Loading [MathJax]/extensions/tex2jax.js
Mesh Oriented datABase  (version 5.5.1)
An array-based unstructured mesh library
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
LinearQuad.cpp
Go to the documentation of this file.
1 #include "moab/LocalDiscretization/LinearQuad.hpp" 2 #include "moab/Matrix3.hpp" 3 #include "moab/Forward.hpp" 4 #include <cmath> 5 #include <limits> 6  7 namespace moab 8 { 9  10 const double LinearQuad::corner[4][2] = { { -1, -1 }, { 1, -1 }, { 1, 1 }, { -1, 1 } }; 11  12 /* For each point, its weight and location are stored as an array. 13  Hence, the inner dimension is 2, the outer dimension is gauss_count. 14  We use a one-point Gaussian quadrature, since it integrates linear functions exactly. 15 */ 16 const double LinearQuad::gauss[1][2] = { { 2.0, 0.0 } }; 17  18 ErrorCode LinearQuad::jacobianFcn( const double* params, 19  const double* verts, 20  const int /*nverts*/, 21  const int /*ndim*/, 22  double*, 23  double* result ) 24 { 25  Matrix3* J = reinterpret_cast< Matrix3* >( result ); 26  *J = Matrix3( 0.0 ); 27  for( unsigned i = 0; i < 4; ++i ) 28  { 29  const double xi_p = 1 + params[0] * corner[i][0]; 30  const double eta_p = 1 + params[1] * corner[i][1]; 31  const double dNi_dxi = corner[i][0] * eta_p; 32  const double dNi_deta = corner[i][1] * xi_p; 33  ( *J )( 0, 0 ) += dNi_dxi * verts[i * 3 + 0]; 34  ( *J )( 1, 0 ) += dNi_dxi * verts[i * 3 + 1]; 35  ( *J )( 0, 1 ) += dNi_deta * verts[i * 3 + 0]; 36  ( *J )( 1, 1 ) += dNi_deta * verts[i * 3 + 1]; 37  } 38  ( *J ) *= 0.25; 39  ( *J )( 2, 2 ) = 1.0; /* to make sure the Jacobian determinant is non-zero */ 40  return MB_SUCCESS; 41 } // LinearQuad::jacobian() 42  43 ErrorCode LinearQuad::evalFcn( const double* params, 44  const double* field, 45  const int /*ndim*/, 46  const int num_tuples, 47  double*, 48  double* result ) 49 { 50  for( int i = 0; i < num_tuples; i++ ) 51  result[i] = 0.0; 52  for( unsigned i = 0; i < 4; ++i ) 53  { 54  const double N_i = ( 1 + params[0] * corner[i][0] ) * ( 1 + params[1] * corner[i][1] ); 55  for( int j = 0; j < num_tuples; j++ ) 56  result[j] += N_i * field[i * num_tuples + j]; 57  } 58  for( int i = 0; i < num_tuples; i++ ) 59  result[i] *= 0.25; 60  61  return MB_SUCCESS; 62 } 63  64 ErrorCode LinearQuad::integrateFcn( const double* field, 65  const double* verts, 66  const int nverts, 67  const int ndim, 68  const int num_tuples, 69  double* work, 70  double* result ) 71 { 72  double tmp_result[4]; 73  ErrorCode rval = MB_SUCCESS; 74  for( int i = 0; i < num_tuples; i++ ) 75  result[i] = 0.0; 76  CartVect x; 77  Matrix3 J; 78  for( unsigned int j1 = 0; j1 < LinearQuad::gauss_count; ++j1 ) 79  { 80  x[0] = LinearQuad::gauss[j1][1]; 81  double w1 = LinearQuad::gauss[j1][0]; 82  for( unsigned int j2 = 0; j2 < LinearQuad::gauss_count; ++j2 ) 83  { 84  x[1] = LinearQuad::gauss[j2][1]; 85  double w2 = LinearQuad::gauss[j2][0]; 86  rval = evalFcn( x.array(), field, ndim, num_tuples, NULL, tmp_result ); 87  if( MB_SUCCESS != rval ) return rval; 88  rval = jacobianFcn( x.array(), verts, nverts, ndim, work, J[0] ); 89  if( MB_SUCCESS != rval ) return rval; 90  double tmp_det = w1 * w2 * J.determinant(); 91  for( int i = 0; i < num_tuples; i++ ) 92  result[i] += tmp_result[i] * tmp_det; 93  } 94  } 95  return MB_SUCCESS; 96 } // LinearHex::integrate_vector() 97  98 ErrorCode LinearQuad::reverseEvalFcn( EvalFcn eval, 99  JacobianFcn jacob, 100  InsideFcn ins, 101  const double* posn, 102  const double* verts, 103  const int nverts, 104  const int ndim, 105  const double iter_tol, 106  const double inside_tol, 107  double* work, 108  double* params, 109  int* is_inside ) 110 { 111  return EvalSet::evaluate_reverse( eval, jacob, ins, posn, verts, nverts, ndim, iter_tol, inside_tol, work, params, 112  is_inside ); 113 } 114  115 int LinearQuad::insideFcn( const double* params, const int ndim, const double tol ) 116 { 117  return EvalSet::inside_function( params, ndim, tol ); 118 } 119  120 ErrorCode LinearQuad::normalFcn( const int ientDim, 121  const int facet, 122  const int nverts, 123  const double* verts, 124  double normal[3] ) 125 { 126  // assert(facet <4 && ientDim == 1 && nverts==4); 127  if( nverts != 4 ) MB_SET_ERR( MB_FAILURE, "Incorrect vertex count for passed quad :: expected value = 4" ); 128  if( ientDim != 1 ) MB_SET_ERR( MB_FAILURE, "Requesting normal for unsupported dimension :: expected value = 1 " ); 129  if( facet > 4 || facet < 0 ) MB_SET_ERR( MB_FAILURE, "Incorrect local edge id :: expected value = one of 0-3" ); 130  131  // Get the local vertex ids of local edge 132  int id0 = CN::mConnectivityMap[MBQUAD][ientDim - 1].conn[facet][0]; 133  int id1 = CN::mConnectivityMap[MBQUAD][ientDim - 1].conn[facet][1]; 134  135  // Find a vector along the edge 136  double edge[3]; 137  for( int i = 0; i < 3; i++ ) 138  { 139  edge[i] = verts[3 * id1 + i] - verts[3 * id0 + i]; 140  } 141  // Find the normal of the face 142  double x0[3], x1[3], fnrm[3]; 143  for( int i = 0; i < 3; i++ ) 144  { 145  x0[i] = verts[3 * 1 + i] - verts[3 * 0 + i]; 146  x1[i] = verts[3 * 3 + i] - verts[3 * 0 + i]; 147  } 148  fnrm[0] = x0[1] * x1[2] - x1[1] * x0[2]; 149  fnrm[1] = x1[0] * x0[2] - x0[0] * x1[2]; 150  fnrm[2] = x0[0] * x1[1] - x1[0] * x0[1]; 151  152  // Find the normal of the edge as the cross product of edge and face normal 153  154  double a = edge[1] * fnrm[2] - fnrm[1] * edge[2]; 155  double b = edge[2] * fnrm[0] - fnrm[2] * edge[0]; 156  double c = edge[0] * fnrm[1] - fnrm[0] * edge[1]; 157  double nrm = sqrt( a * a + b * b + c * c ); 158  159  if( nrm > std::numeric_limits< double >::epsilon() ) 160  { 161  normal[0] = a / nrm; 162  normal[1] = b / nrm; 163  normal[2] = c / nrm; 164  } 165  return MB_SUCCESS; 166 } 167  168 } // namespace moab