Loading [MathJax]/extensions/tex2jax.js
Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
LinearTri.cpp
Go to the documentation of this file.
1 #include "moab/LocalDiscretization/LinearTri.hpp" 2 #include "moab/Forward.hpp" 3 #include <algorithm> 4 #include <cmath> 5 #include <limits> 6  7 namespace moab 8 { 9  10 const double LinearTri::corner[3][2] = { { 0, 0 }, { 1, 0 }, { 0, 1 } }; 11  12 ErrorCode LinearTri::initFcn( const double* verts, const int nverts, double*& work ) 13 { 14  // allocate work array as: 15  // work[0..8] = T 16  // work[9..17] = Tinv 17  // work[18] = detT 18  // work[19] = detTinv 19  if( nverts != 3 ) 20  { 21  std::cout << "Invalid Triangle. Expected 3 vertices.\n"; 22  return MB_FAILURE; 23  } 24  25  assert( verts ); 26  27  Matrix3 J( verts[1 * 3 + 0] - verts[0 * 3 + 0], verts[2 * 3 + 0] - verts[0 * 3 + 0], 0.0, 28  verts[1 * 3 + 1] - verts[0 * 3 + 1], verts[2 * 3 + 1] - verts[0 * 3 + 1], 0.0, 29  verts[1 * 3 + 2] - verts[0 * 3 + 2], verts[2 * 3 + 2] - verts[0 * 3 + 2], 1.0 ); 30  J *= 0.5; 31  32  // Update the work array 33  if( !work ) work = new double[20]; 34  35  J.copyto( work ); 36  J.inverse().copyto( work + Matrix3::size ); 37  work[18] = J.determinant(); 38  work[19] = ( work[18] < 1e-12 ? std::numeric_limits< double >::max() : 1.0 / work[18] ); 39  40  return MB_SUCCESS; 41 } 42  43 ErrorCode LinearTri::evalFcn( const double* params, 44  const double* field, 45  const int /*ndim*/, 46  const int num_tuples, 47  double* /*work*/, 48  double* result ) 49 { 50  assert( params && field && num_tuples > 0 ); 51  // convert to [0,1] 52  double p1 = 0.5 * ( 1.0 + params[0] ), p2 = 0.5 * ( 1.0 + params[1] ), p0 = 1.0 - p1 - p2; 53  54  for( int j = 0; j < num_tuples; j++ ) 55  result[j] = p0 * field[0 * num_tuples + j] + p1 * field[1 * num_tuples + j] + p2 * field[2 * num_tuples + j]; 56  57  return MB_SUCCESS; 58 } 59  60 ErrorCode LinearTri::integrateFcn( const double* field, 61  const double* /*verts*/, 62  const int nverts, 63  const int /*ndim*/, 64  const int num_tuples, 65  double* work, 66  double* result ) 67 { 68  assert( field && num_tuples > 0 ); 69  std::fill( result, result + num_tuples, 0.0 ); 70  for( int i = 0; i < nverts; ++i ) 71  { 72  for( int j = 0; j < num_tuples; j++ ) 73  result[j] += field[i * num_tuples + j]; 74  } 75  double tmp = work[18] / 6.0; 76  for( int i = 0; i < num_tuples; i++ ) 77  result[i] *= tmp; 78  79  return MB_SUCCESS; 80 } 81  82 ErrorCode LinearTri::jacobianFcn( const double*, const double*, const int, const int, double* work, double* result ) 83 { 84  // jacobian is cached in work array 85  assert( work ); 86  std::copy( work, work + 9, result ); 87  return MB_SUCCESS; 88 } 89  90 ErrorCode LinearTri::reverseEvalFcn( EvalFcn eval, 91  JacobianFcn jacob, 92  InsideFcn ins, 93  const double* posn, 94  const double* verts, 95  const int nverts, 96  const int ndim, 97  const double iter_tol, 98  const double inside_tol, 99  double* work, 100  double* params, 101  int* is_inside ) 102 { 103  assert( posn && verts ); 104  return evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params, 105  is_inside ); 106 } 107  108 int LinearTri::insideFcn( const double* params, const int, const double tol ) 109 { 110  return ( params[0] >= -1.0 - tol && params[1] >= -1.0 - tol && params[0] + params[1] <= 1.0 + tol ); 111 } 112  113 ErrorCode LinearTri::evaluate_reverse( EvalFcn eval, 114  JacobianFcn jacob, 115  InsideFcn inside_f, 116  const double* posn, 117  const double* verts, 118  const int nverts, 119  const int ndim, 120  const double iter_tol, 121  const double inside_tol, 122  double* work, 123  double* params, 124  int* inside ) 125 { 126  // TODO: should differentiate between epsilons used for 127  // Newton Raphson iteration, and epsilons used for curved boundary geometry errors 128  // right now, fix the tolerance used for NR 129  const double error_tol_sqr = iter_tol * iter_tol; 130  CartVect* cvparams = reinterpret_cast< CartVect* >( params ); 131  const CartVect* cvposn = reinterpret_cast< const CartVect* >( posn ); 132  133  // find best initial guess to improve convergence 134  CartVect tmp_params[] = { CartVect( -1, -1, -1 ), CartVect( 1, -1, -1 ), CartVect( -1, 1, -1 ) }; 135  double resl = std::numeric_limits< double >::max(); 136  CartVect new_pos, tmp_pos; 137  ErrorCode rval; 138  for( unsigned int i = 0; i < 3; i++ ) 139  { 140  rval = ( *eval )( tmp_params[i].array(), verts, ndim, 3, work, tmp_pos.array() ); 141  if( MB_SUCCESS != rval ) return rval; 142  double tmp_resl = ( tmp_pos - *cvposn ).length_squared(); 143  if( tmp_resl < resl ) 144  { 145  *cvparams = tmp_params[i]; 146  new_pos = tmp_pos; 147  resl = tmp_resl; 148  } 149  } 150  151  // residual is diff between old and new pos; need to minimize that 152  CartVect res = new_pos - *cvposn; 153  Matrix3 J; 154  rval = ( *jacob )( cvparams->array(), verts, nverts, ndim, work, J[0] ); 155 #ifndef NDEBUG 156  double det = J.determinant(); 157  assert( det > std::numeric_limits< double >::epsilon() ); 158 #endif 159  Matrix3 Ji = J.inverse(); 160  161  int iters = 0; 162  // while |res| larger than tol 163  while( res % res > error_tol_sqr ) 164  { 165  if( ++iters > 25 ) return MB_FAILURE; 166  167  // new params tries to eliminate residual 168  *cvparams -= Ji * res; 169  170  // get the new forward-evaluated position, and its difference from the target pt 171  rval = ( *eval )( params, verts, ndim, 3, work, new_pos.array() ); 172  if( MB_SUCCESS != rval ) return rval; 173  res = new_pos - *cvposn; 174  } 175  176  if( inside ) *inside = ( *inside_f )( params, ndim, inside_tol ); 177  178  return MB_SUCCESS; 179 } // Map::evaluate_reverse() 180  181 /* ErrorCode LinearTri::get_normal( int facet, double *work, double *normal) 182  { 183  ErrorCode error; 184  //Get the local vertex ids of local edge 185  int id1 = ledges[facet][0]; 186  int id2 = ledges[facet][1]; 187  188  //Find the normal to the face 189  double face_normal[3]; 190  191  192  }*/ 193  194 ErrorCode LinearTri::normalFcn( const int ientDim, 195  const int facet, 196  const int nverts, 197  const double* verts, 198  double normal[3] ) 199 { 200  // assert(facet < 3 && ientDim == 1 && nverts==3); 201  if( nverts != 3 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed triangle :: expected value = 3 " ); 202  if( ientDim != 1 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 1 " ); 203  if( facet > 3 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local edge id :: expected value = one of 0-2" ); 204  205  // Get the local vertex ids of local edge 206  int id0 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][0]; 207  int id1 = CN::mConnectivityMap[MBTRI][ientDim - 1].conn[facet][1]; 208  209  // Find a vector along the edge 210  double edge[3]; 211  for( int i = 0; i < 3; i++ ) 212  { 213  edge[i] = verts[3 * id1 + i] - verts[3 * id0 + i]; 214  } 215  // Find the normal of the face 216  double x0[3], x1[3], fnrm[3]; 217  for( int i = 0; i < 3; i++ ) 218  { 219  x0[i] = verts[3 * 1 + i] - verts[3 * 0 + i]; 220  x1[i] = verts[3 * 2 + i] - verts[3 * 0 + i]; 221  } 222  fnrm[0] = x0[1] * x1[2] - x1[1] * x0[2]; 223  fnrm[1] = x1[0] * x0[2] - x0[0] * x1[2]; 224  fnrm[2] = x0[0] * x1[1] - x1[0] * x0[1]; 225  226  // Find the normal of the edge as the cross product of edge and face normal 227  228  double a = edge[1] * fnrm[2] - fnrm[1] * edge[2]; 229  double b = edge[2] * fnrm[0] - fnrm[2] * edge[0]; 230  double c = edge[0] * fnrm[1] - fnrm[0] * edge[1]; 231  double nrm = sqrt( a * a + b * b + c * c ); 232  233  if( nrm > std::numeric_limits< double >::epsilon() ) 234  { 235  normal[0] = a / nrm; 236  normal[1] = b / nrm; 237  normal[2] = c / nrm; 238  } 239  return MB_SUCCESS; 240 } 241  242 } // namespace moab