm_cc( R, mr, u, nr, W, ns );
177  mxm_cr( W, mr, S, ns, v, ms );
178 }
179 
180 /* W holds mr*ns reals */
181 void tensor_r2( const realType* R,
182  unsigned mr,
183  unsigned nr,
184  const realType* S,
185  unsigned ms,
186  unsigned ns,
187  const realType* u,
188  realType* v,
189  realType* W )
190 {
191  mxm_rc( R, mr, u, nr, W, ns );
192  mxm_cc( W, mr, S, ns, v, ms );
193 }
194 
195 /* W holds mr*ns*nt reals,
196  Z holds mr*ms*nt reals */
197 void tensor_c3( const realType* R,
198  unsigned mr,
199  unsigned nr,
200  const realType* S,
201  unsigned ms,
202  unsigned ns,
203  const realType* T,
204  unsigned mt,
205  unsigned nt,
206  const realType* u,
207  realType* v,
208  realType* W,
209  realType* Z )
210 {
211  unsigned n, mrns = mr * ns, mrms = mr * ms;
212  realType* Zp = Z;
213  mxm_cc( R, mr, u, nr, W, ns * nt );
214  for( n = 0; n < nt; ++n, W += mrns, Zp += mrms )
215  mxm_cr( W, mr, S, ns, Zp, ms );
216  mxm_cr( Z, mrms, T, nt, v, mt );
217 }
218 
219 /* W holds mr*ns*nt reals,
220  Z holds mr*ms*nt reals */
221 void tensor_r3( const realType* R,
222  unsigned mr,
223  unsigned nr,
224  const realType* S,
225  unsigned ms,
226  unsigned ns,
227  const realType* T,
228  unsigned mt,
229  unsigned nt,
230  const realType* u,
231  realType* v,
232  realType* W,
233  realType* Z )
234 {
235  unsigned n, mrns = mr * ns, mrms = mr * ms;
236  realType* Zp = Z;
237  mxm_rc( R, mr, u, nr, W, ns * nt );
238  for( n = 0; n < nt; ++n, W += mrns, Zp += mrms )
239  mxm_cc( W, mr, S, ns, Zp, ms );
240  mxm_cc( Z, mrms, T, nt, v, mt );
241 }
242 
243 /*--------------------------------------------------------------------------
244  1-,2-,3-d Tensor Application of Row Vectors (for Interpolation)
245 
246  the 3d case:
247  v = tensor_i3(Jr,nr, Js,ns, Jt,nt, u, work)
248  same effect as tensor_r3(Jr,1,nr, Js,1,ns, Jt,1,nt, u,&v, work1,work2):
249  gives v = [ Jr (x) Js (x) Jt ] u
250  where Jr, Js, Jt are row vectors (interpolation weights)
251  u is nr x ns x nt in column-major format (inner index is r)
252  v is a scalar
253  --------------------------------------------------------------------------*/
254 
255 realType tensor_i1( const realType* Jr, unsigned nr, const realType* u )
256 {
257  return inner( Jr, u, nr );
258 }
259 
260 /* work holds ns reals */
262  unsigned nr,
263  const realType* Js,
264  unsigned ns,
265  const realType* u,
266  realType* work )
267 {
268  mxv_r( work, ns, u, Jr, nr );
269  return inner( Js, work, ns );
270 }
271 
272 /* work holds ns*nt + nt reals */
274  unsigned nr,
275  const realType* Js,
276  unsigned ns,
277  const realType* Jt,
278  unsigned nt,
279  const realType* u,
280  realType* work )
281 {
282  realType* work2 = work + nt;
283  mxv_r( work2, ns * nt, u, Jr, nr );
284  mxv_r( work, nt, work2, Js, ns );
285  return inner( Jt, work, nt );
286 }
287 
288 /*--------------------------------------------------------------------------
289  1-,2-,3-d Tensor Application of Row Vectors
290  for simultaneous Interpolation and Gradient computation
291 
292  the 3d case:
293  v = tensor_ig3(Jr,Dr,nr, Js,Ds,ns, Jt,Dt,nt, u,g, work)
294  gives v = [ Jr (x) Js (x) Jt ] u
295  g_0 = [ Dr (x) Js (x) Jt ] u
296  g_1 = [ Jr (x) Ds (x) Jt ] u
297  g_2 = [ Jr (x) Js (x) Dt ] u
298  where Jr,Dr,Js,Ds,Jt,Dt are row vectors
299  (interpolation & derivative weights)
300  u is nr x ns x nt in column-major format (inner index is r)
301  v is a scalar, g is an array of 3 reals
302  --------------------------------------------------------------------------*/
303 
304 realType tensor_ig1( const realType* Jr, const realType* Dr, unsigned nr, const realType* u, realType* g )
305 {
306  *g = inner( Dr, u, nr );
307  return inner( Jr, u, nr );
308 }
309 
310 /* work holds 2*ns reals */
312  const realType* Dr,
313  unsigned nr,
314  const realType* Js,
315  const realType* Ds,
316  unsigned ns,
317  const realType* u,
318  realType* g,
319  realType* work )
320 {
321  realType *a = work, *ar = a + ns;
322  mxv_r( a, ns, u, Jr, nr );
323  mxv_r( ar, ns, u, Dr, nr );
324  g[0] = inner( Js, ar, ns );
325  g[1] = inner( Ds, a, ns );
326  return inner( Js, a, ns );
327 }
328 
329 /* work holds 2*ns*nt + 3*ns reals */
331  const realType* Dr,
332  unsigned nr,
333  const realType* Js,
334  const realType* Ds,
335  unsigned ns,
336  const realType* Jt,
337  const realType* Dt,
338  unsigned nt,
339  const realType* u,
340  realType* g,
341  realType* work )
342 {
343  unsigned nsnt = ns * nt;
344  realType *a = work, *ar = a + nsnt, *b = ar + nsnt, *br = b + ns, *bs = br + ns;
345  mxv_r( a, nsnt, u, Jr, nr );
346  mxv_r( ar, nsnt, u, Dr, nr );
347  mxv_r( b, nt, a, Js, ns );
348  mxv_r( br, nt, ar, Js, ns );
349  mxv_r( bs, nt, a, Ds, ns );
350  g[0] = inner( Jt, br, nt );
351  g[1] = inner( Jt, bs, nt );
352  g[2] = inner( Dt, b, nt );
353  return inner( Jt, b, nt );
354 }