Actual source code: ts.c
petsc-3.9.4 2018-09-11
1: #include <petsc/private/tsimpl.h>
2: #include <petscdmshell.h>
3: #include <petscdmda.h>
4: #include <petscviewer.h>
5: #include <petscdraw.h>
7: /* Logging support */
8: PetscClassId TS_CLASSID, DMTS_CLASSID;
9: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
11: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
13: /*@C
14: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
16: Collective on TS
18: Input Parameters:
19: + ts - TS object you wish to monitor
20: . name - the monitor type one is seeking
21: . help - message indicating what monitoring is done
22: . manual - manual page for the monitor
23: . monitor - the monitor function
24: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
26: Level: developer
28: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
29: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
30: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
31: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
32: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
33: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
34: PetscOptionsFList(), PetscOptionsEList()
35: @*/
36: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
37: {
38: PetscErrorCode ierr;
39: PetscViewer viewer;
40: PetscViewerFormat format;
41: PetscBool flg;
44: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
45: if (flg) {
46: PetscViewerAndFormat *vf;
47: PetscViewerAndFormatCreate(viewer,format,&vf);
48: PetscObjectDereference((PetscObject)viewer);
49: if (monitorsetup) {
50: (*monitorsetup)(ts,vf);
51: }
52: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
53: }
54: return(0);
55: }
57: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
58: {
64: if (!((PetscObject)adapt)->type_name) {
65: TSAdaptSetType(adapt,default_type);
66: }
67: return(0);
68: }
70: /*@
71: TSSetFromOptions - Sets various TS parameters from user options.
73: Collective on TS
75: Input Parameter:
76: . ts - the TS context obtained from TSCreate()
78: Options Database Keys:
79: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE
80: . -ts_save_trajectory - checkpoint the solution at each time-step
81: . -ts_max_time <time> - maximum time to compute to
82: . -ts_max_steps <steps> - maximum number of time-steps to take
83: . -ts_init_time <time> - initial time to start computation
84: . -ts_final_time <time> - final time to compute to
85: . -ts_dt <dt> - initial time step
86: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
87: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
88: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
89: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
90: . -ts_rtol <rtol> - relative tolerance for local truncation error
91: . -ts_atol <atol> Absolute tolerance for local truncation error
92: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
93: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
94: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
95: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
96: . -ts_monitor - print information at each timestep
97: . -ts_monitor_lg_solution - Monitor solution graphically
98: . -ts_monitor_lg_error - Monitor error graphically
99: . -ts_monitor_error - Monitors norm of error
100: . -ts_monitor_lg_timestep - Monitor timestep size graphically
101: . -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
102: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
103: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
104: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
105: . -ts_monitor_draw_solution - Monitor solution graphically
106: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
107: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
108: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
109: . -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
110: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
112: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
114: Level: beginner
116: .keywords: TS, timestep, set, options, database
118: .seealso: TSGetType()
119: @*/
120: PetscErrorCode TSSetFromOptions(TS ts)
121: {
122: PetscBool opt,flg,tflg;
123: PetscErrorCode ierr;
124: char monfilename[PETSC_MAX_PATH_LEN];
125: PetscReal time_step;
126: TSExactFinalTimeOption eftopt;
127: char dir[16];
128: TSIFunction ifun;
129: const char *defaultType;
130: char typeName[256];
135: TSRegisterAll();
136: TSGetIFunction(ts,NULL,&ifun,NULL);
138: PetscObjectOptionsBegin((PetscObject)ts);
139: if (((PetscObject)ts)->type_name)
140: defaultType = ((PetscObject)ts)->type_name;
141: else
142: defaultType = ifun ? TSBEULER : TSEULER;
143: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
144: if (opt) {
145: TSSetType(ts,typeName);
146: } else {
147: TSSetType(ts,defaultType);
148: }
150: /* Handle generic TS options */
151: PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
152: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
153: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
154: PetscOptionsReal("-ts_final_time","Final time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
155: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
156: if (flg) {TSSetTimeStep(ts,time_step);}
157: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
158: if (flg) {TSSetExactFinalTime(ts,eftopt);}
159: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
160: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
161: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
162: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
163: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
165: PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
166: PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
167: #if defined(PETSC_HAVE_SAWS)
168: {
169: PetscBool set;
170: flg = PETSC_FALSE;
171: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
172: if (set) {
173: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
174: }
175: }
176: #endif
178: /* Monitor options */
179: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
180: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
182: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
183: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
185: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
186: if (opt) {
187: TSMonitorLGCtx ctx;
188: PetscInt howoften = 1;
190: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
191: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
192: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
193: }
195: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
196: if (opt) {
197: TSMonitorLGCtx ctx;
198: PetscInt howoften = 1;
200: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
201: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
202: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
203: }
204: TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);
206: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
207: if (opt) {
208: TSMonitorLGCtx ctx;
209: PetscInt howoften = 1;
211: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
212: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
213: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
214: }
215: PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
216: if (opt) {
217: TSMonitorLGCtx ctx;
218: PetscInt howoften = 1;
220: PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
221: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
222: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
223: ctx->semilogy = PETSC_TRUE;
224: }
226: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
227: if (opt) {
228: TSMonitorLGCtx ctx;
229: PetscInt howoften = 1;
231: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
232: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
233: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
234: }
235: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
236: if (opt) {
237: TSMonitorLGCtx ctx;
238: PetscInt howoften = 1;
240: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
241: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
242: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
243: }
244: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
245: if (opt) {
246: TSMonitorSPEigCtx ctx;
247: PetscInt howoften = 1;
249: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
250: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
251: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
252: }
253: opt = PETSC_FALSE;
254: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
255: if (opt) {
256: TSMonitorDrawCtx ctx;
257: PetscInt howoften = 1;
259: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
260: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
261: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
262: }
263: opt = PETSC_FALSE;
264: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
265: if (opt) {
266: TSMonitorDrawCtx ctx;
267: PetscReal bounds[4];
268: PetscInt n = 4;
269: PetscDraw draw;
270: PetscDrawAxis axis;
272: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
273: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
274: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
275: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
276: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
277: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
278: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
279: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
280: }
281: opt = PETSC_FALSE;
282: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
283: if (opt) {
284: TSMonitorDrawCtx ctx;
285: PetscInt howoften = 1;
287: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
288: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
289: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
290: }
291: opt = PETSC_FALSE;
292: PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
293: if (opt) {
294: TSMonitorDrawCtx ctx;
295: PetscInt howoften = 1;
297: PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
298: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
299: TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
300: }
302: opt = PETSC_FALSE;
303: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
304: if (flg) {
305: const char *ptr,*ptr2;
306: char *filetemplate;
307: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
308: /* Do some cursory validation of the input. */
309: PetscStrstr(monfilename,"%",(char**)&ptr);
310: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
311: for (ptr++; ptr && *ptr; ptr++) {
312: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
313: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
314: if (ptr2) break;
315: }
316: PetscStrallocpy(monfilename,&filetemplate);
317: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
318: }
320: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
321: if (flg) {
322: TSMonitorDMDARayCtx *rayctx;
323: int ray = 0;
324: DMDADirection ddir;
325: DM da;
326: PetscMPIInt rank;
328: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
329: if (dir[0] == 'x') ddir = DMDA_X;
330: else if (dir[0] == 'y') ddir = DMDA_Y;
331: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
332: sscanf(dir+2,"%d",&ray);
334: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
335: PetscNew(&rayctx);
336: TSGetDM(ts,&da);
337: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
338: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
339: if (!rank) {
340: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
341: }
342: rayctx->lgctx = NULL;
343: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
344: }
345: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
346: if (flg) {
347: TSMonitorDMDARayCtx *rayctx;
348: int ray = 0;
349: DMDADirection ddir;
350: DM da;
351: PetscInt howoften = 1;
353: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
354: if (dir[0] == 'x') ddir = DMDA_X;
355: else if (dir[0] == 'y') ddir = DMDA_Y;
356: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
357: sscanf(dir+2, "%d", &ray);
359: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
360: PetscNew(&rayctx);
361: TSGetDM(ts, &da);
362: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
363: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
364: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
365: }
367: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
368: if (opt) {
369: TSMonitorEnvelopeCtx ctx;
371: TSMonitorEnvelopeCtxCreate(ts,&ctx);
372: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
373: }
375: flg = PETSC_FALSE;
376: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
377: if (flg) {
378: DM dm;
379: DMTS tdm;
381: TSGetDM(ts, &dm);
382: DMGetDMTS(dm, &tdm);
383: tdm->ijacobianctx = NULL;
384: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
385: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
386: }
388: /* Handle specific TS options */
389: if (ts->ops->setfromoptions) {
390: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
391: }
393: /* Handle TSAdapt options */
394: TSGetAdapt(ts,&ts->adapt);
395: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
396: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
398: /* TS trajectory must be set after TS, since it may use some TS options above */
399: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
400: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
401: if (tflg) {
402: TSSetSaveTrajectory(ts);
403: }
405: TSAdjointSetFromOptions(PetscOptionsObject,ts);
407: /* process any options handlers added with PetscObjectAddOptionsHandler() */
408: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
409: PetscOptionsEnd();
411: if (ts->trajectory) {
412: TSTrajectorySetFromOptions(ts->trajectory,ts);
413: }
415: TSGetSNES(ts,&ts->snes);
416: if (ts->problem_type == TS_LINEAR) {SNESSetType(ts->snes,SNESKSPONLY);}
417: SNESSetFromOptions(ts->snes);
418: return(0);
419: }
421: /*@
422: TSGetTrajectory - Gets the trajectory from a TS if it exists
424: Collective on TS
426: Input Parameters:
427: . ts - the TS context obtained from TSCreate()
429: Output Parameters;
430: . tr - the TSTrajectory object, if it exists
432: Note: This routine should be called after all TS options have been set
434: Level: advanced
436: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()
438: .keywords: TS, set, checkpoint,
439: @*/
440: PetscErrorCode TSGetTrajectory(TS ts,TSTrajectory *tr)
441: {
444: *tr = ts->trajectory;
445: return(0);
446: }
448: /*@
449: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
451: Collective on TS
453: Input Parameters:
454: . ts - the TS context obtained from TSCreate()
456: Options Database:
457: + -ts_save_trajectory - saves the trajectory to a file
458: - -ts_trajectory_type type
460: Note: This routine should be called after all TS options have been set
462: The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
463: MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m
465: Level: intermediate
467: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectoryType, TSSetTrajectoryType()
469: .keywords: TS, set, checkpoint,
470: @*/
471: PetscErrorCode TSSetSaveTrajectory(TS ts)
472: {
477: if (!ts->trajectory) {
478: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
479: }
480: return(0);
481: }
483: /*@
484: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
485: set with TSSetRHSJacobian().
487: Collective on TS and Vec
489: Input Parameters:
490: + ts - the TS context
491: . t - current timestep
492: - U - input vector
494: Output Parameters:
495: + A - Jacobian matrix
496: . B - optional preconditioning matrix
497: - flag - flag indicating matrix structure
499: Notes:
500: Most users should not need to explicitly call this routine, as it
501: is used internally within the nonlinear solvers.
503: See KSPSetOperators() for important information about setting the
504: flag parameter.
506: Level: developer
508: .keywords: SNES, compute, Jacobian, matrix
510: .seealso: TSSetRHSJacobian(), KSPSetOperators()
511: @*/
512: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
513: {
514: PetscErrorCode ierr;
515: PetscObjectState Ustate;
516: PetscObjectId Uid;
517: DM dm;
518: DMTS tsdm;
519: TSRHSJacobian rhsjacobianfunc;
520: void *ctx;
521: TSIJacobian ijacobianfunc;
522: TSRHSFunction rhsfunction;
528: TSGetDM(ts,&dm);
529: DMGetDMTS(dm,&tsdm);
530: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
531: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
532: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
533: PetscObjectStateGet((PetscObject)U,&Ustate);
534: PetscObjectGetId((PetscObject)U,&Uid);
535: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
536: return(0);
537: }
539: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
541: if (ts->rhsjacobian.reuse) {
542: MatShift(A,-ts->rhsjacobian.shift);
543: MatScale(A,1./ts->rhsjacobian.scale);
544: if (B && A != B) {
545: MatShift(B,-ts->rhsjacobian.shift);
546: MatScale(B,1./ts->rhsjacobian.scale);
547: }
548: ts->rhsjacobian.shift = 0;
549: ts->rhsjacobian.scale = 1.;
550: }
552: if (rhsjacobianfunc) {
553: PetscBool missing;
554: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
555: PetscStackPush("TS user Jacobian function");
556: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
557: PetscStackPop;
558: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
559: if (A) {
560: MatMissingDiagonal(A,&missing,NULL);
561: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
562: }
563: if (B && B != A) {
564: MatMissingDiagonal(B,&missing,NULL);
565: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
566: }
567: } else {
568: MatZeroEntries(A);
569: if (A != B) {MatZeroEntries(B);}
570: }
571: ts->rhsjacobian.time = t;
572: PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
573: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
574: return(0);
575: }
577: /*@
578: TSComputeRHSFunction - Evaluates the right-hand-side function.
580: Collective on TS and Vec
582: Input Parameters:
583: + ts - the TS context
584: . t - current time
585: - U - state vector
587: Output Parameter:
588: . y - right hand side
590: Note:
591: Most users should not need to explicitly call this routine, as it
592: is used internally within the nonlinear solvers.
594: Level: developer
596: .keywords: TS, compute
598: .seealso: TSSetRHSFunction(), TSComputeIFunction()
599: @*/
600: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
601: {
603: TSRHSFunction rhsfunction;
604: TSIFunction ifunction;
605: void *ctx;
606: DM dm;
612: TSGetDM(ts,&dm);
613: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
614: DMTSGetIFunction(dm,&ifunction,NULL);
616: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
618: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
619: if (rhsfunction) {
620: PetscStackPush("TS user right-hand-side function");
621: (*rhsfunction)(ts,t,U,y,ctx);
622: PetscStackPop;
623: } else {
624: VecZeroEntries(y);
625: }
627: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
628: return(0);
629: }
631: /*@
632: TSComputeSolutionFunction - Evaluates the solution function.
634: Collective on TS and Vec
636: Input Parameters:
637: + ts - the TS context
638: - t - current time
640: Output Parameter:
641: . U - the solution
643: Note:
644: Most users should not need to explicitly call this routine, as it
645: is used internally within the nonlinear solvers.
647: Level: developer
649: .keywords: TS, compute
651: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
652: @*/
653: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
654: {
655: PetscErrorCode ierr;
656: TSSolutionFunction solutionfunction;
657: void *ctx;
658: DM dm;
663: TSGetDM(ts,&dm);
664: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
666: if (solutionfunction) {
667: PetscStackPush("TS user solution function");
668: (*solutionfunction)(ts,t,U,ctx);
669: PetscStackPop;
670: }
671: return(0);
672: }
673: /*@
674: TSComputeForcingFunction - Evaluates the forcing function.
676: Collective on TS and Vec
678: Input Parameters:
679: + ts - the TS context
680: - t - current time
682: Output Parameter:
683: . U - the function value
685: Note:
686: Most users should not need to explicitly call this routine, as it
687: is used internally within the nonlinear solvers.
689: Level: developer
691: .keywords: TS, compute
693: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
694: @*/
695: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
696: {
697: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
698: void *ctx;
699: DM dm;
704: TSGetDM(ts,&dm);
705: DMTSGetForcingFunction(dm,&forcing,&ctx);
707: if (forcing) {
708: PetscStackPush("TS user forcing function");
709: (*forcing)(ts,t,U,ctx);
710: PetscStackPop;
711: }
712: return(0);
713: }
715: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
716: {
717: Vec F;
721: *Frhs = NULL;
722: TSGetIFunction(ts,&F,NULL,NULL);
723: if (!ts->Frhs) {
724: VecDuplicate(F,&ts->Frhs);
725: }
726: *Frhs = ts->Frhs;
727: return(0);
728: }
730: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
731: {
732: Mat A,B;
734: TSIJacobian ijacobian;
737: if (Arhs) *Arhs = NULL;
738: if (Brhs) *Brhs = NULL;
739: TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
740: if (Arhs) {
741: if (!ts->Arhs) {
742: if (ijacobian) {
743: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
744: } else {
745: ts->Arhs = A;
746: PetscObjectReference((PetscObject)A);
747: }
748: } else {
749: PetscBool flg;
750: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
751: /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
752: if (flg && !ijacobian && ts->Arhs == ts->Brhs){
753: PetscObjectDereference((PetscObject)ts->Arhs);
754: ts->Arhs = A;
755: PetscObjectReference((PetscObject)A);
756: }
757: }
758: *Arhs = ts->Arhs;
759: }
760: if (Brhs) {
761: if (!ts->Brhs) {
762: if (A != B) {
763: if (ijacobian) {
764: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
765: } else {
766: ts->Brhs = B;
767: PetscObjectReference((PetscObject)B);
768: }
769: } else {
770: PetscObjectReference((PetscObject)ts->Arhs);
771: ts->Brhs = ts->Arhs;
772: }
773: }
774: *Brhs = ts->Brhs;
775: }
776: return(0);
777: }
779: /*@
780: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
782: Collective on TS and Vec
784: Input Parameters:
785: + ts - the TS context
786: . t - current time
787: . U - state vector
788: . Udot - time derivative of state vector
789: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
791: Output Parameter:
792: . Y - right hand side
794: Note:
795: Most users should not need to explicitly call this routine, as it
796: is used internally within the nonlinear solvers.
798: If the user did did not write their equations in implicit form, this
799: function recasts them in implicit form.
801: Level: developer
803: .keywords: TS, compute
805: .seealso: TSSetIFunction(), TSComputeRHSFunction()
806: @*/
807: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
808: {
810: TSIFunction ifunction;
811: TSRHSFunction rhsfunction;
812: void *ctx;
813: DM dm;
821: TSGetDM(ts,&dm);
822: DMTSGetIFunction(dm,&ifunction,&ctx);
823: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
825: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
827: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
828: if (ifunction) {
829: PetscStackPush("TS user implicit function");
830: (*ifunction)(ts,t,U,Udot,Y,ctx);
831: PetscStackPop;
832: }
833: if (imex) {
834: if (!ifunction) {
835: VecCopy(Udot,Y);
836: }
837: } else if (rhsfunction) {
838: if (ifunction) {
839: Vec Frhs;
840: TSGetRHSVec_Private(ts,&Frhs);
841: TSComputeRHSFunction(ts,t,U,Frhs);
842: VecAXPY(Y,-1,Frhs);
843: } else {
844: TSComputeRHSFunction(ts,t,U,Y);
845: VecAYPX(Y,-1,Udot);
846: }
847: }
848: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
849: return(0);
850: }
852: /*@
853: TSComputeIJacobian - Evaluates the Jacobian of the DAE
855: Collective on TS and Vec
857: Input
858: Input Parameters:
859: + ts - the TS context
860: . t - current timestep
861: . U - state vector
862: . Udot - time derivative of state vector
863: . shift - shift to apply, see note below
864: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
866: Output Parameters:
867: + A - Jacobian matrix
868: - B - matrix from which the preconditioner is constructed; often the same as A
870: Notes:
871: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
873: dF/dU + shift*dF/dUdot
875: Most users should not need to explicitly call this routine, as it
876: is used internally within the nonlinear solvers.
878: Level: developer
880: .keywords: TS, compute, Jacobian, matrix
882: .seealso: TSSetIJacobian()
883: @*/
884: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
885: {
887: TSIJacobian ijacobian;
888: TSRHSJacobian rhsjacobian;
889: DM dm;
890: void *ctx;
901: TSGetDM(ts,&dm);
902: DMTSGetIJacobian(dm,&ijacobian,&ctx);
903: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
905: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
907: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
908: if (ijacobian) {
909: PetscBool missing;
910: PetscStackPush("TS user implicit Jacobian");
911: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
912: PetscStackPop;
913: MatMissingDiagonal(A,&missing,NULL);
914: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
915: if (B != A) {
916: MatMissingDiagonal(B,&missing,NULL);
917: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
918: }
919: }
920: if (imex) {
921: if (!ijacobian) { /* system was written as Udot = G(t,U) */
922: PetscBool assembled;
923: MatZeroEntries(A);
924: MatAssembled(A,&assembled);
925: if (!assembled) {
926: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
927: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
928: }
929: MatShift(A,shift);
930: if (A != B) {
931: MatZeroEntries(B);
932: MatAssembled(B,&assembled);
933: if (!assembled) {
934: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
935: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
936: }
937: MatShift(B,shift);
938: }
939: }
940: } else {
941: Mat Arhs = NULL,Brhs = NULL;
942: if (rhsjacobian) {
943: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
944: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
945: }
946: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
947: PetscBool flg;
948: ts->rhsjacobian.scale = -1;
949: ts->rhsjacobian.shift = shift;
950: SNESGetUseMatrixFree(ts->snes,NULL,&flg);
951: /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
952: if (!flg) {
953: MatScale(A,-1);
954: MatShift(A,shift);
955: }
956: if (A != B) {
957: MatScale(B,-1);
958: MatShift(B,shift);
959: }
960: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
961: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
962: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
963: MatZeroEntries(A);
964: MatShift(A,shift);
965: if (A != B) {
966: MatZeroEntries(B);
967: MatShift(B,shift);
968: }
969: }
970: MatAXPY(A,-1,Arhs,axpy);
971: if (A != B) {
972: MatAXPY(B,-1,Brhs,axpy);
973: }
974: }
975: }
976: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
977: return(0);
978: }
980: /*@C
981: TSSetRHSFunction - Sets the routine for evaluating the function,
982: where U_t = G(t,u).
984: Logically Collective on TS
986: Input Parameters:
987: + ts - the TS context obtained from TSCreate()
988: . r - vector to put the computed right hand side (or NULL to have it created)
989: . f - routine for evaluating the right-hand-side function
990: - ctx - [optional] user-defined context for private data for the
991: function evaluation routine (may be NULL)
993: Calling sequence of func:
994: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
996: + t - current timestep
997: . u - input vector
998: . F - function vector
999: - ctx - [optional] user-defined function context
1001: Level: beginner
1003: Notes: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
1005: .keywords: TS, timestep, set, right-hand-side, function
1007: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1008: @*/
1009: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1010: {
1012: SNES snes;
1013: Vec ralloc = NULL;
1014: DM dm;
1020: TSGetDM(ts,&dm);
1021: DMTSSetRHSFunction(dm,f,ctx);
1022: TSGetSNES(ts,&snes);
1023: if (!r && !ts->dm && ts->vec_sol) {
1024: VecDuplicate(ts->vec_sol,&ralloc);
1025: r = ralloc;
1026: }
1027: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1028: VecDestroy(&ralloc);
1029: return(0);
1030: }
1032: /*@C
1033: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1035: Logically Collective on TS
1037: Input Parameters:
1038: + ts - the TS context obtained from TSCreate()
1039: . f - routine for evaluating the solution
1040: - ctx - [optional] user-defined context for private data for the
1041: function evaluation routine (may be NULL)
1043: Calling sequence of func:
1044: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1046: + t - current timestep
1047: . u - output vector
1048: - ctx - [optional] user-defined function context
1050: Options Database:
1051: + -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1052: - -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
1054: Notes:
1055: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1056: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1057: create closed-form solutions with non-physical forcing terms.
1059: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1061: Level: beginner
1063: .keywords: TS, timestep, set, right-hand-side, function
1065: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1066: @*/
1067: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1068: {
1070: DM dm;
1074: TSGetDM(ts,&dm);
1075: DMTSSetSolutionFunction(dm,f,ctx);
1076: return(0);
1077: }
1079: /*@C
1080: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1082: Logically Collective on TS
1084: Input Parameters:
1085: + ts - the TS context obtained from TSCreate()
1086: . func - routine for evaluating the forcing function
1087: - ctx - [optional] user-defined context for private data for the
1088: function evaluation routine (may be NULL)
1090: Calling sequence of func:
1091: $ func (TS ts,PetscReal t,Vec f,void *ctx);
1093: + t - current timestep
1094: . f - output vector
1095: - ctx - [optional] user-defined function context
1097: Notes:
1098: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1099: create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1100: definition of the problem you are solving and hence possibly introducing bugs.
1102: This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0
1104: This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1105: parameters can be passed in the ctx variable.
1107: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1109: Level: beginner
1111: .keywords: TS, timestep, set, right-hand-side, function
1113: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1114: @*/
1115: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1116: {
1118: DM dm;
1122: TSGetDM(ts,&dm);
1123: DMTSSetForcingFunction(dm,func,ctx);
1124: return(0);
1125: }
1127: /*@C
1128: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1129: where U_t = G(U,t), as well as the location to store the matrix.
1131: Logically Collective on TS
1133: Input Parameters:
1134: + ts - the TS context obtained from TSCreate()
1135: . Amat - (approximate) Jacobian matrix
1136: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1137: . f - the Jacobian evaluation routine
1138: - ctx - [optional] user-defined context for private data for the
1139: Jacobian evaluation routine (may be NULL)
1141: Calling sequence of f:
1142: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1144: + t - current timestep
1145: . u - input vector
1146: . Amat - (approximate) Jacobian matrix
1147: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1148: - ctx - [optional] user-defined context for matrix evaluation routine
1150: Notes:
1151: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1153: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1154: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1156: Level: beginner
1158: .keywords: TS, timestep, set, right-hand-side, Jacobian
1160: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1162: @*/
1163: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1164: {
1166: SNES snes;
1167: DM dm;
1168: TSIJacobian ijacobian;
1177: TSGetDM(ts,&dm);
1178: DMTSSetRHSJacobian(dm,f,ctx);
1179: if (f == TSComputeRHSJacobianConstant) {
1180: /* Handle this case automatically for the user; otherwise user should call themselves. */
1181: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1182: }
1183: DMTSGetIJacobian(dm,&ijacobian,NULL);
1184: TSGetSNES(ts,&snes);
1185: if (!ijacobian) {
1186: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1187: }
1188: if (Amat) {
1189: PetscObjectReference((PetscObject)Amat);
1190: MatDestroy(&ts->Arhs);
1191: ts->Arhs = Amat;
1192: }
1193: if (Pmat) {
1194: PetscObjectReference((PetscObject)Pmat);
1195: MatDestroy(&ts->Brhs);
1196: ts->Brhs = Pmat;
1197: }
1198: return(0);
1199: }
1201: /*@C
1202: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1204: Logically Collective on TS
1206: Input Parameters:
1207: + ts - the TS context obtained from TSCreate()
1208: . r - vector to hold the residual (or NULL to have it created internally)
1209: . f - the function evaluation routine
1210: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1212: Calling sequence of f:
1213: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1215: + t - time at step/stage being solved
1216: . u - state vector
1217: . u_t - time derivative of state vector
1218: . F - function vector
1219: - ctx - [optional] user-defined context for matrix evaluation routine
1221: Important:
1222: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1224: Level: beginner
1226: .keywords: TS, timestep, set, DAE, Jacobian
1228: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1229: @*/
1230: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1231: {
1233: SNES snes;
1234: Vec ralloc = NULL;
1235: DM dm;
1241: TSGetDM(ts,&dm);
1242: DMTSSetIFunction(dm,f,ctx);
1244: TSGetSNES(ts,&snes);
1245: if (!r && !ts->dm && ts->vec_sol) {
1246: VecDuplicate(ts->vec_sol,&ralloc);
1247: r = ralloc;
1248: }
1249: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1250: VecDestroy(&ralloc);
1251: return(0);
1252: }
1254: /*@C
1255: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1257: Not Collective
1259: Input Parameter:
1260: . ts - the TS context
1262: Output Parameter:
1263: + r - vector to hold residual (or NULL)
1264: . func - the function to compute residual (or NULL)
1265: - ctx - the function context (or NULL)
1267: Level: advanced
1269: .keywords: TS, nonlinear, get, function
1271: .seealso: TSSetIFunction(), SNESGetFunction()
1272: @*/
1273: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1274: {
1276: SNES snes;
1277: DM dm;
1281: TSGetSNES(ts,&snes);
1282: SNESGetFunction(snes,r,NULL,NULL);
1283: TSGetDM(ts,&dm);
1284: DMTSGetIFunction(dm,func,ctx);
1285: return(0);
1286: }
1288: /*@C
1289: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1291: Not Collective
1293: Input Parameter:
1294: . ts - the TS context
1296: Output Parameter:
1297: + r - vector to hold computed right hand side (or NULL)
1298: . func - the function to compute right hand side (or NULL)
1299: - ctx - the function context (or NULL)
1301: Level: advanced
1303: .keywords: TS, nonlinear, get, function
1305: .seealso: TSSetRHSFunction(), SNESGetFunction()
1306: @*/
1307: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1308: {
1310: SNES snes;
1311: DM dm;
1315: TSGetSNES(ts,&snes);
1316: SNESGetFunction(snes,r,NULL,NULL);
1317: TSGetDM(ts,&dm);
1318: DMTSGetRHSFunction(dm,func,ctx);
1319: return(0);
1320: }
1322: /*@C
1323: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1324: provided with TSSetIFunction().
1326: Logically Collective on TS
1328: Input Parameters:
1329: + ts - the TS context obtained from TSCreate()
1330: . Amat - (approximate) Jacobian matrix
1331: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1332: . f - the Jacobian evaluation routine
1333: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1335: Calling sequence of f:
1336: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1338: + t - time at step/stage being solved
1339: . U - state vector
1340: . U_t - time derivative of state vector
1341: . a - shift
1342: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1343: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1344: - ctx - [optional] user-defined context for matrix evaluation routine
1346: Notes:
1347: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1349: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1350: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1352: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1353: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1354: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1355: a and vector W depend on the integration method, step size, and past states. For example with
1356: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1357: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1359: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1361: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1362: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1364: Level: beginner
1366: .keywords: TS, timestep, DAE, Jacobian
1368: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1370: @*/
1371: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1372: {
1374: SNES snes;
1375: DM dm;
1384: TSGetDM(ts,&dm);
1385: DMTSSetIJacobian(dm,f,ctx);
1387: TSGetSNES(ts,&snes);
1388: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1389: return(0);
1390: }
1392: /*@
1393: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1394: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1395: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1396: not been changed by the TS.
1398: Logically Collective
1400: Input Arguments:
1401: + ts - TS context obtained from TSCreate()
1402: - reuse - PETSC_TRUE if the RHS Jacobian
1404: Level: intermediate
1406: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1407: @*/
1408: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1409: {
1411: ts->rhsjacobian.reuse = reuse;
1412: return(0);
1413: }
1415: /*@C
1416: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1418: Logically Collective on TS
1420: Input Parameters:
1421: + ts - the TS context obtained from TSCreate()
1422: . F - vector to hold the residual (or NULL to have it created internally)
1423: . fun - the function evaluation routine
1424: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1426: Calling sequence of fun:
1427: $ fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1429: + t - time at step/stage being solved
1430: . U - state vector
1431: . U_t - time derivative of state vector
1432: . U_tt - second time derivative of state vector
1433: . F - function vector
1434: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1436: Level: beginner
1438: .keywords: TS, timestep, set, ODE, DAE, Function
1440: .seealso: TSSetI2Jacobian()
1441: @*/
1442: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1443: {
1444: DM dm;
1450: TSSetIFunction(ts,F,NULL,NULL);
1451: TSGetDM(ts,&dm);
1452: DMTSSetI2Function(dm,fun,ctx);
1453: return(0);
1454: }
1456: /*@C
1457: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1459: Not Collective
1461: Input Parameter:
1462: . ts - the TS context
1464: Output Parameter:
1465: + r - vector to hold residual (or NULL)
1466: . fun - the function to compute residual (or NULL)
1467: - ctx - the function context (or NULL)
1469: Level: advanced
1471: .keywords: TS, nonlinear, get, function
1473: .seealso: TSSetI2Function(), SNESGetFunction()
1474: @*/
1475: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1476: {
1478: SNES snes;
1479: DM dm;
1483: TSGetSNES(ts,&snes);
1484: SNESGetFunction(snes,r,NULL,NULL);
1485: TSGetDM(ts,&dm);
1486: DMTSGetI2Function(dm,fun,ctx);
1487: return(0);
1488: }
1490: /*@C
1491: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1492: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1494: Logically Collective on TS
1496: Input Parameters:
1497: + ts - the TS context obtained from TSCreate()
1498: . J - Jacobian matrix
1499: . P - preconditioning matrix for J (may be same as J)
1500: . jac - the Jacobian evaluation routine
1501: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1503: Calling sequence of jac:
1504: $ jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1506: + t - time at step/stage being solved
1507: . U - state vector
1508: . U_t - time derivative of state vector
1509: . U_tt - second time derivative of state vector
1510: . v - shift for U_t
1511: . a - shift for U_tt
1512: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1513: . P - preconditioning matrix for J, may be same as J
1514: - ctx - [optional] user-defined context for matrix evaluation routine
1516: Notes:
1517: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1519: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1520: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1521: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1522: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1524: Level: beginner
1526: .keywords: TS, timestep, set, ODE, DAE, Jacobian
1528: .seealso: TSSetI2Function()
1529: @*/
1530: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1531: {
1532: DM dm;
1539: TSSetIJacobian(ts,J,P,NULL,NULL);
1540: TSGetDM(ts,&dm);
1541: DMTSSetI2Jacobian(dm,jac,ctx);
1542: return(0);
1543: }
1545: /*@C
1546: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1548: Not Collective, but parallel objects are returned if TS is parallel
1550: Input Parameter:
1551: . ts - The TS context obtained from TSCreate()
1553: Output Parameters:
1554: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1555: . P - The matrix from which the preconditioner is constructed, often the same as J
1556: . jac - The function to compute the Jacobian matrices
1557: - ctx - User-defined context for Jacobian evaluation routine
1559: Notes: You can pass in NULL for any return argument you do not need.
1561: Level: advanced
1563: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
1565: .keywords: TS, timestep, get, matrix, Jacobian
1566: @*/
1567: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1568: {
1570: SNES snes;
1571: DM dm;
1574: TSGetSNES(ts,&snes);
1575: SNESSetUpMatrices(snes);
1576: SNESGetJacobian(snes,J,P,NULL,NULL);
1577: TSGetDM(ts,&dm);
1578: DMTSGetI2Jacobian(dm,jac,ctx);
1579: return(0);
1580: }
1582: /*@
1583: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1585: Collective on TS and Vec
1587: Input Parameters:
1588: + ts - the TS context
1589: . t - current time
1590: . U - state vector
1591: . V - time derivative of state vector (U_t)
1592: - A - second time derivative of state vector (U_tt)
1594: Output Parameter:
1595: . F - the residual vector
1597: Note:
1598: Most users should not need to explicitly call this routine, as it
1599: is used internally within the nonlinear solvers.
1601: Level: developer
1603: .keywords: TS, compute, function, vector
1605: .seealso: TSSetI2Function()
1606: @*/
1607: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1608: {
1609: DM dm;
1610: TSI2Function I2Function;
1611: void *ctx;
1612: TSRHSFunction rhsfunction;
1622: TSGetDM(ts,&dm);
1623: DMTSGetI2Function(dm,&I2Function,&ctx);
1624: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1626: if (!I2Function) {
1627: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1628: return(0);
1629: }
1631: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1633: PetscStackPush("TS user implicit function");
1634: I2Function(ts,t,U,V,A,F,ctx);
1635: PetscStackPop;
1637: if (rhsfunction) {
1638: Vec Frhs;
1639: TSGetRHSVec_Private(ts,&Frhs);
1640: TSComputeRHSFunction(ts,t,U,Frhs);
1641: VecAXPY(F,-1,Frhs);
1642: }
1644: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1645: return(0);
1646: }
1648: /*@
1649: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1651: Collective on TS and Vec
1653: Input Parameters:
1654: + ts - the TS context
1655: . t - current timestep
1656: . U - state vector
1657: . V - time derivative of state vector
1658: . A - second time derivative of state vector
1659: . shiftV - shift to apply, see note below
1660: - shiftA - shift to apply, see note below
1662: Output Parameters:
1663: + J - Jacobian matrix
1664: - P - optional preconditioning matrix
1666: Notes:
1667: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1669: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1671: Most users should not need to explicitly call this routine, as it
1672: is used internally within the nonlinear solvers.
1674: Level: developer
1676: .keywords: TS, compute, Jacobian, matrix
1678: .seealso: TSSetI2Jacobian()
1679: @*/
1680: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1681: {
1682: DM dm;
1683: TSI2Jacobian I2Jacobian;
1684: void *ctx;
1685: TSRHSJacobian rhsjacobian;
1696: TSGetDM(ts,&dm);
1697: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1698: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1700: if (!I2Jacobian) {
1701: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1702: return(0);
1703: }
1705: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1707: PetscStackPush("TS user implicit Jacobian");
1708: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1709: PetscStackPop;
1711: if (rhsjacobian) {
1712: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1713: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1714: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1715: MatAXPY(J,-1,Jrhs,axpy);
1716: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1717: }
1719: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1720: return(0);
1721: }
1723: /*@
1724: TS2SetSolution - Sets the initial solution and time derivative vectors
1725: for use by the TS routines handling second order equations.
1727: Logically Collective on TS and Vec
1729: Input Parameters:
1730: + ts - the TS context obtained from TSCreate()
1731: . u - the solution vector
1732: - v - the time derivative vector
1734: Level: beginner
1736: .keywords: TS, timestep, set, solution, initial conditions
1737: @*/
1738: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1739: {
1746: TSSetSolution(ts,u);
1747: PetscObjectReference((PetscObject)v);
1748: VecDestroy(&ts->vec_dot);
1749: ts->vec_dot = v;
1750: return(0);
1751: }
1753: /*@
1754: TS2GetSolution - Returns the solution and time derivative at the present timestep
1755: for second order equations. It is valid to call this routine inside the function
1756: that you are evaluating in order to move to the new timestep. This vector not
1757: changed until the solution at the next timestep has been calculated.
1759: Not Collective, but Vec returned is parallel if TS is parallel
1761: Input Parameter:
1762: . ts - the TS context obtained from TSCreate()
1764: Output Parameter:
1765: + u - the vector containing the solution
1766: - v - the vector containing the time derivative
1768: Level: intermediate
1770: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1772: .keywords: TS, timestep, get, solution
1773: @*/
1774: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1775: {
1780: if (u) *u = ts->vec_sol;
1781: if (v) *v = ts->vec_dot;
1782: return(0);
1783: }
1785: /*@C
1786: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1788: Collective on PetscViewer
1790: Input Parameters:
1791: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1792: some related function before a call to TSLoad().
1793: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1795: Level: intermediate
1797: Notes:
1798: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1800: Notes for advanced users:
1801: Most users should not need to know the details of the binary storage
1802: format, since TSLoad() and TSView() completely hide these details.
1803: But for anyone who's interested, the standard binary matrix storage
1804: format is
1805: .vb
1806: has not yet been determined
1807: .ve
1809: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1810: @*/
1811: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1812: {
1814: PetscBool isbinary;
1815: PetscInt classid;
1816: char type[256];
1817: DMTS sdm;
1818: DM dm;
1823: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1824: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1826: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1827: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1828: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1829: TSSetType(ts, type);
1830: if (ts->ops->load) {
1831: (*ts->ops->load)(ts,viewer);
1832: }
1833: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1834: DMLoad(dm,viewer);
1835: TSSetDM(ts,dm);
1836: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1837: VecLoad(ts->vec_sol,viewer);
1838: DMGetDMTS(ts->dm,&sdm);
1839: DMTSLoad(sdm,viewer);
1840: return(0);
1841: }
1843: #include <petscdraw.h>
1844: #if defined(PETSC_HAVE_SAWS)
1845: #include <petscviewersaws.h>
1846: #endif
1847: /*@C
1848: TSView - Prints the TS data structure.
1850: Collective on TS
1852: Input Parameters:
1853: + ts - the TS context obtained from TSCreate()
1854: - viewer - visualization context
1856: Options Database Key:
1857: . -ts_view - calls TSView() at end of TSStep()
1859: Notes:
1860: The available visualization contexts include
1861: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1862: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1863: output where only the first processor opens
1864: the file. All other processors send their
1865: data to the first processor to print.
1867: The user can open an alternative visualization context with
1868: PetscViewerASCIIOpen() - output to a specified file.
1870: Level: beginner
1872: .keywords: TS, timestep, view
1874: .seealso: PetscViewerASCIIOpen()
1875: @*/
1876: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1877: {
1879: TSType type;
1880: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1881: DMTS sdm;
1882: #if defined(PETSC_HAVE_SAWS)
1883: PetscBool issaws;
1884: #endif
1888: if (!viewer) {
1889: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1890: }
1894: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1895: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1896: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1897: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1898: #if defined(PETSC_HAVE_SAWS)
1899: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1900: #endif
1901: if (iascii) {
1902: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1903: if (ts->ops->view) {
1904: PetscViewerASCIIPushTab(viewer);
1905: (*ts->ops->view)(ts,viewer);
1906: PetscViewerASCIIPopTab(viewer);
1907: }
1908: if (ts->max_steps < PETSC_MAX_INT) {
1909: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1910: }
1911: if (ts->max_time < PETSC_MAX_REAL) {
1912: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1913: }
1914: if (ts->usessnes) {
1915: PetscBool lin;
1916: if (ts->problem_type == TS_NONLINEAR) {
1917: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1918: }
1919: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1920: PetscObjectTypeCompare((PetscObject)ts->snes,SNESKSPONLY,&lin);
1921: PetscViewerASCIIPrintf(viewer," total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
1922: }
1923: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1924: if (ts->vrtol) {
1925: PetscViewerASCIIPrintf(viewer," using vector of relative error tolerances, ");
1926: } else {
1927: PetscViewerASCIIPrintf(viewer," using relative error tolerance of %g, ",(double)ts->rtol);
1928: }
1929: if (ts->vatol) {
1930: PetscViewerASCIIPrintf(viewer," using vector of absolute error tolerances\n");
1931: } else {
1932: PetscViewerASCIIPrintf(viewer," using absolute error tolerance of %g\n",(double)ts->atol);
1933: }
1934: PetscViewerASCIIPushTab(viewer);
1935: TSAdaptView(ts->adapt,viewer);
1936: PetscViewerASCIIPopTab(viewer);
1937: if (ts->snes && ts->usessnes) {
1938: PetscViewerASCIIPushTab(viewer);
1939: SNESView(ts->snes,viewer);
1940: PetscViewerASCIIPopTab(viewer);
1941: }
1942: DMGetDMTS(ts->dm,&sdm);
1943: DMTSView(sdm,viewer);
1944: } else if (isstring) {
1945: TSGetType(ts,&type);
1946: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1947: } else if (isbinary) {
1948: PetscInt classid = TS_FILE_CLASSID;
1949: MPI_Comm comm;
1950: PetscMPIInt rank;
1951: char type[256];
1953: PetscObjectGetComm((PetscObject)ts,&comm);
1954: MPI_Comm_rank(comm,&rank);
1955: if (!rank) {
1956: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1957: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1958: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1959: }
1960: if (ts->ops->view) {
1961: (*ts->ops->view)(ts,viewer);
1962: }
1963: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
1964: DMView(ts->dm,viewer);
1965: VecView(ts->vec_sol,viewer);
1966: DMGetDMTS(ts->dm,&sdm);
1967: DMTSView(sdm,viewer);
1968: } else if (isdraw) {
1969: PetscDraw draw;
1970: char str[36];
1971: PetscReal x,y,bottom,h;
1973: PetscViewerDrawGetDraw(viewer,0,&draw);
1974: PetscDrawGetCurrentPoint(draw,&x,&y);
1975: PetscStrcpy(str,"TS: ");
1976: PetscStrcat(str,((PetscObject)ts)->type_name);
1977: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1978: bottom = y - h;
1979: PetscDrawPushCurrentPoint(draw,x,bottom);
1980: if (ts->ops->view) {
1981: (*ts->ops->view)(ts,viewer);
1982: }
1983: if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
1984: if (ts->snes) {SNESView(ts->snes,viewer);}
1985: PetscDrawPopCurrentPoint(draw);
1986: #if defined(PETSC_HAVE_SAWS)
1987: } else if (issaws) {
1988: PetscMPIInt rank;
1989: const char *name;
1991: PetscObjectGetName((PetscObject)ts,&name);
1992: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1993: if (!((PetscObject)ts)->amsmem && !rank) {
1994: char dir[1024];
1996: PetscObjectViewSAWs((PetscObject)ts,viewer);
1997: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
1998: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
1999: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2000: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2001: }
2002: if (ts->ops->view) {
2003: (*ts->ops->view)(ts,viewer);
2004: }
2005: #endif
2006: }
2008: PetscViewerASCIIPushTab(viewer);
2009: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2010: PetscViewerASCIIPopTab(viewer);
2011: return(0);
2012: }
2014: /*@
2015: TSSetApplicationContext - Sets an optional user-defined context for
2016: the timesteppers.
2018: Logically Collective on TS
2020: Input Parameters:
2021: + ts - the TS context obtained from TSCreate()
2022: - usrP - optional user context
2024: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2025: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2027: Level: intermediate
2029: .keywords: TS, timestep, set, application, context
2031: .seealso: TSGetApplicationContext()
2032: @*/
2033: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2034: {
2037: ts->user = usrP;
2038: return(0);
2039: }
2041: /*@
2042: TSGetApplicationContext - Gets the user-defined context for the
2043: timestepper.
2045: Not Collective
2047: Input Parameter:
2048: . ts - the TS context obtained from TSCreate()
2050: Output Parameter:
2051: . usrP - user context
2053: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2054: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2056: Level: intermediate
2058: .keywords: TS, timestep, get, application, context
2060: .seealso: TSSetApplicationContext()
2061: @*/
2062: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2063: {
2066: *(void**)usrP = ts->user;
2067: return(0);
2068: }
2070: /*@
2071: TSGetStepNumber - Gets the number of steps completed.
2073: Not Collective
2075: Input Parameter:
2076: . ts - the TS context obtained from TSCreate()
2078: Output Parameter:
2079: . steps - number of steps completed so far
2081: Level: intermediate
2083: .keywords: TS, timestep, get, iteration, number
2084: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2085: @*/
2086: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2087: {
2091: *steps = ts->steps;
2092: return(0);
2093: }
2095: /*@
2096: TSSetStepNumber - Sets the number of steps completed.
2098: Logically Collective on TS
2100: Input Parameters:
2101: + ts - the TS context
2102: - steps - number of steps completed so far
2104: Notes:
2105: For most uses of the TS solvers the user need not explicitly call
2106: TSSetStepNumber(), as the step counter is appropriately updated in
2107: TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2108: reinitialize timestepping by setting the step counter to zero (and time
2109: to the initial time) to solve a similar problem with different initial
2110: conditions or parameters. Other possible use case is to continue
2111: timestepping from a previously interrupted run in such a way that TS
2112: monitors will be called with a initial nonzero step counter.
2114: Level: advanced
2116: .keywords: TS, timestep, set, iteration, number
2117: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2118: @*/
2119: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2120: {
2124: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2125: ts->steps = steps;
2126: return(0);
2127: }
2129: /*@
2130: TSSetTimeStep - Allows one to reset the timestep at any time,
2131: useful for simple pseudo-timestepping codes.
2133: Logically Collective on TS
2135: Input Parameters:
2136: + ts - the TS context obtained from TSCreate()
2137: - time_step - the size of the timestep
2139: Level: intermediate
2141: .seealso: TSGetTimeStep(), TSSetTime()
2143: .keywords: TS, set, timestep
2144: @*/
2145: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2146: {
2150: ts->time_step = time_step;
2151: return(0);
2152: }
2154: /*@
2155: TSSetExactFinalTime - Determines whether to adapt the final time step to
2156: match the exact final time, interpolate solution to the exact final time,
2157: or just return at the final time TS computed.
2159: Logically Collective on TS
2161: Input Parameter:
2162: + ts - the time-step context
2163: - eftopt - exact final time option
2165: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2166: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2167: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2169: Options Database:
2170: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2172: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2173: then the final time you selected.
2175: Level: beginner
2177: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2178: @*/
2179: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2180: {
2184: ts->exact_final_time = eftopt;
2185: return(0);
2186: }
2188: /*@
2189: TSGetExactFinalTime - Gets the exact final time option.
2191: Not Collective
2193: Input Parameter:
2194: . ts - the TS context
2196: Output Parameter:
2197: . eftopt - exact final time option
2199: Level: beginner
2201: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2202: @*/
2203: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2204: {
2208: *eftopt = ts->exact_final_time;
2209: return(0);
2210: }
2212: /*@
2213: TSGetTimeStep - Gets the current timestep size.
2215: Not Collective
2217: Input Parameter:
2218: . ts - the TS context obtained from TSCreate()
2220: Output Parameter:
2221: . dt - the current timestep size
2223: Level: intermediate
2225: .seealso: TSSetTimeStep(), TSGetTime()
2227: .keywords: TS, get, timestep
2228: @*/
2229: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2230: {
2234: *dt = ts->time_step;
2235: return(0);
2236: }
2238: /*@
2239: TSGetSolution - Returns the solution at the present timestep. It
2240: is valid to call this routine inside the function that you are evaluating
2241: in order to move to the new timestep. This vector not changed until
2242: the solution at the next timestep has been calculated.
2244: Not Collective, but Vec returned is parallel if TS is parallel
2246: Input Parameter:
2247: . ts - the TS context obtained from TSCreate()
2249: Output Parameter:
2250: . v - the vector containing the solution
2252: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2253: final time. It returns the solution at the next timestep.
2255: Level: intermediate
2257: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()
2259: .keywords: TS, timestep, get, solution
2260: @*/
2261: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2262: {
2266: *v = ts->vec_sol;
2267: return(0);
2268: }
2270: /*@
2271: TSGetSolutionComponents - Returns any solution components at the present
2272: timestep, if available for the time integration method being used.
2273: Solution components are quantities that share the same size and
2274: structure as the solution vector.
2276: Not Collective, but Vec returned is parallel if TS is parallel
2278: Parameters :
2279: . ts - the TS context obtained from TSCreate() (input parameter).
2280: . n - If v is PETSC_NULL, then the number of solution components is
2281: returned through n, else the n-th solution component is
2282: returned in v.
2283: . v - the vector containing the n-th solution component
2284: (may be PETSC_NULL to use this function to find out
2285: the number of solutions components).
2287: Level: advanced
2289: .seealso: TSGetSolution()
2291: .keywords: TS, timestep, get, solution
2292: @*/
2293: PetscErrorCode TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2294: {
2299: if (!ts->ops->getsolutioncomponents) *n = 0;
2300: else {
2301: (*ts->ops->getsolutioncomponents)(ts,n,v);
2302: }
2303: return(0);
2304: }
2306: /*@
2307: TSGetAuxSolution - Returns an auxiliary solution at the present
2308: timestep, if available for the time integration method being used.
2310: Not Collective, but Vec returned is parallel if TS is parallel
2312: Parameters :
2313: . ts - the TS context obtained from TSCreate() (input parameter).
2314: . v - the vector containing the auxiliary solution
2316: Level: intermediate
2318: .seealso: TSGetSolution()
2320: .keywords: TS, timestep, get, solution
2321: @*/
2322: PetscErrorCode TSGetAuxSolution(TS ts,Vec *v)
2323: {
2328: if (ts->ops->getauxsolution) {
2329: (*ts->ops->getauxsolution)(ts,v);
2330: } else {
2331: VecZeroEntries(*v);
2332: }
2333: return(0);
2334: }
2336: /*@
2337: TSGetTimeError - Returns the estimated error vector, if the chosen
2338: TSType has an error estimation functionality.
2340: Not Collective, but Vec returned is parallel if TS is parallel
2342: Note: MUST call after TSSetUp()
2344: Parameters :
2345: . ts - the TS context obtained from TSCreate() (input parameter).
2346: . n - current estimate (n=0) or previous one (n=-1)
2347: . v - the vector containing the error (same size as the solution).
2349: Level: intermediate
2351: .seealso: TSGetSolution(), TSSetTimeError()
2353: .keywords: TS, timestep, get, error
2354: @*/
2355: PetscErrorCode TSGetTimeError(TS ts,PetscInt n,Vec *v)
2356: {
2361: if (ts->ops->gettimeerror) {
2362: (*ts->ops->gettimeerror)(ts,n,v);
2363: } else {
2364: VecZeroEntries(*v);
2365: }
2366: return(0);
2367: }
2369: /*@
2370: TSSetTimeError - Sets the estimated error vector, if the chosen
2371: TSType has an error estimation functionality. This can be used
2372: to restart such a time integrator with a given error vector.
2374: Not Collective, but Vec returned is parallel if TS is parallel
2376: Parameters :
2377: . ts - the TS context obtained from TSCreate() (input parameter).
2378: . v - the vector containing the error (same size as the solution).
2380: Level: intermediate
2382: .seealso: TSSetSolution(), TSGetTimeError)
2384: .keywords: TS, timestep, get, error
2385: @*/
2386: PetscErrorCode TSSetTimeError(TS ts,Vec v)
2387: {
2392: if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2393: if (ts->ops->settimeerror) {
2394: (*ts->ops->settimeerror)(ts,v);
2395: }
2396: return(0);
2397: }
2399: /* ----- Routines to initialize and destroy a timestepper ---- */
2400: /*@
2401: TSSetProblemType - Sets the type of problem to be solved.
2403: Not collective
2405: Input Parameters:
2406: + ts - The TS
2407: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2408: .vb
2409: U_t - A U = 0 (linear)
2410: U_t - A(t) U = 0 (linear)
2411: F(t,U,U_t) = 0 (nonlinear)
2412: .ve
2414: Level: beginner
2416: .keywords: TS, problem type
2417: .seealso: TSSetUp(), TSProblemType, TS
2418: @*/
2419: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2420: {
2425: ts->problem_type = type;
2426: if (type == TS_LINEAR) {
2427: SNES snes;
2428: TSGetSNES(ts,&snes);
2429: SNESSetType(snes,SNESKSPONLY);
2430: }
2431: return(0);
2432: }
2434: /*@C
2435: TSGetProblemType - Gets the type of problem to be solved.
2437: Not collective
2439: Input Parameter:
2440: . ts - The TS
2442: Output Parameter:
2443: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2444: .vb
2445: M U_t = A U
2446: M(t) U_t = A(t) U
2447: F(t,U,U_t)
2448: .ve
2450: Level: beginner
2452: .keywords: TS, problem type
2453: .seealso: TSSetUp(), TSProblemType, TS
2454: @*/
2455: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2456: {
2460: *type = ts->problem_type;
2461: return(0);
2462: }
2464: /*@
2465: TSSetUp - Sets up the internal data structures for the later use
2466: of a timestepper.
2468: Collective on TS
2470: Input Parameter:
2471: . ts - the TS context obtained from TSCreate()
2473: Notes:
2474: For basic use of the TS solvers the user need not explicitly call
2475: TSSetUp(), since these actions will automatically occur during
2476: the call to TSStep() or TSSolve(). However, if one wishes to control this
2477: phase separately, TSSetUp() should be called after TSCreate()
2478: and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().
2480: Level: advanced
2482: .keywords: TS, timestep, setup
2484: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2485: @*/
2486: PetscErrorCode TSSetUp(TS ts)
2487: {
2489: DM dm;
2490: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2491: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2492: TSIFunction ifun;
2493: TSIJacobian ijac;
2494: TSI2Jacobian i2jac;
2495: TSRHSJacobian rhsjac;
2496: PetscBool isnone;
2500: if (ts->setupcalled) return(0);
2502: if (!((PetscObject)ts)->type_name) {
2503: TSGetIFunction(ts,NULL,&ifun,NULL);
2504: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2505: }
2507: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2509: if (ts->rhsjacobian.reuse) {
2510: Mat Amat,Pmat;
2511: SNES snes;
2512: TSGetSNES(ts,&snes);
2513: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2514: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2515: * have displaced the RHS matrix */
2516: if (Amat == ts->Arhs) {
2517: /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2518: MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2519: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2520: MatDestroy(&Amat);
2521: }
2522: if (Pmat == ts->Brhs) {
2523: MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2524: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2525: MatDestroy(&Pmat);
2526: }
2527: }
2529: TSGetAdapt(ts,&ts->adapt);
2530: TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
2532: if (ts->ops->setup) {
2533: (*ts->ops->setup)(ts);
2534: }
2536: /* Attempt to check/preset a default value for the exact final time option */
2537: PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2538: if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED)
2539: ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2541: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2542: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2543: */
2544: TSGetDM(ts,&dm);
2545: DMSNESGetFunction(dm,&func,NULL);
2546: if (!func) {
2547: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2548: }
2549: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2550: Otherwise, the SNES will use coloring internally to form the Jacobian.
2551: */
2552: DMSNESGetJacobian(dm,&jac,NULL);
2553: DMTSGetIJacobian(dm,&ijac,NULL);
2554: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2555: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2556: if (!jac && (ijac || i2jac || rhsjac)) {
2557: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2558: }
2560: /* if time integration scheme has a starting method, call it */
2561: if (ts->ops->startingmethod) {
2562: (*ts->ops->startingmethod)(ts);
2563: }
2565: ts->setupcalled = PETSC_TRUE;
2566: return(0);
2567: }
2569: /*@
2570: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2572: Collective on TS
2574: Input Parameter:
2575: . ts - the TS context obtained from TSCreate()
2577: Level: beginner
2579: .keywords: TS, timestep, reset
2581: .seealso: TSCreate(), TSSetup(), TSDestroy()
2582: @*/
2583: PetscErrorCode TSReset(TS ts)
2584: {
2590: if (ts->ops->reset) {
2591: (*ts->ops->reset)(ts);
2592: }
2593: if (ts->snes) {SNESReset(ts->snes);}
2594: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2596: MatDestroy(&ts->Arhs);
2597: MatDestroy(&ts->Brhs);
2598: VecDestroy(&ts->Frhs);
2599: VecDestroy(&ts->vec_sol);
2600: VecDestroy(&ts->vec_dot);
2601: VecDestroy(&ts->vatol);
2602: VecDestroy(&ts->vrtol);
2603: VecDestroyVecs(ts->nwork,&ts->work);
2605: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2606: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2608: MatDestroy(&ts->Jacp);
2609: VecDestroy(&ts->vec_costintegral);
2610: VecDestroy(&ts->vec_costintegrand);
2611: MatDestroy(&ts->mat_sensip);
2613: ts->setupcalled = PETSC_FALSE;
2614: return(0);
2615: }
2617: /*@
2618: TSDestroy - Destroys the timestepper context that was created
2619: with TSCreate().
2621: Collective on TS
2623: Input Parameter:
2624: . ts - the TS context obtained from TSCreate()
2626: Level: beginner
2628: .keywords: TS, timestepper, destroy
2630: .seealso: TSCreate(), TSSetUp(), TSSolve()
2631: @*/
2632: PetscErrorCode TSDestroy(TS *ts)
2633: {
2637: if (!*ts) return(0);
2639: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2641: TSReset((*ts));
2643: /* if memory was published with SAWs then destroy it */
2644: PetscObjectSAWsViewOff((PetscObject)*ts);
2645: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2647: TSTrajectoryDestroy(&(*ts)->trajectory);
2649: TSAdaptDestroy(&(*ts)->adapt);
2650: TSEventDestroy(&(*ts)->event);
2652: SNESDestroy(&(*ts)->snes);
2653: DMDestroy(&(*ts)->dm);
2654: TSMonitorCancel((*ts));
2655: TSAdjointMonitorCancel((*ts));
2657: PetscHeaderDestroy(ts);
2658: return(0);
2659: }
2661: /*@
2662: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2663: a TS (timestepper) context. Valid only for nonlinear problems.
2665: Not Collective, but SNES is parallel if TS is parallel
2667: Input Parameter:
2668: . ts - the TS context obtained from TSCreate()
2670: Output Parameter:
2671: . snes - the nonlinear solver context
2673: Notes:
2674: The user can then directly manipulate the SNES context to set various
2675: options, etc. Likewise, the user can then extract and manipulate the
2676: KSP, KSP, and PC contexts as well.
2678: TSGetSNES() does not work for integrators that do not use SNES; in
2679: this case TSGetSNES() returns NULL in snes.
2681: Level: beginner
2683: .keywords: timestep, get, SNES
2684: @*/
2685: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2686: {
2692: if (!ts->snes) {
2693: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2694: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2695: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2696: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2697: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2698: if (ts->problem_type == TS_LINEAR) {
2699: SNESSetType(ts->snes,SNESKSPONLY);
2700: }
2701: }
2702: *snes = ts->snes;
2703: return(0);
2704: }
2706: /*@
2707: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2709: Collective
2711: Input Parameter:
2712: + ts - the TS context obtained from TSCreate()
2713: - snes - the nonlinear solver context
2715: Notes:
2716: Most users should have the TS created by calling TSGetSNES()
2718: Level: developer
2720: .keywords: timestep, set, SNES
2721: @*/
2722: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2723: {
2725: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2730: PetscObjectReference((PetscObject)snes);
2731: SNESDestroy(&ts->snes);
2733: ts->snes = snes;
2735: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2736: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2737: if (func == SNESTSFormJacobian) {
2738: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2739: }
2740: return(0);
2741: }
2743: /*@
2744: TSGetKSP - Returns the KSP (linear solver) associated with
2745: a TS (timestepper) context.
2747: Not Collective, but KSP is parallel if TS is parallel
2749: Input Parameter:
2750: . ts - the TS context obtained from TSCreate()
2752: Output Parameter:
2753: . ksp - the nonlinear solver context
2755: Notes:
2756: The user can then directly manipulate the KSP context to set various
2757: options, etc. Likewise, the user can then extract and manipulate the
2758: KSP and PC contexts as well.
2760: TSGetKSP() does not work for integrators that do not use KSP;
2761: in this case TSGetKSP() returns NULL in ksp.
2763: Level: beginner
2765: .keywords: timestep, get, KSP
2766: @*/
2767: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2768: {
2770: SNES snes;
2775: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2776: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2777: TSGetSNES(ts,&snes);
2778: SNESGetKSP(snes,ksp);
2779: return(0);
2780: }
2782: /* ----------- Routines to set solver parameters ---------- */
2784: /*@
2785: TSSetMaxSteps - Sets the maximum number of steps to use.
2787: Logically Collective on TS
2789: Input Parameters:
2790: + ts - the TS context obtained from TSCreate()
2791: - maxsteps - maximum number of steps to use
2793: Options Database Keys:
2794: . -ts_max_steps <maxsteps> - Sets maxsteps
2796: Notes:
2797: The default maximum number of steps is 5000
2799: Level: intermediate
2801: .keywords: TS, timestep, set, maximum, steps
2803: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
2804: @*/
2805: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
2806: {
2810: if (maxsteps < 0 ) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
2811: ts->max_steps = maxsteps;
2812: return(0);
2813: }
2815: /*@
2816: TSGetMaxSteps - Gets the maximum number of steps to use.
2818: Not Collective
2820: Input Parameters:
2821: . ts - the TS context obtained from TSCreate()
2823: Output Parameter:
2824: . maxsteps - maximum number of steps to use
2826: Level: advanced
2828: .keywords: TS, timestep, get, maximum, steps
2830: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
2831: @*/
2832: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
2833: {
2837: *maxsteps = ts->max_steps;
2838: return(0);
2839: }
2841: /*@
2842: TSSetMaxTime - Sets the maximum (or final) time for timestepping.
2844: Logically Collective on TS
2846: Input Parameters:
2847: + ts - the TS context obtained from TSCreate()
2848: - maxtime - final time to step to
2850: Options Database Keys:
2851: . -ts_max_time <maxtime> - Sets maxtime
2853: Notes:
2854: The default maximum time is 5.0
2856: Level: intermediate
2858: .keywords: TS, timestep, set, maximum, time
2860: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
2861: @*/
2862: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
2863: {
2867: ts->max_time = maxtime;
2868: return(0);
2869: }
2871: /*@
2872: TSGetMaxTime - Gets the maximum (or final) time for timestepping.
2874: Not Collective
2876: Input Parameters:
2877: . ts - the TS context obtained from TSCreate()
2879: Output Parameter:
2880: . maxtime - final time to step to
2882: Level: advanced
2884: .keywords: TS, timestep, get, maximum, time
2886: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
2887: @*/
2888: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
2889: {
2893: *maxtime = ts->max_time;
2894: return(0);
2895: }
2897: /*@
2898: TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().
2900: Level: deprecated
2902: @*/
2903: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
2904: {
2908: TSSetTime(ts,initial_time);
2909: TSSetTimeStep(ts,time_step);
2910: return(0);
2911: }
2913: /*@
2914: TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().
2916: Level: deprecated
2918: @*/
2919: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2920: {
2923: if (maxsteps) {
2925: *maxsteps = ts->max_steps;
2926: }
2927: if (maxtime) {
2929: *maxtime = ts->max_time;
2930: }
2931: return(0);
2932: }
2934: /*@
2935: TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().
2937: Level: deprecated
2939: @*/
2940: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2941: {
2946: if (maxsteps >= 0) ts->max_steps = maxsteps;
2947: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2948: return(0);
2949: }
2951: /*@
2952: TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().
2954: Level: deprecated
2956: @*/
2957: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
2959: /*@
2960: TSGetTotalSteps - Deprecated, use TSGetStepNumber().
2962: Level: deprecated
2964: @*/
2965: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }
2967: /*@
2968: TSSetSolution - Sets the initial solution vector
2969: for use by the TS routines.
2971: Logically Collective on TS and Vec
2973: Input Parameters:
2974: + ts - the TS context obtained from TSCreate()
2975: - u - the solution vector
2977: Level: beginner
2979: .keywords: TS, timestep, set, solution, initial values
2981: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
2982: @*/
2983: PetscErrorCode TSSetSolution(TS ts,Vec u)
2984: {
2986: DM dm;
2991: PetscObjectReference((PetscObject)u);
2992: VecDestroy(&ts->vec_sol);
2993: ts->vec_sol = u;
2995: TSGetDM(ts,&dm);
2996: DMShellSetGlobalVector(dm,u);
2997: return(0);
2998: }
3000: /*@C
3001: TSSetPreStep - Sets the general-purpose function
3002: called once at the beginning of each time step.
3004: Logically Collective on TS
3006: Input Parameters:
3007: + ts - The TS context obtained from TSCreate()
3008: - func - The function
3010: Calling sequence of func:
3011: . func (TS ts);
3013: Level: intermediate
3015: .keywords: TS, timestep
3016: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3017: @*/
3018: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3019: {
3022: ts->prestep = func;
3023: return(0);
3024: }
3026: /*@
3027: TSPreStep - Runs the user-defined pre-step function.
3029: Collective on TS
3031: Input Parameters:
3032: . ts - The TS context obtained from TSCreate()
3034: Notes:
3035: TSPreStep() is typically used within time stepping implementations,
3036: so most users would not generally call this routine themselves.
3038: Level: developer
3040: .keywords: TS, timestep
3041: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3042: @*/
3043: PetscErrorCode TSPreStep(TS ts)
3044: {
3049: if (ts->prestep) {
3050: Vec U;
3051: PetscObjectState sprev,spost;
3053: TSGetSolution(ts,&U);
3054: PetscObjectStateGet((PetscObject)U,&sprev);
3055: PetscStackCallStandard((*ts->prestep),(ts));
3056: PetscObjectStateGet((PetscObject)U,&spost);
3057: if (sprev != spost) {TSRestartStep(ts);}
3058: }
3059: return(0);
3060: }
3062: /*@C
3063: TSSetPreStage - Sets the general-purpose function
3064: called once at the beginning of each stage.
3066: Logically Collective on TS
3068: Input Parameters:
3069: + ts - The TS context obtained from TSCreate()
3070: - func - The function
3072: Calling sequence of func:
3073: . PetscErrorCode func(TS ts, PetscReal stagetime);
3075: Level: intermediate
3077: Note:
3078: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3079: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3080: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3082: .keywords: TS, timestep
3083: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3084: @*/
3085: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3086: {
3089: ts->prestage = func;
3090: return(0);
3091: }
3093: /*@C
3094: TSSetPostStage - Sets the general-purpose function
3095: called once at the end of each stage.
3097: Logically Collective on TS
3099: Input Parameters:
3100: + ts - The TS context obtained from TSCreate()
3101: - func - The function
3103: Calling sequence of func:
3104: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);
3106: Level: intermediate
3108: Note:
3109: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3110: The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3111: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
3113: .keywords: TS, timestep
3114: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3115: @*/
3116: PetscErrorCode TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3117: {
3120: ts->poststage = func;
3121: return(0);
3122: }
3124: /*@C
3125: TSSetPostEvaluate - Sets the general-purpose function
3126: called once at the end of each step evaluation.
3128: Logically Collective on TS
3130: Input Parameters:
3131: + ts - The TS context obtained from TSCreate()
3132: - func - The function
3134: Calling sequence of func:
3135: . PetscErrorCode func(TS ts);
3137: Level: intermediate
3139: Note:
3140: Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3141: thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3142: may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3143: solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3144: with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()
3146: .keywords: TS, timestep
3147: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3148: @*/
3149: PetscErrorCode TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3150: {
3153: ts->postevaluate = func;
3154: return(0);
3155: }
3157: /*@
3158: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
3160: Collective on TS
3162: Input Parameters:
3163: . ts - The TS context obtained from TSCreate()
3164: stagetime - The absolute time of the current stage
3166: Notes:
3167: TSPreStage() is typically used within time stepping implementations,
3168: most users would not generally call this routine themselves.
3170: Level: developer
3172: .keywords: TS, timestep
3173: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3174: @*/
3175: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
3176: {
3181: if (ts->prestage) {
3182: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3183: }
3184: return(0);
3185: }
3187: /*@
3188: TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()
3190: Collective on TS
3192: Input Parameters:
3193: . ts - The TS context obtained from TSCreate()
3194: stagetime - The absolute time of the current stage
3195: stageindex - Stage number
3196: Y - Array of vectors (of size = total number
3197: of stages) with the stage solutions
3199: Notes:
3200: TSPostStage() is typically used within time stepping implementations,
3201: most users would not generally call this routine themselves.
3203: Level: developer
3205: .keywords: TS, timestep
3206: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3207: @*/
3208: PetscErrorCode TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3209: {
3214: if (ts->poststage) {
3215: PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3216: }
3217: return(0);
3218: }
3220: /*@
3221: TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()
3223: Collective on TS
3225: Input Parameters:
3226: . ts - The TS context obtained from TSCreate()
3228: Notes:
3229: TSPostEvaluate() is typically used within time stepping implementations,
3230: most users would not generally call this routine themselves.
3232: Level: developer
3234: .keywords: TS, timestep
3235: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3236: @*/
3237: PetscErrorCode TSPostEvaluate(TS ts)
3238: {
3243: if (ts->postevaluate) {
3244: Vec U;
3245: PetscObjectState sprev,spost;
3247: TSGetSolution(ts,&U);
3248: PetscObjectStateGet((PetscObject)U,&sprev);
3249: PetscStackCallStandard((*ts->postevaluate),(ts));
3250: PetscObjectStateGet((PetscObject)U,&spost);
3251: if (sprev != spost) {TSRestartStep(ts);}
3252: }
3253: return(0);
3254: }
3256: /*@C
3257: TSSetPostStep - Sets the general-purpose function
3258: called once at the end of each time step.
3260: Logically Collective on TS
3262: Input Parameters:
3263: + ts - The TS context obtained from TSCreate()
3264: - func - The function
3266: Calling sequence of func:
3267: $ func (TS ts);
3269: Notes:
3270: The function set by TSSetPostStep() is called after each successful step. The solution vector X
3271: obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3272: locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.
3274: Level: intermediate
3276: .keywords: TS, timestep
3277: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3278: @*/
3279: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3280: {
3283: ts->poststep = func;
3284: return(0);
3285: }
3287: /*@
3288: TSPostStep - Runs the user-defined post-step function.
3290: Collective on TS
3292: Input Parameters:
3293: . ts - The TS context obtained from TSCreate()
3295: Notes:
3296: TSPostStep() is typically used within time stepping implementations,
3297: so most users would not generally call this routine themselves.
3299: Level: developer
3301: .keywords: TS, timestep
3302: @*/
3303: PetscErrorCode TSPostStep(TS ts)
3304: {
3309: if (ts->poststep) {
3310: Vec U;
3311: PetscObjectState sprev,spost;
3313: TSGetSolution(ts,&U);
3314: PetscObjectStateGet((PetscObject)U,&sprev);
3315: PetscStackCallStandard((*ts->poststep),(ts));
3316: PetscObjectStateGet((PetscObject)U,&spost);
3317: if (sprev != spost) {TSRestartStep(ts);}
3318: }
3319: return(0);
3320: }
3322: /* ------------ Routines to set performance monitoring options ----------- */
3324: /*@C
3325: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3326: timestep to display the iteration's progress.
3328: Logically Collective on TS
3330: Input Parameters:
3331: + ts - the TS context obtained from TSCreate()
3332: . monitor - monitoring routine
3333: . mctx - [optional] user-defined context for private data for the
3334: monitor routine (use NULL if no context is desired)
3335: - monitordestroy - [optional] routine that frees monitor context
3336: (may be NULL)
3338: Calling sequence of monitor:
3339: $ PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
3341: + ts - the TS context
3342: . steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3343: . time - current time
3344: . u - current iterate
3345: - mctx - [optional] monitoring context
3347: Notes:
3348: This routine adds an additional monitor to the list of monitors that
3349: already has been loaded.
3351: Fortran notes: Only a single monitor function can be set for each TS object
3353: Level: intermediate
3355: .keywords: TS, timestep, set, monitor
3357: .seealso: TSMonitorDefault(), TSMonitorCancel()
3358: @*/
3359: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3360: {
3362: PetscInt i;
3363: PetscBool identical;
3367: for (i=0; i<ts->numbermonitors;i++) {
3368: PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3369: if (identical) return(0);
3370: }
3371: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3372: ts->monitor[ts->numbermonitors] = monitor;
3373: ts->monitordestroy[ts->numbermonitors] = mdestroy;
3374: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3375: return(0);
3376: }
3378: /*@C
3379: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
3381: Logically Collective on TS
3383: Input Parameters:
3384: . ts - the TS context obtained from TSCreate()
3386: Notes:
3387: There is no way to remove a single, specific monitor.
3389: Level: intermediate
3391: .keywords: TS, timestep, set, monitor
3393: .seealso: TSMonitorDefault(), TSMonitorSet()
3394: @*/
3395: PetscErrorCode TSMonitorCancel(TS ts)
3396: {
3398: PetscInt i;
3402: for (i=0; i<ts->numbermonitors; i++) {
3403: if (ts->monitordestroy[i]) {
3404: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3405: }
3406: }
3407: ts->numbermonitors = 0;
3408: return(0);
3409: }
3411: /*@C
3412: TSMonitorDefault - The Default monitor, prints the timestep and time for each step
3414: Level: intermediate
3416: .keywords: TS, set, monitor
3418: .seealso: TSMonitorSet()
3419: @*/
3420: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3421: {
3423: PetscViewer viewer = vf->viewer;
3424: PetscBool iascii,ibinary;
3428: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3429: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3430: PetscViewerPushFormat(viewer,vf->format);
3431: if (iascii) {
3432: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3433: if (step == -1){ /* this indicates it is an interpolated solution */
3434: PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3435: } else {
3436: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3437: }
3438: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3439: } else if (ibinary) {
3440: PetscMPIInt rank;
3441: MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3442: if (!rank) {
3443: PetscBool skipHeader;
3444: PetscInt classid = REAL_FILE_CLASSID;
3446: PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3447: if (!skipHeader) {
3448: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
3449: }
3450: PetscRealView(1,&ptime,viewer);
3451: } else {
3452: PetscRealView(0,&ptime,viewer);
3453: }
3454: }
3455: PetscViewerPopFormat(viewer);
3456: return(0);
3457: }
3459: /*@
3460: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
3462: Collective on TS
3464: Input Argument:
3465: + ts - time stepping context
3466: - t - time to interpolate to
3468: Output Argument:
3469: . U - state at given time
3471: Level: intermediate
3473: Developer Notes:
3474: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
3476: .keywords: TS, set
3478: .seealso: TSSetExactFinalTime(), TSSolve()
3479: @*/
3480: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3481: {
3487: if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3488: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3489: (*ts->ops->interpolate)(ts,t,U);
3490: return(0);
3491: }
3493: /*@
3494: TSStep - Steps one time step
3496: Collective on TS
3498: Input Parameter:
3499: . ts - the TS context obtained from TSCreate()
3501: Level: developer
3503: Notes:
3504: The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.
3506: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3507: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
3509: This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3510: time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
3512: .keywords: TS, timestep, solve
3514: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3515: @*/
3516: PetscErrorCode TSStep(TS ts)
3517: {
3518: PetscErrorCode ierr;
3519: static PetscBool cite = PETSC_FALSE;
3520: PetscReal ptime;
3524: PetscCitationsRegister("@techreport{tspaper,\n"
3525: " title = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3526: " author = {Shrirang Abhyankar and Jed Brown and Emil Constantinescu and Debojyoti Ghosh and Barry F. Smith},\n"
3527: " type = {Preprint},\n"
3528: " number = {ANL/MCS-P5061-0114},\n"
3529: " institution = {Argonne National Laboratory},\n"
3530: " year = {2014}\n}\n",&cite);
3532: TSSetUp(ts);
3533: TSTrajectorySetUp(ts->trajectory,ts);
3535: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3536: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3537: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3539: if (!ts->steps) ts->ptime_prev = ts->ptime;
3540: ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3541: ts->reason = TS_CONVERGED_ITERATING;
3542: if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3543: PetscLogEventBegin(TS_Step,ts,0,0,0);
3544: (*ts->ops->step)(ts);
3545: PetscLogEventEnd(TS_Step,ts,0,0,0);
3546: ts->ptime_prev = ptime;
3547: ts->steps++;
3548: ts->steprollback = PETSC_FALSE;
3549: ts->steprestart = PETSC_FALSE;
3551: if (ts->reason < 0) {
3552: if (ts->errorifstepfailed) {
3553: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3554: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3555: }
3556: } else if (!ts->reason) {
3557: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3558: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3559: }
3560: return(0);
3561: }
3563: /*@
3564: TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3565: at the end of a time step with a given order of accuracy.
3567: Collective on TS
3569: Input Arguments:
3570: + ts - time stepping context
3571: . wnormtype - norm type, either NORM_2 or NORM_INFINITY
3572: - order - optional, desired order for the error evaluation or PETSC_DECIDE
3574: Output Arguments:
3575: + order - optional, the actual order of the error evaluation
3576: - wlte - the weighted local truncation error norm
3578: Level: advanced
3580: Notes:
3581: If the timestepper cannot evaluate the error in a particular step
3582: (eg. in the first step or restart steps after event handling),
3583: this routine returns wlte=-1.0 .
3585: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3586: @*/
3587: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3588: {
3598: if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3599: if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3600: (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3601: return(0);
3602: }
3604: /*@
3605: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
3607: Collective on TS
3609: Input Arguments:
3610: + ts - time stepping context
3611: . order - desired order of accuracy
3612: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
3614: Output Arguments:
3615: . U - state at the end of the current step
3617: Level: advanced
3619: Notes:
3620: This function cannot be called until all stages have been evaluated.
3621: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
3623: .seealso: TSStep(), TSAdapt
3624: @*/
3625: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3626: {
3633: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3634: (*ts->ops->evaluatestep)(ts,order,U,done);
3635: return(0);
3636: }
3638: /*@
3639: TSSolve - Steps the requested number of timesteps.
3641: Collective on TS
3643: Input Parameter:
3644: + ts - the TS context obtained from TSCreate()
3645: - u - the solution vector (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
3646: otherwise must contain the initial conditions and will contain the solution at the final requested time
3648: Level: beginner
3650: Notes:
3651: The final time returned by this function may be different from the time of the internally
3652: held state accessible by TSGetSolution() and TSGetTime() because the method may have
3653: stepped over the final time.
3655: .keywords: TS, timestep, solve
3657: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
3658: @*/
3659: PetscErrorCode TSSolve(TS ts,Vec u)
3660: {
3661: Vec solution;
3662: PetscErrorCode ierr;
3668: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
3669: if (!ts->vec_sol || u == ts->vec_sol) {
3670: VecDuplicate(u,&solution);
3671: TSSetSolution(ts,solution);
3672: VecDestroy(&solution); /* grant ownership */
3673: }
3674: VecCopy(u,ts->vec_sol);
3675: if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
3676: } else if (u) {
3677: TSSetSolution(ts,u);
3678: }
3679: TSSetUp(ts);
3680: TSTrajectorySetUp(ts->trajectory,ts);
3682: if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3683: if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
3684: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");
3686: if (ts->forward_solve) {
3687: TSForwardSetUp(ts);
3688: }
3690: /* reset number of steps only when the step is not restarted. ARKIMEX
3691: restarts the step after an event. Resetting these counters in such case causes
3692: TSTrajectory to incorrectly save the output files
3693: */
3694: /* reset time step and iteration counters */
3695: if (!ts->steps) {
3696: ts->ksp_its = 0;
3697: ts->snes_its = 0;
3698: ts->num_snes_failures = 0;
3699: ts->reject = 0;
3700: ts->steprestart = PETSC_TRUE;
3701: ts->steprollback = PETSC_FALSE;
3702: }
3703: if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && ts->ptime + ts->time_step > ts->max_time) ts->time_step = ts->max_time - ts->ptime;
3704: ts->reason = TS_CONVERGED_ITERATING;
3706: TSViewFromOptions(ts,NULL,"-ts_view_pre");
3708: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
3709: (*ts->ops->solve)(ts);
3710: if (u) {VecCopy(ts->vec_sol,u);}
3711: ts->solvetime = ts->ptime;
3712: solution = ts->vec_sol;
3713: } else { /* Step the requested number of timesteps. */
3714: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3715: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3717: if (!ts->steps) {
3718: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3719: TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
3720: }
3722: while (!ts->reason) {
3723: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3724: if (!ts->steprollback) {
3725: TSPreStep(ts);
3726: }
3727: TSStep(ts);
3728: if (ts->testjacobian) {
3729: TSRHSJacobianTest(ts,NULL);
3730: }
3731: if (ts->testjacobiantranspose) {
3732: TSRHSJacobianTestTranspose(ts,NULL);
3733: }
3734: if (ts->vec_costintegral && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
3735: TSForwardCostIntegral(ts);
3736: }
3737: if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
3738: TSForwardStep(ts);
3739: }
3740: TSPostEvaluate(ts);
3741: TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
3742: if (ts->steprollback) {
3743: TSPostEvaluate(ts);
3744: }
3745: if (!ts->steprollback) {
3746: TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
3747: TSPostStep(ts);
3748: }
3749: }
3750: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
3752: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
3753: TSInterpolate(ts,ts->max_time,u);
3754: ts->solvetime = ts->max_time;
3755: solution = u;
3756: TSMonitor(ts,-1,ts->solvetime,solution);
3757: } else {
3758: if (u) {VecCopy(ts->vec_sol,u);}
3759: ts->solvetime = ts->ptime;
3760: solution = ts->vec_sol;
3761: }
3762: }
3764: TSViewFromOptions(ts,NULL,"-ts_view");
3765: VecViewFromOptions(solution,NULL,"-ts_view_solution");
3766: PetscObjectSAWsBlock((PetscObject)ts);
3767: if (ts->adjoint_solve) {
3768: TSAdjointSolve(ts);
3769: }
3770: return(0);
3771: }
3773: /*@C
3774: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
3776: Collective on TS
3778: Input Parameters:
3779: + ts - time stepping context obtained from TSCreate()
3780: . step - step number that has just completed
3781: . ptime - model time of the state
3782: - u - state at the current model time
3784: Notes:
3785: TSMonitor() is typically used automatically within the time stepping implementations.
3786: Users would almost never call this routine directly.
3788: A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions
3790: Level: developer
3792: .keywords: TS, timestep
3793: @*/
3794: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
3795: {
3796: DM dm;
3797: PetscInt i,n = ts->numbermonitors;
3804: TSGetDM(ts,&dm);
3805: DMSetOutputSequenceNumber(dm,step,ptime);
3807: VecLockPush(u);
3808: for (i=0; i<n; i++) {
3809: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
3810: }
3811: VecLockPop(u);
3812: return(0);
3813: }
3815: /* ------------------------------------------------------------------------*/
3816: /*@C
3817: TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
3818: TS to monitor the solution process graphically in various ways
3820: Collective on TS
3822: Input Parameters:
3823: + host - the X display to open, or null for the local machine
3824: . label - the title to put in the title bar
3825: . x, y - the screen coordinates of the upper left coordinate of the window
3826: . m, n - the screen width and height in pixels
3827: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
3829: Output Parameter:
3830: . ctx - the context
3832: Options Database Key:
3833: + -ts_monitor_lg_timestep - automatically sets line graph monitor
3834: + -ts_monitor_lg_timestep_log - automatically sets line graph monitor
3835: . -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
3836: . -ts_monitor_lg_error - monitor the error
3837: . -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
3838: . -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
3839: - -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true
3841: Notes:
3842: Use TSMonitorLGCtxDestroy() to destroy.
3844: One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()
3846: Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
3847: first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
3848: as the first argument.
3850: One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()
3852: Level: intermediate
3854: .keywords: TS, monitor, line graph, residual
3856: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
3857: TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
3858: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
3859: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
3860: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
3862: @*/
3863: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
3864: {
3865: PetscDraw draw;
3869: PetscNew(ctx);
3870: PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
3871: PetscDrawSetFromOptions(draw);
3872: PetscDrawLGCreate(draw,1,&(*ctx)->lg);
3873: PetscDrawLGSetFromOptions((*ctx)->lg);
3874: PetscDrawDestroy(&draw);
3875: (*ctx)->howoften = howoften;
3876: return(0);
3877: }
3879: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
3880: {
3881: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
3882: PetscReal x = ptime,y;
3886: if (step < 0) return(0); /* -1 indicates an interpolated solution */
3887: if (!step) {
3888: PetscDrawAxis axis;
3889: const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
3890: PetscDrawLGGetAxis(ctx->lg,&axis);
3891: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
3892: PetscDrawLGReset(ctx->lg);
3893: }
3894: TSGetTimeStep(ts,&y);
3895: if (ctx->semilogy) y = PetscLog10Real(y);
3896: PetscDrawLGAddPoint(ctx->lg,&x,&y);
3897: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
3898: PetscDrawLGDraw(ctx->lg);
3899: PetscDrawLGSave(ctx->lg);
3900: }
3901: return(0);
3902: }
3904: /*@C
3905: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
3906: with TSMonitorLGCtxCreate().
3908: Collective on TSMonitorLGCtx
3910: Input Parameter:
3911: . ctx - the monitor context
3913: Level: intermediate
3915: .keywords: TS, monitor, line graph, destroy
3917: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
3918: @*/
3919: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
3920: {
3924: if ((*ctx)->transformdestroy) {
3925: ((*ctx)->transformdestroy)((*ctx)->transformctx);
3926: }
3927: PetscDrawLGDestroy(&(*ctx)->lg);
3928: PetscStrArrayDestroy(&(*ctx)->names);
3929: PetscStrArrayDestroy(&(*ctx)->displaynames);
3930: PetscFree((*ctx)->displayvariables);
3931: PetscFree((*ctx)->displayvalues);
3932: PetscFree(*ctx);
3933: return(0);
3934: }
3936: /*@
3937: TSGetTime - Gets the time of the most recently completed step.
3939: Not Collective
3941: Input Parameter:
3942: . ts - the TS context obtained from TSCreate()
3944: Output Parameter:
3945: . t - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().
3947: Level: beginner
3949: Note:
3950: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
3951: TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
3953: .seealso: TSGetSolveTime(), TSSetTime(), TSGetTimeStep()
3955: .keywords: TS, get, time
3956: @*/
3957: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
3958: {
3962: *t = ts->ptime;
3963: return(0);
3964: }
3966: /*@
3967: TSGetPrevTime - Gets the starting time of the previously completed step.
3969: Not Collective
3971: Input Parameter:
3972: . ts - the TS context obtained from TSCreate()
3974: Output Parameter:
3975: . t - the previous time
3977: Level: beginner
3979: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()
3981: .keywords: TS, get, time
3982: @*/
3983: PetscErrorCode TSGetPrevTime(TS ts,PetscReal *t)
3984: {
3988: *t = ts->ptime_prev;
3989: return(0);
3990: }
3992: /*@
3993: TSSetTime - Allows one to reset the time.
3995: Logically Collective on TS
3997: Input Parameters:
3998: + ts - the TS context obtained from TSCreate()
3999: - time - the time
4001: Level: intermediate
4003: .seealso: TSGetTime(), TSSetMaxSteps()
4005: .keywords: TS, set, time
4006: @*/
4007: PetscErrorCode TSSetTime(TS ts, PetscReal t)
4008: {
4012: ts->ptime = t;
4013: return(0);
4014: }
4016: /*@C
4017: TSSetOptionsPrefix - Sets the prefix used for searching for all
4018: TS options in the database.
4020: Logically Collective on TS
4022: Input Parameter:
4023: + ts - The TS context
4024: - prefix - The prefix to prepend to all option names
4026: Notes:
4027: A hyphen (-) must NOT be given at the beginning of the prefix name.
4028: The first character of all runtime options is AUTOMATICALLY the
4029: hyphen.
4031: Level: advanced
4033: .keywords: TS, set, options, prefix, database
4035: .seealso: TSSetFromOptions()
4037: @*/
4038: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
4039: {
4041: SNES snes;
4045: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4046: TSGetSNES(ts,&snes);
4047: SNESSetOptionsPrefix(snes,prefix);
4048: return(0);
4049: }
4051: /*@C
4052: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4053: TS options in the database.
4055: Logically Collective on TS
4057: Input Parameter:
4058: + ts - The TS context
4059: - prefix - The prefix to prepend to all option names
4061: Notes:
4062: A hyphen (-) must NOT be given at the beginning of the prefix name.
4063: The first character of all runtime options is AUTOMATICALLY the
4064: hyphen.
4066: Level: advanced
4068: .keywords: TS, append, options, prefix, database
4070: .seealso: TSGetOptionsPrefix()
4072: @*/
4073: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
4074: {
4076: SNES snes;
4080: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4081: TSGetSNES(ts,&snes);
4082: SNESAppendOptionsPrefix(snes,prefix);
4083: return(0);
4084: }
4086: /*@C
4087: TSGetOptionsPrefix - Sets the prefix used for searching for all
4088: TS options in the database.
4090: Not Collective
4092: Input Parameter:
4093: . ts - The TS context
4095: Output Parameter:
4096: . prefix - A pointer to the prefix string used
4098: Notes: On the fortran side, the user should pass in a string 'prifix' of
4099: sufficient length to hold the prefix.
4101: Level: intermediate
4103: .keywords: TS, get, options, prefix, database
4105: .seealso: TSAppendOptionsPrefix()
4106: @*/
4107: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
4108: {
4114: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4115: return(0);
4116: }
4118: /*@C
4119: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
4121: Not Collective, but parallel objects are returned if TS is parallel
4123: Input Parameter:
4124: . ts - The TS context obtained from TSCreate()
4126: Output Parameters:
4127: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
4128: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
4129: . func - Function to compute the Jacobian of the RHS (or NULL)
4130: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
4132: Notes: You can pass in NULL for any return argument you do not need.
4134: Level: intermediate
4136: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4138: .keywords: TS, timestep, get, matrix, Jacobian
4139: @*/
4140: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4141: {
4143: DM dm;
4146: if (Amat || Pmat) {
4147: SNES snes;
4148: TSGetSNES(ts,&snes);
4149: SNESSetUpMatrices(snes);
4150: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4151: }
4152: TSGetDM(ts,&dm);
4153: DMTSGetRHSJacobian(dm,func,ctx);
4154: return(0);
4155: }
4157: /*@C
4158: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
4160: Not Collective, but parallel objects are returned if TS is parallel
4162: Input Parameter:
4163: . ts - The TS context obtained from TSCreate()
4165: Output Parameters:
4166: + Amat - The (approximate) Jacobian of F(t,U,U_t)
4167: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4168: . f - The function to compute the matrices
4169: - ctx - User-defined context for Jacobian evaluation routine
4171: Notes: You can pass in NULL for any return argument you do not need.
4173: Level: advanced
4175: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()
4177: .keywords: TS, timestep, get, matrix, Jacobian
4178: @*/
4179: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4180: {
4182: DM dm;
4185: if (Amat || Pmat) {
4186: SNES snes;
4187: TSGetSNES(ts,&snes);
4188: SNESSetUpMatrices(snes);
4189: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4190: }
4191: TSGetDM(ts,&dm);
4192: DMTSGetIJacobian(dm,f,ctx);
4193: return(0);
4194: }
4196: /*@C
4197: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4198: VecView() for the solution at each timestep
4200: Collective on TS
4202: Input Parameters:
4203: + ts - the TS context
4204: . step - current time-step
4205: . ptime - current time
4206: - dummy - either a viewer or NULL
4208: Options Database:
4209: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4211: Notes: the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4212: will look bad
4214: Level: intermediate
4216: .keywords: TS, vector, monitor, view
4218: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4219: @*/
4220: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4221: {
4222: PetscErrorCode ierr;
4223: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4224: PetscDraw draw;
4227: if (!step && ictx->showinitial) {
4228: if (!ictx->initialsolution) {
4229: VecDuplicate(u,&ictx->initialsolution);
4230: }
4231: VecCopy(u,ictx->initialsolution);
4232: }
4233: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
4235: if (ictx->showinitial) {
4236: PetscReal pause;
4237: PetscViewerDrawGetPause(ictx->viewer,&pause);
4238: PetscViewerDrawSetPause(ictx->viewer,0.0);
4239: VecView(ictx->initialsolution,ictx->viewer);
4240: PetscViewerDrawSetPause(ictx->viewer,pause);
4241: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4242: }
4243: VecView(u,ictx->viewer);
4244: if (ictx->showtimestepandtime) {
4245: PetscReal xl,yl,xr,yr,h;
4246: char time[32];
4248: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4249: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4250: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4251: h = yl + .95*(yr - yl);
4252: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4253: PetscDrawFlush(draw);
4254: }
4256: if (ictx->showinitial) {
4257: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4258: }
4259: return(0);
4260: }
4262: /*@C
4263: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
4265: Collective on TS
4267: Input Parameters:
4268: + ts - the TS context
4269: . step - current time-step
4270: . ptime - current time
4271: - dummy - either a viewer or NULL
4273: Level: intermediate
4275: .keywords: TS, vector, monitor, view
4277: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4278: @*/
4279: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4280: {
4281: PetscErrorCode ierr;
4282: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4283: PetscDraw draw;
4284: PetscDrawAxis axis;
4285: PetscInt n;
4286: PetscMPIInt size;
4287: PetscReal U0,U1,xl,yl,xr,yr,h;
4288: char time[32];
4289: const PetscScalar *U;
4292: MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4293: if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4294: VecGetSize(u,&n);
4295: if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");
4297: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4298: PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4299: PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4300: if (!step) {
4301: PetscDrawClear(draw);
4302: PetscDrawAxisDraw(axis);
4303: }
4305: VecGetArrayRead(u,&U);
4306: U0 = PetscRealPart(U[0]);
4307: U1 = PetscRealPart(U[1]);
4308: VecRestoreArrayRead(u,&U);
4309: if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);
4311: PetscDrawCollectiveBegin(draw);
4312: PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4313: if (ictx->showtimestepandtime) {
4314: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4315: PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4316: h = yl + .95*(yr - yl);
4317: PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4318: }
4319: PetscDrawCollectiveEnd(draw);
4320: PetscDrawFlush(draw);
4321: PetscDrawPause(draw);
4322: PetscDrawSave(draw);
4323: return(0);
4324: }
4326: /*@C
4327: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
4329: Collective on TS
4331: Input Parameters:
4332: . ctx - the monitor context
4334: Level: intermediate
4336: .keywords: TS, vector, monitor, view
4338: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4339: @*/
4340: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4341: {
4345: PetscViewerDestroy(&(*ictx)->viewer);
4346: VecDestroy(&(*ictx)->initialsolution);
4347: PetscFree(*ictx);
4348: return(0);
4349: }
4351: /*@C
4352: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
4354: Collective on TS
4356: Input Parameter:
4357: . ts - time-step context
4359: Output Patameter:
4360: . ctx - the monitor context
4362: Options Database:
4363: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
4365: Level: intermediate
4367: .keywords: TS, vector, monitor, view
4369: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4370: @*/
4371: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4372: {
4373: PetscErrorCode ierr;
4376: PetscNew(ctx);
4377: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4378: PetscViewerSetFromOptions((*ctx)->viewer);
4380: (*ctx)->howoften = howoften;
4381: (*ctx)->showinitial = PETSC_FALSE;
4382: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
4384: (*ctx)->showtimestepandtime = PETSC_FALSE;
4385: PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4386: return(0);
4387: }
4389: /*@C
4390: TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4391: VecView() for the solution provided by TSSetSolutionFunction() at each timestep
4393: Collective on TS
4395: Input Parameters:
4396: + ts - the TS context
4397: . step - current time-step
4398: . ptime - current time
4399: - dummy - either a viewer or NULL
4401: Options Database:
4402: . -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4404: Level: intermediate
4406: .keywords: TS, vector, monitor, view
4408: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4409: @*/
4410: PetscErrorCode TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4411: {
4412: PetscErrorCode ierr;
4413: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4414: PetscViewer viewer = ctx->viewer;
4415: Vec work;
4418: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4419: VecDuplicate(u,&work);
4420: TSComputeSolutionFunction(ts,ptime,work);
4421: VecView(work,viewer);
4422: VecDestroy(&work);
4423: return(0);
4424: }
4426: /*@C
4427: TSMonitorDrawError - Monitors progress of the TS solvers by calling
4428: VecView() for the error at each timestep
4430: Collective on TS
4432: Input Parameters:
4433: + ts - the TS context
4434: . step - current time-step
4435: . ptime - current time
4436: - dummy - either a viewer or NULL
4438: Options Database:
4439: . -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()
4441: Level: intermediate
4443: .keywords: TS, vector, monitor, view
4445: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4446: @*/
4447: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4448: {
4449: PetscErrorCode ierr;
4450: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
4451: PetscViewer viewer = ctx->viewer;
4452: Vec work;
4455: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4456: VecDuplicate(u,&work);
4457: TSComputeSolutionFunction(ts,ptime,work);
4458: VecAXPY(work,-1.0,u);
4459: VecView(work,viewer);
4460: VecDestroy(&work);
4461: return(0);
4462: }
4464: #include <petsc/private/dmimpl.h>
4465: /*@
4466: TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS
4468: Logically Collective on TS and DM
4470: Input Parameters:
4471: + ts - the ODE integrator object
4472: - dm - the dm, cannot be NULL
4474: Level: intermediate
4476: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4477: @*/
4478: PetscErrorCode TSSetDM(TS ts,DM dm)
4479: {
4481: SNES snes;
4482: DMTS tsdm;
4487: PetscObjectReference((PetscObject)dm);
4488: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
4489: if (ts->dm->dmts && !dm->dmts) {
4490: DMCopyDMTS(ts->dm,dm);
4491: DMGetDMTS(ts->dm,&tsdm);
4492: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4493: tsdm->originaldm = dm;
4494: }
4495: }
4496: DMDestroy(&ts->dm);
4497: }
4498: ts->dm = dm;
4500: TSGetSNES(ts,&snes);
4501: SNESSetDM(snes,dm);
4502: return(0);
4503: }
4505: /*@
4506: TSGetDM - Gets the DM that may be used by some preconditioners
4508: Not Collective
4510: Input Parameter:
4511: . ts - the preconditioner context
4513: Output Parameter:
4514: . dm - the dm
4516: Level: intermediate
4518: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4519: @*/
4520: PetscErrorCode TSGetDM(TS ts,DM *dm)
4521: {
4526: if (!ts->dm) {
4527: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4528: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4529: }
4530: *dm = ts->dm;
4531: return(0);
4532: }
4534: /*@
4535: SNESTSFormFunction - Function to evaluate nonlinear residual
4537: Logically Collective on SNES
4539: Input Parameter:
4540: + snes - nonlinear solver
4541: . U - the current state at which to evaluate the residual
4542: - ctx - user context, must be a TS
4544: Output Parameter:
4545: . F - the nonlinear residual
4547: Notes:
4548: This function is not normally called by users and is automatically registered with the SNES used by TS.
4549: It is most frequently passed to MatFDColoringSetFunction().
4551: Level: advanced
4553: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
4554: @*/
4555: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
4556: {
4557: TS ts = (TS)ctx;
4565: (ts->ops->snesfunction)(snes,U,F,ts);
4566: return(0);
4567: }
4569: /*@
4570: SNESTSFormJacobian - Function to evaluate the Jacobian
4572: Collective on SNES
4574: Input Parameter:
4575: + snes - nonlinear solver
4576: . U - the current state at which to evaluate the residual
4577: - ctx - user context, must be a TS
4579: Output Parameter:
4580: + A - the Jacobian
4581: . B - the preconditioning matrix (may be the same as A)
4582: - flag - indicates any structure change in the matrix
4584: Notes:
4585: This function is not normally called by users and is automatically registered with the SNES used by TS.
4587: Level: developer
4589: .seealso: SNESSetJacobian()
4590: @*/
4591: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
4592: {
4593: TS ts = (TS)ctx;
4604: (ts->ops->snesjacobian)(snes,U,A,B,ts);
4605: return(0);
4606: }
4608: /*@C
4609: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only
4611: Collective on TS
4613: Input Arguments:
4614: + ts - time stepping context
4615: . t - time at which to evaluate
4616: . U - state at which to evaluate
4617: - ctx - context
4619: Output Arguments:
4620: . F - right hand side
4622: Level: intermediate
4624: Notes:
4625: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
4626: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
4628: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
4629: @*/
4630: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
4631: {
4633: Mat Arhs,Brhs;
4636: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
4637: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
4638: MatMult(Arhs,U,F);
4639: return(0);
4640: }
4642: /*@C
4643: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
4645: Collective on TS
4647: Input Arguments:
4648: + ts - time stepping context
4649: . t - time at which to evaluate
4650: . U - state at which to evaluate
4651: - ctx - context
4653: Output Arguments:
4654: + A - pointer to operator
4655: . B - pointer to preconditioning matrix
4656: - flg - matrix structure flag
4658: Level: intermediate
4660: Notes:
4661: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
4663: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
4664: @*/
4665: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
4666: {
4668: return(0);
4669: }
4671: /*@C
4672: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
4674: Collective on TS
4676: Input Arguments:
4677: + ts - time stepping context
4678: . t - time at which to evaluate
4679: . U - state at which to evaluate
4680: . Udot - time derivative of state vector
4681: - ctx - context
4683: Output Arguments:
4684: . F - left hand side
4686: Level: intermediate
4688: Notes:
4689: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
4690: user is required to write their own TSComputeIFunction.
4691: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
4692: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
4694: Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U
4696: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
4697: @*/
4698: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
4699: {
4701: Mat A,B;
4704: TSGetIJacobian(ts,&A,&B,NULL,NULL);
4705: TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
4706: MatMult(A,Udot,F);
4707: return(0);
4708: }
4710: /*@C
4711: TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE
4713: Collective on TS
4715: Input Arguments:
4716: + ts - time stepping context
4717: . t - time at which to evaluate
4718: . U - state at which to evaluate
4719: . Udot - time derivative of state vector
4720: . shift - shift to apply
4721: - ctx - context
4723: Output Arguments:
4724: + A - pointer to operator
4725: . B - pointer to preconditioning matrix
4726: - flg - matrix structure flag
4728: Level: advanced
4730: Notes:
4731: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
4733: It is only appropriate for problems of the form
4735: $ M Udot = F(U,t)
4737: where M is constant and F is non-stiff. The user must pass M to TSSetIJacobian(). The current implementation only
4738: works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
4739: an implicit operator of the form
4741: $ shift*M + J
4743: where J is the Jacobian of -F(U). Support may be added in a future version of PETSc, but for now, the user must store
4744: a copy of M or reassemble it when requested.
4746: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
4747: @*/
4748: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
4749: {
4753: MatScale(A, shift / ts->ijacobian.shift);
4754: ts->ijacobian.shift = shift;
4755: return(0);
4756: }
4758: /*@
4759: TSGetEquationType - Gets the type of the equation that TS is solving.
4761: Not Collective
4763: Input Parameter:
4764: . ts - the TS context
4766: Output Parameter:
4767: . equation_type - see TSEquationType
4769: Level: beginner
4771: .keywords: TS, equation type
4773: .seealso: TSSetEquationType(), TSEquationType
4774: @*/
4775: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
4776: {
4780: *equation_type = ts->equation_type;
4781: return(0);
4782: }
4784: /*@
4785: TSSetEquationType - Sets the type of the equation that TS is solving.
4787: Not Collective
4789: Input Parameter:
4790: + ts - the TS context
4791: - equation_type - see TSEquationType
4793: Level: advanced
4795: .keywords: TS, equation type
4797: .seealso: TSGetEquationType(), TSEquationType
4798: @*/
4799: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
4800: {
4803: ts->equation_type = equation_type;
4804: return(0);
4805: }
4807: /*@
4808: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
4810: Not Collective
4812: Input Parameter:
4813: . ts - the TS context
4815: Output Parameter:
4816: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4817: manual pages for the individual convergence tests for complete lists
4819: Level: beginner
4821: Notes:
4822: Can only be called after the call to TSSolve() is complete.
4824: .keywords: TS, nonlinear, set, convergence, test
4826: .seealso: TSSetConvergenceTest(), TSConvergedReason
4827: @*/
4828: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
4829: {
4833: *reason = ts->reason;
4834: return(0);
4835: }
4837: /*@
4838: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
4840: Not Collective
4842: Input Parameter:
4843: + ts - the TS context
4844: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
4845: manual pages for the individual convergence tests for complete lists
4847: Level: advanced
4849: Notes:
4850: Can only be called during TSSolve() is active.
4852: .keywords: TS, nonlinear, set, convergence, test
4854: .seealso: TSConvergedReason
4855: @*/
4856: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
4857: {
4860: ts->reason = reason;
4861: return(0);
4862: }
4864: /*@
4865: TSGetSolveTime - Gets the time after a call to TSSolve()
4867: Not Collective
4869: Input Parameter:
4870: . ts - the TS context
4872: Output Parameter:
4873: . ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()
4875: Level: beginner
4877: Notes:
4878: Can only be called after the call to TSSolve() is complete.
4880: .keywords: TS, nonlinear, set, convergence, test
4882: .seealso: TSSetConvergenceTest(), TSConvergedReason
4883: @*/
4884: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
4885: {
4889: *ftime = ts->solvetime;
4890: return(0);
4891: }
4893: /*@
4894: TSGetSNESIterations - Gets the total number of nonlinear iterations
4895: used by the time integrator.
4897: Not Collective
4899: Input Parameter:
4900: . ts - TS context
4902: Output Parameter:
4903: . nits - number of nonlinear iterations
4905: Notes:
4906: This counter is reset to zero for each successive call to TSSolve().
4908: Level: intermediate
4910: .keywords: TS, get, number, nonlinear, iterations
4912: .seealso: TSGetKSPIterations()
4913: @*/
4914: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
4915: {
4919: *nits = ts->snes_its;
4920: return(0);
4921: }
4923: /*@
4924: TSGetKSPIterations - Gets the total number of linear iterations
4925: used by the time integrator.
4927: Not Collective
4929: Input Parameter:
4930: . ts - TS context
4932: Output Parameter:
4933: . lits - number of linear iterations
4935: Notes:
4936: This counter is reset to zero for each successive call to TSSolve().
4938: Level: intermediate
4940: .keywords: TS, get, number, linear, iterations
4942: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
4943: @*/
4944: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
4945: {
4949: *lits = ts->ksp_its;
4950: return(0);
4951: }
4953: /*@
4954: TSGetStepRejections - Gets the total number of rejected steps.
4956: Not Collective
4958: Input Parameter:
4959: . ts - TS context
4961: Output Parameter:
4962: . rejects - number of steps rejected
4964: Notes:
4965: This counter is reset to zero for each successive call to TSSolve().
4967: Level: intermediate
4969: .keywords: TS, get, number
4971: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
4972: @*/
4973: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
4974: {
4978: *rejects = ts->reject;
4979: return(0);
4980: }
4982: /*@
4983: TSGetSNESFailures - Gets the total number of failed SNES solves
4985: Not Collective
4987: Input Parameter:
4988: . ts - TS context
4990: Output Parameter:
4991: . fails - number of failed nonlinear solves
4993: Notes:
4994: This counter is reset to zero for each successive call to TSSolve().
4996: Level: intermediate
4998: .keywords: TS, get, number
5000: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5001: @*/
5002: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5003: {
5007: *fails = ts->num_snes_failures;
5008: return(0);
5009: }
5011: /*@
5012: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
5014: Not Collective
5016: Input Parameter:
5017: + ts - TS context
5018: - rejects - maximum number of rejected steps, pass -1 for unlimited
5020: Notes:
5021: The counter is reset to zero for each step
5023: Options Database Key:
5024: . -ts_max_reject - Maximum number of step rejections before a step fails
5026: Level: intermediate
5028: .keywords: TS, set, maximum, number
5030: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5031: @*/
5032: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5033: {
5036: ts->max_reject = rejects;
5037: return(0);
5038: }
5040: /*@
5041: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
5043: Not Collective
5045: Input Parameter:
5046: + ts - TS context
5047: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
5049: Notes:
5050: The counter is reset to zero for each successive call to TSSolve().
5052: Options Database Key:
5053: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
5055: Level: intermediate
5057: .keywords: TS, set, maximum, number
5059: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5060: @*/
5061: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5062: {
5065: ts->max_snes_failures = fails;
5066: return(0);
5067: }
5069: /*@
5070: TSSetErrorIfStepFails - Error if no step succeeds
5072: Not Collective
5074: Input Parameter:
5075: + ts - TS context
5076: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
5078: Options Database Key:
5079: . -ts_error_if_step_fails - Error if no step succeeds
5081: Level: intermediate
5083: .keywords: TS, set, error
5085: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5086: @*/
5087: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5088: {
5091: ts->errorifstepfailed = err;
5092: return(0);
5093: }
5095: /*@C
5096: TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object
5098: Collective on TS
5100: Input Parameters:
5101: + ts - the TS context
5102: . step - current time-step
5103: . ptime - current time
5104: . u - current state
5105: - vf - viewer and its format
5107: Level: intermediate
5109: .keywords: TS, vector, monitor, view
5111: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5112: @*/
5113: PetscErrorCode TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5114: {
5118: PetscViewerPushFormat(vf->viewer,vf->format);
5119: VecView(u,vf->viewer);
5120: PetscViewerPopFormat(vf->viewer);
5121: return(0);
5122: }
5124: /*@C
5125: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
5127: Collective on TS
5129: Input Parameters:
5130: + ts - the TS context
5131: . step - current time-step
5132: . ptime - current time
5133: . u - current state
5134: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5136: Level: intermediate
5138: Notes:
5139: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5140: These are named according to the file name template.
5142: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
5144: .keywords: TS, vector, monitor, view
5146: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5147: @*/
5148: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5149: {
5151: char filename[PETSC_MAX_PATH_LEN];
5152: PetscViewer viewer;
5155: if (step < 0) return(0); /* -1 indicates interpolated solution */
5156: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5157: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5158: VecView(u,viewer);
5159: PetscViewerDestroy(&viewer);
5160: return(0);
5161: }
5163: /*@C
5164: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
5166: Collective on TS
5168: Input Parameters:
5169: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
5171: Level: intermediate
5173: Note:
5174: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
5176: .keywords: TS, vector, monitor, view
5178: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5179: @*/
5180: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5181: {
5185: PetscFree(*(char**)filenametemplate);
5186: return(0);
5187: }
5189: /*@
5190: TSGetAdapt - Get the adaptive controller context for the current method
5192: Collective on TS if controller has not been created yet
5194: Input Arguments:
5195: . ts - time stepping context
5197: Output Arguments:
5198: . adapt - adaptive controller
5200: Level: intermediate
5202: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5203: @*/
5204: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5205: {
5211: if (!ts->adapt) {
5212: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5213: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5214: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5215: }
5216: *adapt = ts->adapt;
5217: return(0);
5218: }
5220: /*@
5221: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
5223: Logically Collective
5225: Input Arguments:
5226: + ts - time integration context
5227: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5228: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5229: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5230: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
5232: Options Database keys:
5233: + -ts_rtol <rtol> - relative tolerance for local truncation error
5234: - -ts_atol <atol> Absolute tolerance for local truncation error
5236: Notes:
5237: With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5238: (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5239: computed only for the differential or the algebraic part then this can be done using the vector of
5240: tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5241: differential part and infinity for the algebraic part, the LTE calculation will include only the
5242: differential variables.
5244: Level: beginner
5246: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
5247: @*/
5248: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5249: {
5253: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5254: if (vatol) {
5255: PetscObjectReference((PetscObject)vatol);
5256: VecDestroy(&ts->vatol);
5257: ts->vatol = vatol;
5258: }
5259: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5260: if (vrtol) {
5261: PetscObjectReference((PetscObject)vrtol);
5262: VecDestroy(&ts->vrtol);
5263: ts->vrtol = vrtol;
5264: }
5265: return(0);
5266: }
5268: /*@
5269: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
5271: Logically Collective
5273: Input Arguments:
5274: . ts - time integration context
5276: Output Arguments:
5277: + atol - scalar absolute tolerances, NULL to ignore
5278: . vatol - vector of absolute tolerances, NULL to ignore
5279: . rtol - scalar relative tolerances, NULL to ignore
5280: - vrtol - vector of relative tolerances, NULL to ignore
5282: Level: beginner
5284: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
5285: @*/
5286: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5287: {
5289: if (atol) *atol = ts->atol;
5290: if (vatol) *vatol = ts->vatol;
5291: if (rtol) *rtol = ts->rtol;
5292: if (vrtol) *vrtol = ts->vrtol;
5293: return(0);
5294: }
5296: /*@
5297: TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors
5299: Collective on TS
5301: Input Arguments:
5302: + ts - time stepping context
5303: . U - state vector, usually ts->vec_sol
5304: - Y - state vector to be compared to U
5306: Output Arguments:
5307: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5308: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5309: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5311: Level: developer
5313: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5314: @*/
5315: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5316: {
5317: PetscErrorCode ierr;
5318: PetscInt i,n,N,rstart;
5319: PetscInt n_loc,na_loc,nr_loc;
5320: PetscReal n_glb,na_glb,nr_glb;
5321: const PetscScalar *u,*y;
5322: PetscReal sum,suma,sumr,gsum,gsuma,gsumr,diff;
5323: PetscReal tol,tola,tolr;
5324: PetscReal err_loc[6],err_glb[6];
5336: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5338: VecGetSize(U,&N);
5339: VecGetLocalSize(U,&n);
5340: VecGetOwnershipRange(U,&rstart,NULL);
5341: VecGetArrayRead(U,&u);
5342: VecGetArrayRead(Y,&y);
5343: sum = 0.; n_loc = 0;
5344: suma = 0.; na_loc = 0;
5345: sumr = 0.; nr_loc = 0;
5346: if (ts->vatol && ts->vrtol) {
5347: const PetscScalar *atol,*rtol;
5348: VecGetArrayRead(ts->vatol,&atol);
5349: VecGetArrayRead(ts->vrtol,&rtol);
5350: for (i=0; i<n; i++) {
5351: diff = PetscAbsScalar(y[i] - u[i]);
5352: tola = PetscRealPart(atol[i]);
5353: if(tola>0.){
5354: suma += PetscSqr(diff/tola);
5355: na_loc++;
5356: }
5357: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5358: if(tolr>0.){
5359: sumr += PetscSqr(diff/tolr);
5360: nr_loc++;
5361: }
5362: tol=tola+tolr;
5363: if(tol>0.){
5364: sum += PetscSqr(diff/tol);
5365: n_loc++;
5366: }
5367: }
5368: VecRestoreArrayRead(ts->vatol,&atol);
5369: VecRestoreArrayRead(ts->vrtol,&rtol);
5370: } else if (ts->vatol) { /* vector atol, scalar rtol */
5371: const PetscScalar *atol;
5372: VecGetArrayRead(ts->vatol,&atol);
5373: for (i=0; i<n; i++) {
5374: diff = PetscAbsScalar(y[i] - u[i]);
5375: tola = PetscRealPart(atol[i]);
5376: if(tola>0.){
5377: suma += PetscSqr(diff/tola);
5378: na_loc++;
5379: }
5380: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5381: if(tolr>0.){
5382: sumr += PetscSqr(diff/tolr);
5383: nr_loc++;
5384: }
5385: tol=tola+tolr;
5386: if(tol>0.){
5387: sum += PetscSqr(diff/tol);
5388: n_loc++;
5389: }
5390: }
5391: VecRestoreArrayRead(ts->vatol,&atol);
5392: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5393: const PetscScalar *rtol;
5394: VecGetArrayRead(ts->vrtol,&rtol);
5395: for (i=0; i<n; i++) {
5396: diff = PetscAbsScalar(y[i] - u[i]);
5397: tola = ts->atol;
5398: if(tola>0.){
5399: suma += PetscSqr(diff/tola);
5400: na_loc++;
5401: }
5402: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5403: if(tolr>0.){
5404: sumr += PetscSqr(diff/tolr);
5405: nr_loc++;
5406: }
5407: tol=tola+tolr;
5408: if(tol>0.){
5409: sum += PetscSqr(diff/tol);
5410: n_loc++;
5411: }
5412: }
5413: VecRestoreArrayRead(ts->vrtol,&rtol);
5414: } else { /* scalar atol, scalar rtol */
5415: for (i=0; i<n; i++) {
5416: diff = PetscAbsScalar(y[i] - u[i]);
5417: tola = ts->atol;
5418: if(tola>0.){
5419: suma += PetscSqr(diff/tola);
5420: na_loc++;
5421: }
5422: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5423: if(tolr>0.){
5424: sumr += PetscSqr(diff/tolr);
5425: nr_loc++;
5426: }
5427: tol=tola+tolr;
5428: if(tol>0.){
5429: sum += PetscSqr(diff/tol);
5430: n_loc++;
5431: }
5432: }
5433: }
5434: VecRestoreArrayRead(U,&u);
5435: VecRestoreArrayRead(Y,&y);
5437: err_loc[0] = sum;
5438: err_loc[1] = suma;
5439: err_loc[2] = sumr;
5440: err_loc[3] = (PetscReal)n_loc;
5441: err_loc[4] = (PetscReal)na_loc;
5442: err_loc[5] = (PetscReal)nr_loc;
5444: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5446: gsum = err_glb[0];
5447: gsuma = err_glb[1];
5448: gsumr = err_glb[2];
5449: n_glb = err_glb[3];
5450: na_glb = err_glb[4];
5451: nr_glb = err_glb[5];
5453: *norm = 0.;
5454: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5455: *norma = 0.;
5456: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5457: *normr = 0.;
5458: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5460: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5461: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5462: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5463: return(0);
5464: }
5466: /*@
5467: TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors
5469: Collective on TS
5471: Input Arguments:
5472: + ts - time stepping context
5473: . U - state vector, usually ts->vec_sol
5474: - Y - state vector to be compared to U
5476: Output Arguments:
5477: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5478: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5479: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5481: Level: developer
5483: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5484: @*/
5485: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5486: {
5487: PetscErrorCode ierr;
5488: PetscInt i,n,N,rstart;
5489: const PetscScalar *u,*y;
5490: PetscReal max,gmax,maxa,gmaxa,maxr,gmaxr;
5491: PetscReal tol,tola,tolr,diff;
5492: PetscReal err_loc[3],err_glb[3];
5504: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");
5506: VecGetSize(U,&N);
5507: VecGetLocalSize(U,&n);
5508: VecGetOwnershipRange(U,&rstart,NULL);
5509: VecGetArrayRead(U,&u);
5510: VecGetArrayRead(Y,&y);
5512: max=0.;
5513: maxa=0.;
5514: maxr=0.;
5516: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5517: const PetscScalar *atol,*rtol;
5518: VecGetArrayRead(ts->vatol,&atol);
5519: VecGetArrayRead(ts->vrtol,&rtol);
5521: for (i=0; i<n; i++) {
5522: diff = PetscAbsScalar(y[i] - u[i]);
5523: tola = PetscRealPart(atol[i]);
5524: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5525: tol = tola+tolr;
5526: if(tola>0.){
5527: maxa = PetscMax(maxa,diff / tola);
5528: }
5529: if(tolr>0.){
5530: maxr = PetscMax(maxr,diff / tolr);
5531: }
5532: if(tol>0.){
5533: max = PetscMax(max,diff / tol);
5534: }
5535: }
5536: VecRestoreArrayRead(ts->vatol,&atol);
5537: VecRestoreArrayRead(ts->vrtol,&rtol);
5538: } else if (ts->vatol) { /* vector atol, scalar rtol */
5539: const PetscScalar *atol;
5540: VecGetArrayRead(ts->vatol,&atol);
5541: for (i=0; i<n; i++) {
5542: diff = PetscAbsScalar(y[i] - u[i]);
5543: tola = PetscRealPart(atol[i]);
5544: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5545: tol = tola+tolr;
5546: if(tola>0.){
5547: maxa = PetscMax(maxa,diff / tola);
5548: }
5549: if(tolr>0.){
5550: maxr = PetscMax(maxr,diff / tolr);
5551: }
5552: if(tol>0.){
5553: max = PetscMax(max,diff / tol);
5554: }
5555: }
5556: VecRestoreArrayRead(ts->vatol,&atol);
5557: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5558: const PetscScalar *rtol;
5559: VecGetArrayRead(ts->vrtol,&rtol);
5561: for (i=0; i<n; i++) {
5562: diff = PetscAbsScalar(y[i] - u[i]);
5563: tola = ts->atol;
5564: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5565: tol = tola+tolr;
5566: if(tola>0.){
5567: maxa = PetscMax(maxa,diff / tola);
5568: }
5569: if(tolr>0.){
5570: maxr = PetscMax(maxr,diff / tolr);
5571: }
5572: if(tol>0.){
5573: max = PetscMax(max,diff / tol);
5574: }
5575: }
5576: VecRestoreArrayRead(ts->vrtol,&rtol);
5577: } else { /* scalar atol, scalar rtol */
5579: for (i=0; i<n; i++) {
5580: diff = PetscAbsScalar(y[i] - u[i]);
5581: tola = ts->atol;
5582: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5583: tol = tola+tolr;
5584: if(tola>0.){
5585: maxa = PetscMax(maxa,diff / tola);
5586: }
5587: if(tolr>0.){
5588: maxr = PetscMax(maxr,diff / tolr);
5589: }
5590: if(tol>0.){
5591: max = PetscMax(max,diff / tol);
5592: }
5593: }
5594: }
5595: VecRestoreArrayRead(U,&u);
5596: VecRestoreArrayRead(Y,&y);
5597: err_loc[0] = max;
5598: err_loc[1] = maxa;
5599: err_loc[2] = maxr;
5600: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5601: gmax = err_glb[0];
5602: gmaxa = err_glb[1];
5603: gmaxr = err_glb[2];
5605: *norm = gmax;
5606: *norma = gmaxa;
5607: *normr = gmaxr;
5608: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5609: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5610: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5611: return(0);
5612: }
5614: /*@
5615: TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances
5617: Collective on TS
5619: Input Arguments:
5620: + ts - time stepping context
5621: . U - state vector, usually ts->vec_sol
5622: . Y - state vector to be compared to U
5623: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5625: Output Arguments:
5626: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5627: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5628: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5630: Options Database Keys:
5631: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5633: Level: developer
5635: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
5636: @*/
5637: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5638: {
5642: if (wnormtype == NORM_2) {
5643: TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
5644: } else if(wnormtype == NORM_INFINITY) {
5645: TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
5646: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
5647: return(0);
5648: }
5651: /*@
5652: TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances
5654: Collective on TS
5656: Input Arguments:
5657: + ts - time stepping context
5658: . E - error vector
5659: . U - state vector, usually ts->vec_sol
5660: - Y - state vector, previous time step
5662: Output Arguments:
5663: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5664: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5665: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5667: Level: developer
5669: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
5670: @*/
5671: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5672: {
5673: PetscErrorCode ierr;
5674: PetscInt i,n,N,rstart;
5675: PetscInt n_loc,na_loc,nr_loc;
5676: PetscReal n_glb,na_glb,nr_glb;
5677: const PetscScalar *e,*u,*y;
5678: PetscReal err,sum,suma,sumr,gsum,gsuma,gsumr;
5679: PetscReal tol,tola,tolr;
5680: PetscReal err_loc[6],err_glb[6];
5696: VecGetSize(E,&N);
5697: VecGetLocalSize(E,&n);
5698: VecGetOwnershipRange(E,&rstart,NULL);
5699: VecGetArrayRead(E,&e);
5700: VecGetArrayRead(U,&u);
5701: VecGetArrayRead(Y,&y);
5702: sum = 0.; n_loc = 0;
5703: suma = 0.; na_loc = 0;
5704: sumr = 0.; nr_loc = 0;
5705: if (ts->vatol && ts->vrtol) {
5706: const PetscScalar *atol,*rtol;
5707: VecGetArrayRead(ts->vatol,&atol);
5708: VecGetArrayRead(ts->vrtol,&rtol);
5709: for (i=0; i<n; i++) {
5710: err = PetscAbsScalar(e[i]);
5711: tola = PetscRealPart(atol[i]);
5712: if(tola>0.){
5713: suma += PetscSqr(err/tola);
5714: na_loc++;
5715: }
5716: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5717: if(tolr>0.){
5718: sumr += PetscSqr(err/tolr);
5719: nr_loc++;
5720: }
5721: tol=tola+tolr;
5722: if(tol>0.){
5723: sum += PetscSqr(err/tol);
5724: n_loc++;
5725: }
5726: }
5727: VecRestoreArrayRead(ts->vatol,&atol);
5728: VecRestoreArrayRead(ts->vrtol,&rtol);
5729: } else if (ts->vatol) { /* vector atol, scalar rtol */
5730: const PetscScalar *atol;
5731: VecGetArrayRead(ts->vatol,&atol);
5732: for (i=0; i<n; i++) {
5733: err = PetscAbsScalar(e[i]);
5734: tola = PetscRealPart(atol[i]);
5735: if(tola>0.){
5736: suma += PetscSqr(err/tola);
5737: na_loc++;
5738: }
5739: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5740: if(tolr>0.){
5741: sumr += PetscSqr(err/tolr);
5742: nr_loc++;
5743: }
5744: tol=tola+tolr;
5745: if(tol>0.){
5746: sum += PetscSqr(err/tol);
5747: n_loc++;
5748: }
5749: }
5750: VecRestoreArrayRead(ts->vatol,&atol);
5751: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5752: const PetscScalar *rtol;
5753: VecGetArrayRead(ts->vrtol,&rtol);
5754: for (i=0; i<n; i++) {
5755: err = PetscAbsScalar(e[i]);
5756: tola = ts->atol;
5757: if(tola>0.){
5758: suma += PetscSqr(err/tola);
5759: na_loc++;
5760: }
5761: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5762: if(tolr>0.){
5763: sumr += PetscSqr(err/tolr);
5764: nr_loc++;
5765: }
5766: tol=tola+tolr;
5767: if(tol>0.){
5768: sum += PetscSqr(err/tol);
5769: n_loc++;
5770: }
5771: }
5772: VecRestoreArrayRead(ts->vrtol,&rtol);
5773: } else { /* scalar atol, scalar rtol */
5774: for (i=0; i<n; i++) {
5775: err = PetscAbsScalar(e[i]);
5776: tola = ts->atol;
5777: if(tola>0.){
5778: suma += PetscSqr(err/tola);
5779: na_loc++;
5780: }
5781: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5782: if(tolr>0.){
5783: sumr += PetscSqr(err/tolr);
5784: nr_loc++;
5785: }
5786: tol=tola+tolr;
5787: if(tol>0.){
5788: sum += PetscSqr(err/tol);
5789: n_loc++;
5790: }
5791: }
5792: }
5793: VecRestoreArrayRead(E,&e);
5794: VecRestoreArrayRead(U,&u);
5795: VecRestoreArrayRead(Y,&y);
5797: err_loc[0] = sum;
5798: err_loc[1] = suma;
5799: err_loc[2] = sumr;
5800: err_loc[3] = (PetscReal)n_loc;
5801: err_loc[4] = (PetscReal)na_loc;
5802: err_loc[5] = (PetscReal)nr_loc;
5804: MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
5806: gsum = err_glb[0];
5807: gsuma = err_glb[1];
5808: gsumr = err_glb[2];
5809: n_glb = err_glb[3];
5810: na_glb = err_glb[4];
5811: nr_glb = err_glb[5];
5813: *norm = 0.;
5814: if(n_glb>0. ){*norm = PetscSqrtReal(gsum / n_glb );}
5815: *norma = 0.;
5816: if(na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5817: *normr = 0.;
5818: if(nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}
5820: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5821: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5822: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5823: return(0);
5824: }
5826: /*@
5827: TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
5828: Collective on TS
5830: Input Arguments:
5831: + ts - time stepping context
5832: . E - error vector
5833: . U - state vector, usually ts->vec_sol
5834: - Y - state vector, previous time step
5836: Output Arguments:
5837: . norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5838: . norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5839: . normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances
5841: Level: developer
5843: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
5844: @*/
5845: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5846: {
5847: PetscErrorCode ierr;
5848: PetscInt i,n,N,rstart;
5849: const PetscScalar *e,*u,*y;
5850: PetscReal err,max,gmax,maxa,gmaxa,maxr,gmaxr;
5851: PetscReal tol,tola,tolr;
5852: PetscReal err_loc[3],err_glb[3];
5868: VecGetSize(E,&N);
5869: VecGetLocalSize(E,&n);
5870: VecGetOwnershipRange(E,&rstart,NULL);
5871: VecGetArrayRead(E,&e);
5872: VecGetArrayRead(U,&u);
5873: VecGetArrayRead(Y,&y);
5875: max=0.;
5876: maxa=0.;
5877: maxr=0.;
5879: if (ts->vatol && ts->vrtol) { /* vector atol, vector rtol */
5880: const PetscScalar *atol,*rtol;
5881: VecGetArrayRead(ts->vatol,&atol);
5882: VecGetArrayRead(ts->vrtol,&rtol);
5884: for (i=0; i<n; i++) {
5885: err = PetscAbsScalar(e[i]);
5886: tola = PetscRealPart(atol[i]);
5887: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5888: tol = tola+tolr;
5889: if(tola>0.){
5890: maxa = PetscMax(maxa,err / tola);
5891: }
5892: if(tolr>0.){
5893: maxr = PetscMax(maxr,err / tolr);
5894: }
5895: if(tol>0.){
5896: max = PetscMax(max,err / tol);
5897: }
5898: }
5899: VecRestoreArrayRead(ts->vatol,&atol);
5900: VecRestoreArrayRead(ts->vrtol,&rtol);
5901: } else if (ts->vatol) { /* vector atol, scalar rtol */
5902: const PetscScalar *atol;
5903: VecGetArrayRead(ts->vatol,&atol);
5904: for (i=0; i<n; i++) {
5905: err = PetscAbsScalar(e[i]);
5906: tola = PetscRealPart(atol[i]);
5907: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5908: tol = tola+tolr;
5909: if(tola>0.){
5910: maxa = PetscMax(maxa,err / tola);
5911: }
5912: if(tolr>0.){
5913: maxr = PetscMax(maxr,err / tolr);
5914: }
5915: if(tol>0.){
5916: max = PetscMax(max,err / tol);
5917: }
5918: }
5919: VecRestoreArrayRead(ts->vatol,&atol);
5920: } else if (ts->vrtol) { /* scalar atol, vector rtol */
5921: const PetscScalar *rtol;
5922: VecGetArrayRead(ts->vrtol,&rtol);
5924: for (i=0; i<n; i++) {
5925: err = PetscAbsScalar(e[i]);
5926: tola = ts->atol;
5927: tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5928: tol = tola+tolr;
5929: if(tola>0.){
5930: maxa = PetscMax(maxa,err / tola);
5931: }
5932: if(tolr>0.){
5933: maxr = PetscMax(maxr,err / tolr);
5934: }
5935: if(tol>0.){
5936: max = PetscMax(max,err / tol);
5937: }
5938: }
5939: VecRestoreArrayRead(ts->vrtol,&rtol);
5940: } else { /* scalar atol, scalar rtol */
5942: for (i=0; i<n; i++) {
5943: err = PetscAbsScalar(e[i]);
5944: tola = ts->atol;
5945: tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5946: tol = tola+tolr;
5947: if(tola>0.){
5948: maxa = PetscMax(maxa,err / tola);
5949: }
5950: if(tolr>0.){
5951: maxr = PetscMax(maxr,err / tolr);
5952: }
5953: if(tol>0.){
5954: max = PetscMax(max,err / tol);
5955: }
5956: }
5957: }
5958: VecRestoreArrayRead(E,&e);
5959: VecRestoreArrayRead(U,&u);
5960: VecRestoreArrayRead(Y,&y);
5961: err_loc[0] = max;
5962: err_loc[1] = maxa;
5963: err_loc[2] = maxr;
5964: MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
5965: gmax = err_glb[0];
5966: gmaxa = err_glb[1];
5967: gmaxr = err_glb[2];
5969: *norm = gmax;
5970: *norma = gmaxa;
5971: *normr = gmaxr;
5972: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5973: if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5974: if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5975: return(0);
5976: }
5978: /*@
5979: TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances
5981: Collective on TS
5983: Input Arguments:
5984: + ts - time stepping context
5985: . E - error vector
5986: . U - state vector, usually ts->vec_sol
5987: . Y - state vector, previous time step
5988: - wnormtype - norm type, either NORM_2 or NORM_INFINITY
5990: Output Arguments:
5991: . norm - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
5992: . norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
5993: . normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user
5995: Options Database Keys:
5996: . -ts_adapt_wnormtype <wnormtype> - 2, INFINITY
5998: Level: developer
6000: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6001: @*/
6002: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6003: {
6007: if (wnormtype == NORM_2) {
6008: TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6009: } else if(wnormtype == NORM_INFINITY) {
6010: TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6011: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6012: return(0);
6013: }
6016: /*@
6017: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
6019: Logically Collective on TS
6021: Input Arguments:
6022: + ts - time stepping context
6023: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
6025: Note:
6026: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
6028: Level: intermediate
6030: .seealso: TSGetCFLTime(), TSADAPTCFL
6031: @*/
6032: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6033: {
6036: ts->cfltime_local = cfltime;
6037: ts->cfltime = -1.;
6038: return(0);
6039: }
6041: /*@
6042: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
6044: Collective on TS
6046: Input Arguments:
6047: . ts - time stepping context
6049: Output Arguments:
6050: . cfltime - maximum stable time step for forward Euler
6052: Level: advanced
6054: .seealso: TSSetCFLTimeLocal()
6055: @*/
6056: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6057: {
6061: if (ts->cfltime < 0) {
6062: MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6063: }
6064: *cfltime = ts->cfltime;
6065: return(0);
6066: }
6068: /*@
6069: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
6071: Input Parameters:
6072: . ts - the TS context.
6073: . xl - lower bound.
6074: . xu - upper bound.
6076: Notes:
6077: If this routine is not called then the lower and upper bounds are set to
6078: PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().
6080: Level: advanced
6082: @*/
6083: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6084: {
6086: SNES snes;
6089: TSGetSNES(ts,&snes);
6090: SNESVISetVariableBounds(snes,xl,xu);
6091: return(0);
6092: }
6094: #if defined(PETSC_HAVE_MATLAB_ENGINE)
6095: #include <mex.h>
6097: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
6099: /*
6100: TSComputeFunction_Matlab - Calls the function that has been set with
6101: TSSetFunctionMatlab().
6103: Collective on TS
6105: Input Parameters:
6106: + snes - the TS context
6107: - u - input vector
6109: Output Parameter:
6110: . y - function vector, as set by TSSetFunction()
6112: Notes:
6113: TSComputeFunction() is typically used within nonlinear solvers
6114: implementations, so most users would not generally call this routine
6115: themselves.
6117: Level: developer
6119: .keywords: TS, nonlinear, compute, function
6121: .seealso: TSSetFunction(), TSGetFunction()
6122: */
6123: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
6124: {
6125: PetscErrorCode ierr;
6126: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6127: int nlhs = 1,nrhs = 7;
6128: mxArray *plhs[1],*prhs[7];
6129: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
6139: PetscMemcpy(&ls,&snes,sizeof(snes));
6140: PetscMemcpy(&lx,&u,sizeof(u));
6141: PetscMemcpy(&lxdot,&udot,sizeof(udot));
6142: PetscMemcpy(&ly,&y,sizeof(u));
6144: prhs[0] = mxCreateDoubleScalar((double)ls);
6145: prhs[1] = mxCreateDoubleScalar(time);
6146: prhs[2] = mxCreateDoubleScalar((double)lx);
6147: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6148: prhs[4] = mxCreateDoubleScalar((double)ly);
6149: prhs[5] = mxCreateString(sctx->funcname);
6150: prhs[6] = sctx->ctx;
6151: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
6152: mxGetScalar(plhs[0]);
6153: mxDestroyArray(prhs[0]);
6154: mxDestroyArray(prhs[1]);
6155: mxDestroyArray(prhs[2]);
6156: mxDestroyArray(prhs[3]);
6157: mxDestroyArray(prhs[4]);
6158: mxDestroyArray(prhs[5]);
6159: mxDestroyArray(plhs[0]);
6160: return(0);
6161: }
6163: /*
6164: TSSetFunctionMatlab - Sets the function evaluation routine and function
6165: vector for use by the TS routines in solving ODEs
6166: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
6168: Logically Collective on TS
6170: Input Parameters:
6171: + ts - the TS context
6172: - func - function evaluation routine
6174: Calling sequence of func:
6175: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
6177: Level: beginner
6179: .keywords: TS, nonlinear, set, function
6181: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6182: */
6183: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
6184: {
6185: PetscErrorCode ierr;
6186: TSMatlabContext *sctx;
6189: /* currently sctx is memory bleed */
6190: PetscNew(&sctx);
6191: PetscStrallocpy(func,&sctx->funcname);
6192: /*
6193: This should work, but it doesn't
6194: sctx->ctx = ctx;
6195: mexMakeArrayPersistent(sctx->ctx);
6196: */
6197: sctx->ctx = mxDuplicateArray(ctx);
6199: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
6200: return(0);
6201: }
6203: /*
6204: TSComputeJacobian_Matlab - Calls the function that has been set with
6205: TSSetJacobianMatlab().
6207: Collective on TS
6209: Input Parameters:
6210: + ts - the TS context
6211: . u - input vector
6212: . A, B - the matrices
6213: - ctx - user context
6215: Level: developer
6217: .keywords: TS, nonlinear, compute, function
6219: .seealso: TSSetFunction(), TSGetFunction()
6220: @*/
6221: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat A,Mat B,void *ctx)
6222: {
6223: PetscErrorCode ierr;
6224: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6225: int nlhs = 2,nrhs = 9;
6226: mxArray *plhs[2],*prhs[9];
6227: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
6233: /* call Matlab function in ctx with arguments u and y */
6235: PetscMemcpy(&ls,&ts,sizeof(ts));
6236: PetscMemcpy(&lx,&u,sizeof(u));
6237: PetscMemcpy(&lxdot,&udot,sizeof(u));
6238: PetscMemcpy(&lA,A,sizeof(u));
6239: PetscMemcpy(&lB,B,sizeof(u));
6241: prhs[0] = mxCreateDoubleScalar((double)ls);
6242: prhs[1] = mxCreateDoubleScalar((double)time);
6243: prhs[2] = mxCreateDoubleScalar((double)lx);
6244: prhs[3] = mxCreateDoubleScalar((double)lxdot);
6245: prhs[4] = mxCreateDoubleScalar((double)shift);
6246: prhs[5] = mxCreateDoubleScalar((double)lA);
6247: prhs[6] = mxCreateDoubleScalar((double)lB);
6248: prhs[7] = mxCreateString(sctx->funcname);
6249: prhs[8] = sctx->ctx;
6250: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
6251: mxGetScalar(plhs[0]);
6252: mxDestroyArray(prhs[0]);
6253: mxDestroyArray(prhs[1]);
6254: mxDestroyArray(prhs[2]);
6255: mxDestroyArray(prhs[3]);
6256: mxDestroyArray(prhs[4]);
6257: mxDestroyArray(prhs[5]);
6258: mxDestroyArray(prhs[6]);
6259: mxDestroyArray(prhs[7]);
6260: mxDestroyArray(plhs[0]);
6261: mxDestroyArray(plhs[1]);
6262: return(0);
6263: }
6265: /*
6266: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
6267: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
6269: Logically Collective on TS
6271: Input Parameters:
6272: + ts - the TS context
6273: . A,B - Jacobian matrices
6274: . func - function evaluation routine
6275: - ctx - user context
6277: Calling sequence of func:
6278: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
6280: Level: developer
6282: .keywords: TS, nonlinear, set, function
6284: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6285: */
6286: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
6287: {
6288: PetscErrorCode ierr;
6289: TSMatlabContext *sctx;
6292: /* currently sctx is memory bleed */
6293: PetscNew(&sctx);
6294: PetscStrallocpy(func,&sctx->funcname);
6295: /*
6296: This should work, but it doesn't
6297: sctx->ctx = ctx;
6298: mexMakeArrayPersistent(sctx->ctx);
6299: */
6300: sctx->ctx = mxDuplicateArray(ctx);
6302: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
6303: return(0);
6304: }
6306: /*
6307: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
6309: Collective on TS
6311: .seealso: TSSetFunction(), TSGetFunction()
6312: @*/
6313: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
6314: {
6315: PetscErrorCode ierr;
6316: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
6317: int nlhs = 1,nrhs = 6;
6318: mxArray *plhs[1],*prhs[6];
6319: long long int lx = 0,ls = 0;
6325: PetscMemcpy(&ls,&ts,sizeof(ts));
6326: PetscMemcpy(&lx,&u,sizeof(u));
6328: prhs[0] = mxCreateDoubleScalar((double)ls);
6329: prhs[1] = mxCreateDoubleScalar((double)it);
6330: prhs[2] = mxCreateDoubleScalar((double)time);
6331: prhs[3] = mxCreateDoubleScalar((double)lx);
6332: prhs[4] = mxCreateString(sctx->funcname);
6333: prhs[5] = sctx->ctx;
6334: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
6335: mxGetScalar(plhs[0]);
6336: mxDestroyArray(prhs[0]);
6337: mxDestroyArray(prhs[1]);
6338: mxDestroyArray(prhs[2]);
6339: mxDestroyArray(prhs[3]);
6340: mxDestroyArray(prhs[4]);
6341: mxDestroyArray(plhs[0]);
6342: return(0);
6343: }
6345: /*
6346: TSMonitorSetMatlab - Sets the monitor function from Matlab
6348: Level: developer
6350: .keywords: TS, nonlinear, set, function
6352: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
6353: */
6354: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
6355: {
6356: PetscErrorCode ierr;
6357: TSMatlabContext *sctx;
6360: /* currently sctx is memory bleed */
6361: PetscNew(&sctx);
6362: PetscStrallocpy(func,&sctx->funcname);
6363: /*
6364: This should work, but it doesn't
6365: sctx->ctx = ctx;
6366: mexMakeArrayPersistent(sctx->ctx);
6367: */
6368: sctx->ctx = mxDuplicateArray(ctx);
6370: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
6371: return(0);
6372: }
6373: #endif
6375: /*@C
6376: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6377: in a time based line graph
6379: Collective on TS
6381: Input Parameters:
6382: + ts - the TS context
6383: . step - current time-step
6384: . ptime - current time
6385: . u - current solution
6386: - dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()
6388: Options Database:
6389: . -ts_monitor_lg_solution_variables
6391: Level: intermediate
6393: Notes: Each process in a parallel run displays its component solutions in a separate window
6395: .keywords: TS, vector, monitor, view
6397: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6398: TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6399: TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6400: TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6401: @*/
6402: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6403: {
6404: PetscErrorCode ierr;
6405: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dctx;
6406: const PetscScalar *yy;
6407: Vec v;
6410: if (step < 0) return(0); /* -1 indicates interpolated solution */
6411: if (!step) {
6412: PetscDrawAxis axis;
6413: PetscInt dim;
6414: PetscDrawLGGetAxis(ctx->lg,&axis);
6415: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6416: if (!ctx->names) {
6417: PetscBool flg;
6418: /* user provides names of variables to plot but no names has been set so assume names are integer values */
6419: PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6420: if (flg) {
6421: PetscInt i,n;
6422: char **names;
6423: VecGetSize(u,&n);
6424: PetscMalloc1(n+1,&names);
6425: for (i=0; i<n; i++) {
6426: PetscMalloc1(5,&names[i]);
6427: PetscSNPrintf(names[i],5,"%D",i);
6428: }
6429: names[n] = NULL;
6430: ctx->names = names;
6431: }
6432: }
6433: if (ctx->names && !ctx->displaynames) {
6434: char **displaynames;
6435: PetscBool flg;
6436: VecGetLocalSize(u,&dim);
6437: PetscMalloc1(dim+1,&displaynames);
6438: PetscMemzero(displaynames,(dim+1)*sizeof(char*));
6439: PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6440: if (flg) {
6441: TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6442: }
6443: PetscStrArrayDestroy(&displaynames);
6444: }
6445: if (ctx->displaynames) {
6446: PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6447: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6448: } else if (ctx->names) {
6449: VecGetLocalSize(u,&dim);
6450: PetscDrawLGSetDimension(ctx->lg,dim);
6451: PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6452: } else {
6453: VecGetLocalSize(u,&dim);
6454: PetscDrawLGSetDimension(ctx->lg,dim);
6455: }
6456: PetscDrawLGReset(ctx->lg);
6457: }
6459: if (!ctx->transform) v = u;
6460: else {(*ctx->transform)(ctx->transformctx,u,&v);}
6461: VecGetArrayRead(v,&yy);
6462: if (ctx->displaynames) {
6463: PetscInt i;
6464: for (i=0; i<ctx->ndisplayvariables; i++)
6465: ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6466: PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6467: } else {
6468: #if defined(PETSC_USE_COMPLEX)
6469: PetscInt i,n;
6470: PetscReal *yreal;
6471: VecGetLocalSize(v,&n);
6472: PetscMalloc1(n,&yreal);
6473: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6474: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6475: PetscFree(yreal);
6476: #else
6477: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6478: #endif
6479: }
6480: VecRestoreArrayRead(v,&yy);
6481: if (ctx->transform) {VecDestroy(&v);}
6483: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6484: PetscDrawLGDraw(ctx->lg);
6485: PetscDrawLGSave(ctx->lg);
6486: }
6487: return(0);
6488: }
6490: /*@C
6491: TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6493: Collective on TS
6495: Input Parameters:
6496: + ts - the TS context
6497: - names - the names of the components, final string must be NULL
6499: Level: intermediate
6501: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6503: .keywords: TS, vector, monitor, view
6505: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6506: @*/
6507: PetscErrorCode TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6508: {
6509: PetscErrorCode ierr;
6510: PetscInt i;
6513: for (i=0; i<ts->numbermonitors; i++) {
6514: if (ts->monitor[i] == TSMonitorLGSolution) {
6515: TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6516: break;
6517: }
6518: }
6519: return(0);
6520: }
6522: /*@C
6523: TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot
6525: Collective on TS
6527: Input Parameters:
6528: + ts - the TS context
6529: - names - the names of the components, final string must be NULL
6531: Level: intermediate
6533: .keywords: TS, vector, monitor, view
6535: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6536: @*/
6537: PetscErrorCode TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6538: {
6539: PetscErrorCode ierr;
6542: PetscStrArrayDestroy(&ctx->names);
6543: PetscStrArrayallocpy(names,&ctx->names);
6544: return(0);
6545: }
6547: /*@C
6548: TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot
6550: Collective on TS
6552: Input Parameter:
6553: . ts - the TS context
6555: Output Parameter:
6556: . names - the names of the components, final string must be NULL
6558: Level: intermediate
6560: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6562: .keywords: TS, vector, monitor, view
6564: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6565: @*/
6566: PetscErrorCode TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6567: {
6568: PetscInt i;
6571: *names = NULL;
6572: for (i=0; i<ts->numbermonitors; i++) {
6573: if (ts->monitor[i] == TSMonitorLGSolution) {
6574: TSMonitorLGCtx ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6575: *names = (const char *const *)ctx->names;
6576: break;
6577: }
6578: }
6579: return(0);
6580: }
6582: /*@C
6583: TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor
6585: Collective on TS
6587: Input Parameters:
6588: + ctx - the TSMonitorLG context
6589: . displaynames - the names of the components, final string must be NULL
6591: Level: intermediate
6593: .keywords: TS, vector, monitor, view
6595: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6596: @*/
6597: PetscErrorCode TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6598: {
6599: PetscInt j = 0,k;
6600: PetscErrorCode ierr;
6603: if (!ctx->names) return(0);
6604: PetscStrArrayDestroy(&ctx->displaynames);
6605: PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6606: while (displaynames[j]) j++;
6607: ctx->ndisplayvariables = j;
6608: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6609: PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6610: j = 0;
6611: while (displaynames[j]) {
6612: k = 0;
6613: while (ctx->names[k]) {
6614: PetscBool flg;
6615: PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6616: if (flg) {
6617: ctx->displayvariables[j] = k;
6618: break;
6619: }
6620: k++;
6621: }
6622: j++;
6623: }
6624: return(0);
6625: }
6627: /*@C
6628: TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor
6630: Collective on TS
6632: Input Parameters:
6633: + ts - the TS context
6634: . displaynames - the names of the components, final string must be NULL
6636: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6638: Level: intermediate
6640: .keywords: TS, vector, monitor, view
6642: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6643: @*/
6644: PetscErrorCode TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6645: {
6646: PetscInt i;
6647: PetscErrorCode ierr;
6650: for (i=0; i<ts->numbermonitors; i++) {
6651: if (ts->monitor[i] == TSMonitorLGSolution) {
6652: TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6653: break;
6654: }
6655: }
6656: return(0);
6657: }
6659: /*@C
6660: TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed
6662: Collective on TS
6664: Input Parameters:
6665: + ts - the TS context
6666: . transform - the transform function
6667: . destroy - function to destroy the optional context
6668: - ctx - optional context used by transform function
6670: Notes: If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored
6672: Level: intermediate
6674: .keywords: TS, vector, monitor, view
6676: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6677: @*/
6678: PetscErrorCode TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6679: {
6680: PetscInt i;
6681: PetscErrorCode ierr;
6684: for (i=0; i<ts->numbermonitors; i++) {
6685: if (ts->monitor[i] == TSMonitorLGSolution) {
6686: TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6687: }
6688: }
6689: return(0);
6690: }
6692: /*@C
6693: TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed
6695: Collective on TSLGCtx
6697: Input Parameters:
6698: + ts - the TS context
6699: . transform - the transform function
6700: . destroy - function to destroy the optional context
6701: - ctx - optional context used by transform function
6703: Level: intermediate
6705: .keywords: TS, vector, monitor, view
6707: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6708: @*/
6709: PetscErrorCode TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6710: {
6712: ctx->transform = transform;
6713: ctx->transformdestroy = destroy;
6714: ctx->transformctx = tctx;
6715: return(0);
6716: }
6718: /*@C
6719: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6720: in a time based line graph
6722: Collective on TS
6724: Input Parameters:
6725: + ts - the TS context
6726: . step - current time-step
6727: . ptime - current time
6728: . u - current solution
6729: - dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()
6731: Level: intermediate
6733: Notes: Each process in a parallel run displays its component errors in a separate window
6735: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6737: Options Database Keys:
6738: . -ts_monitor_lg_error - create a graphical monitor of error history
6740: .keywords: TS, vector, monitor, view
6742: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6743: @*/
6744: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6745: {
6746: PetscErrorCode ierr;
6747: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
6748: const PetscScalar *yy;
6749: Vec y;
6752: if (!step) {
6753: PetscDrawAxis axis;
6754: PetscInt dim;
6755: PetscDrawLGGetAxis(ctx->lg,&axis);
6756: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6757: VecGetLocalSize(u,&dim);
6758: PetscDrawLGSetDimension(ctx->lg,dim);
6759: PetscDrawLGReset(ctx->lg);
6760: }
6761: VecDuplicate(u,&y);
6762: TSComputeSolutionFunction(ts,ptime,y);
6763: VecAXPY(y,-1.0,u);
6764: VecGetArrayRead(y,&yy);
6765: #if defined(PETSC_USE_COMPLEX)
6766: {
6767: PetscReal *yreal;
6768: PetscInt i,n;
6769: VecGetLocalSize(y,&n);
6770: PetscMalloc1(n,&yreal);
6771: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6772: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6773: PetscFree(yreal);
6774: }
6775: #else
6776: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6777: #endif
6778: VecRestoreArrayRead(y,&yy);
6779: VecDestroy(&y);
6780: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6781: PetscDrawLGDraw(ctx->lg);
6782: PetscDrawLGSave(ctx->lg);
6783: }
6784: return(0);
6785: }
6787: /*@C
6788: TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep
6790: Collective on TS
6792: Input Parameters:
6793: + ts - the TS context
6794: . step - current time-step
6795: . ptime - current time
6796: . u - current solution
6797: - dctx - unused context
6799: Level: intermediate
6801: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
6803: Options Database Keys:
6804: . -ts_monitor_error - create a graphical monitor of error history
6806: .keywords: TS, vector, monitor, view
6808: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6809: @*/
6810: PetscErrorCode TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
6811: {
6812: PetscErrorCode ierr;
6813: Vec y;
6814: PetscReal nrm;
6815: PetscBool flg;
6818: VecDuplicate(u,&y);
6819: TSComputeSolutionFunction(ts,ptime,y);
6820: VecAXPY(y,-1.0,u);
6821: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
6822: if (flg) {
6823: VecNorm(y,NORM_2,&nrm);
6824: PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
6825: }
6826: PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
6827: if (flg) {
6828: VecView(y,vf->viewer);
6829: }
6830: VecDestroy(&y);
6831: return(0);
6832: }
6834: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6835: {
6836: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6837: PetscReal x = ptime,y;
6839: PetscInt its;
6842: if (n < 0) return(0); /* -1 indicates interpolated solution */
6843: if (!n) {
6844: PetscDrawAxis axis;
6845: PetscDrawLGGetAxis(ctx->lg,&axis);
6846: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
6847: PetscDrawLGReset(ctx->lg);
6848: ctx->snes_its = 0;
6849: }
6850: TSGetSNESIterations(ts,&its);
6851: y = its - ctx->snes_its;
6852: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6853: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6854: PetscDrawLGDraw(ctx->lg);
6855: PetscDrawLGSave(ctx->lg);
6856: }
6857: ctx->snes_its = its;
6858: return(0);
6859: }
6861: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
6862: {
6863: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
6864: PetscReal x = ptime,y;
6866: PetscInt its;
6869: if (n < 0) return(0); /* -1 indicates interpolated solution */
6870: if (!n) {
6871: PetscDrawAxis axis;
6872: PetscDrawLGGetAxis(ctx->lg,&axis);
6873: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
6874: PetscDrawLGReset(ctx->lg);
6875: ctx->ksp_its = 0;
6876: }
6877: TSGetKSPIterations(ts,&its);
6878: y = its - ctx->ksp_its;
6879: PetscDrawLGAddPoint(ctx->lg,&x,&y);
6880: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
6881: PetscDrawLGDraw(ctx->lg);
6882: PetscDrawLGSave(ctx->lg);
6883: }
6884: ctx->ksp_its = its;
6885: return(0);
6886: }
6888: /*@
6889: TSComputeLinearStability - computes the linear stability function at a point
6891: Collective on TS and Vec
6893: Input Parameters:
6894: + ts - the TS context
6895: - xr,xi - real and imaginary part of input arguments
6897: Output Parameters:
6898: . yr,yi - real and imaginary part of function value
6900: Level: developer
6902: .keywords: TS, compute
6904: .seealso: TSSetRHSFunction(), TSComputeIFunction()
6905: @*/
6906: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
6907: {
6912: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
6913: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
6914: return(0);
6915: }
6917: /* ------------------------------------------------------------------------*/
6918: /*@C
6919: TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()
6921: Collective on TS
6923: Input Parameters:
6924: . ts - the ODE solver object
6926: Output Parameter:
6927: . ctx - the context
6929: Level: intermediate
6931: .keywords: TS, monitor, line graph, residual, seealso
6933: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
6935: @*/
6936: PetscErrorCode TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
6937: {
6941: PetscNew(ctx);
6942: return(0);
6943: }
6945: /*@C
6946: TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution
6948: Collective on TS
6950: Input Parameters:
6951: + ts - the TS context
6952: . step - current time-step
6953: . ptime - current time
6954: . u - current solution
6955: - dctx - the envelope context
6957: Options Database:
6958: . -ts_monitor_envelope
6960: Level: intermediate
6962: Notes: after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope
6964: .keywords: TS, vector, monitor, view
6966: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
6967: @*/
6968: PetscErrorCode TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6969: {
6970: PetscErrorCode ierr;
6971: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;
6974: if (!ctx->max) {
6975: VecDuplicate(u,&ctx->max);
6976: VecDuplicate(u,&ctx->min);
6977: VecCopy(u,ctx->max);
6978: VecCopy(u,ctx->min);
6979: } else {
6980: VecPointwiseMax(ctx->max,u,ctx->max);
6981: VecPointwiseMin(ctx->min,u,ctx->min);
6982: }
6983: return(0);
6984: }
6986: /*@C
6987: TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution
6989: Collective on TS
6991: Input Parameter:
6992: . ts - the TS context
6994: Output Parameter:
6995: + max - the maximum values
6996: - min - the minimum values
6998: Notes: If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored
7000: Level: intermediate
7002: .keywords: TS, vector, monitor, view
7004: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7005: @*/
7006: PetscErrorCode TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7007: {
7008: PetscInt i;
7011: if (max) *max = NULL;
7012: if (min) *min = NULL;
7013: for (i=0; i<ts->numbermonitors; i++) {
7014: if (ts->monitor[i] == TSMonitorEnvelope) {
7015: TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7016: if (max) *max = ctx->max;
7017: if (min) *min = ctx->min;
7018: break;
7019: }
7020: }
7021: return(0);
7022: }
7024: /*@C
7025: TSMonitorEnvelopeCtxDestroy - Destroys a context that was created with TSMonitorEnvelopeCtxCreate().
7027: Collective on TSMonitorEnvelopeCtx
7029: Input Parameter:
7030: . ctx - the monitor context
7032: Level: intermediate
7034: .keywords: TS, monitor, line graph, destroy
7036: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep()
7037: @*/
7038: PetscErrorCode TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7039: {
7043: VecDestroy(&(*ctx)->min);
7044: VecDestroy(&(*ctx)->max);
7045: PetscFree(*ctx);
7046: return(0);
7047: }
7049: /*@
7050: TSRestartStep - Flags the solver to restart the next step
7052: Collective on TS
7054: Input Parameter:
7055: . ts - the TS context obtained from TSCreate()
7057: Level: advanced
7059: Notes:
7060: Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7061: discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7062: vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7063: the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7064: discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7065: discontinuous source terms).
7067: .keywords: TS, timestep, restart
7069: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7070: @*/
7071: PetscErrorCode TSRestartStep(TS ts)
7072: {
7075: ts->steprestart = PETSC_TRUE;
7076: return(0);
7077: }
7079: /*@
7080: TSRollBack - Rolls back one time step
7082: Collective on TS
7084: Input Parameter:
7085: . ts - the TS context obtained from TSCreate()
7087: Level: advanced
7089: .keywords: TS, timestep, rollback
7091: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7092: @*/
7093: PetscErrorCode TSRollBack(TS ts)
7094: {
7099: if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7100: if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7101: (*ts->ops->rollback)(ts);
7102: ts->time_step = ts->ptime - ts->ptime_prev;
7103: ts->ptime = ts->ptime_prev;
7104: ts->ptime_prev = ts->ptime_prev_rollback;
7105: ts->steps--;
7106: ts->steprollback = PETSC_TRUE;
7107: return(0);
7108: }
7110: /*@
7111: TSGetStages - Get the number of stages and stage values
7113: Input Parameter:
7114: . ts - the TS context obtained from TSCreate()
7116: Level: advanced
7118: .keywords: TS, getstages
7120: .seealso: TSCreate()
7121: @*/
7122: PetscErrorCode TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7123: {
7130: if (!ts->ops->getstages) *ns=0;
7131: else {
7132: (*ts->ops->getstages)(ts,ns,Y);
7133: }
7134: return(0);
7135: }
7137: /*@C
7138: TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.
7140: Collective on SNES
7142: Input Parameters:
7143: + ts - the TS context
7144: . t - current timestep
7145: . U - state vector
7146: . Udot - time derivative of state vector
7147: . shift - shift to apply, see note below
7148: - ctx - an optional user context
7150: Output Parameters:
7151: + J - Jacobian matrix (not altered in this routine)
7152: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)
7154: Level: intermediate
7156: Notes:
7157: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
7159: dF/dU + shift*dF/dUdot
7161: Most users should not need to explicitly call this routine, as it
7162: is used internally within the nonlinear solvers.
7164: This will first try to get the coloring from the DM. If the DM type has no coloring
7165: routine, then it will try to get the coloring from the matrix. This requires that the
7166: matrix have nonzero entries precomputed.
7168: .keywords: TS, finite differences, Jacobian, coloring, sparse
7169: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7170: @*/
7171: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7172: {
7173: SNES snes;
7174: MatFDColoring color;
7175: PetscBool hascolor, matcolor = PETSC_FALSE;
7179: PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7180: PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7181: if (!color) {
7182: DM dm;
7183: ISColoring iscoloring;
7185: TSGetDM(ts, &dm);
7186: DMHasColoring(dm, &hascolor);
7187: if (hascolor && !matcolor) {
7188: DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7189: MatFDColoringCreate(B, iscoloring, &color);
7190: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7191: MatFDColoringSetFromOptions(color);
7192: MatFDColoringSetUp(B, iscoloring, color);
7193: ISColoringDestroy(&iscoloring);
7194: } else {
7195: MatColoring mc;
7197: MatColoringCreate(B, &mc);
7198: MatColoringSetDistance(mc, 2);
7199: MatColoringSetType(mc, MATCOLORINGSL);
7200: MatColoringSetFromOptions(mc);
7201: MatColoringApply(mc, &iscoloring);
7202: MatColoringDestroy(&mc);
7203: MatFDColoringCreate(B, iscoloring, &color);
7204: MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7205: MatFDColoringSetFromOptions(color);
7206: MatFDColoringSetUp(B, iscoloring, color);
7207: ISColoringDestroy(&iscoloring);
7208: }
7209: PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7210: PetscObjectDereference((PetscObject) color);
7211: }
7212: TSGetSNES(ts, &snes);
7213: MatFDColoringApply(B, color, U, snes);
7214: if (J != B) {
7215: MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7216: MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7217: }
7218: return(0);
7219: }
7221: /*@
7222: TSSetFunctionDomainError - Set the function testing if the current state vector is valid
7224: Input Parameters:
7225: ts - the TS context
7226: func - function called within TSFunctionDomainError
7228: Level: intermediate
7230: .keywords: TS, state, domain
7231: .seealso: TSAdaptCheckStage(), TSFunctionDomainError()
7232: @*/
7234: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7235: {
7238: ts->functiondomainerror = func;
7239: return(0);
7240: }
7242: /*@
7243: TSFunctionDomainError - Check if the current state is valid
7245: Input Parameters:
7246: ts - the TS context
7247: stagetime - time of the simulation
7248: Y - state vector to check.
7250: Output Parameter:
7251: accept - Set to PETSC_FALSE if the current state vector is valid.
7253: Note:
7254: This function should be used to ensure the state is in a valid part of the space.
7255: For example, one can ensure here all values are positive.
7257: Level: advanced
7258: @*/
7259: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7260: {
7266: *accept = PETSC_TRUE;
7267: if (ts->functiondomainerror) {
7268: PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7269: }
7270: return(0);
7271: }
7273: /*@C
7274: TSClone - This function clones a time step object.
7276: Collective on MPI_Comm
7278: Input Parameter:
7279: . tsin - The input TS
7281: Output Parameter:
7282: . tsout - The output TS (cloned)
7284: Notes:
7285: This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.
7287: When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);
7289: Level: developer
7291: .keywords: TS, clone
7292: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7293: @*/
7294: PetscErrorCode TSClone(TS tsin, TS *tsout)
7295: {
7296: TS t;
7298: SNES snes_start;
7299: DM dm;
7300: TSType type;
7304: *tsout = NULL;
7306: PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);
7308: /* General TS description */
7309: t->numbermonitors = 0;
7310: t->setupcalled = 0;
7311: t->ksp_its = 0;
7312: t->snes_its = 0;
7313: t->nwork = 0;
7314: t->rhsjacobian.time = -1e20;
7315: t->rhsjacobian.scale = 1.;
7316: t->ijacobian.shift = 1.;
7318: TSGetSNES(tsin,&snes_start);
7319: TSSetSNES(t,snes_start);
7321: TSGetDM(tsin,&dm);
7322: TSSetDM(t,dm);
7324: t->adapt = tsin->adapt;
7325: PetscObjectReference((PetscObject)t->adapt);
7327: t->trajectory = tsin->trajectory;
7328: PetscObjectReference((PetscObject)t->trajectory);
7330: t->event = tsin->event;
7331: if (t->event) t->event->refct++;
7333: t->problem_type = tsin->problem_type;
7334: t->ptime = tsin->ptime;
7335: t->ptime_prev = tsin->ptime_prev;
7336: t->time_step = tsin->time_step;
7337: t->max_time = tsin->max_time;
7338: t->steps = tsin->steps;
7339: t->max_steps = tsin->max_steps;
7340: t->equation_type = tsin->equation_type;
7341: t->atol = tsin->atol;
7342: t->rtol = tsin->rtol;
7343: t->max_snes_failures = tsin->max_snes_failures;
7344: t->max_reject = tsin->max_reject;
7345: t->errorifstepfailed = tsin->errorifstepfailed;
7347: TSGetType(tsin,&type);
7348: TSSetType(t,type);
7350: t->vec_sol = NULL;
7352: t->cfltime = tsin->cfltime;
7353: t->cfltime_local = tsin->cfltime_local;
7354: t->exact_final_time = tsin->exact_final_time;
7356: PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));
7358: if (((PetscObject)tsin)->fortran_func_pointers) {
7359: PetscInt i;
7360: PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7361: for (i=0; i<10; i++) {
7362: ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7363: }
7364: }
7365: *tsout = t;
7366: return(0);
7367: }
7369: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7370: {
7372: TS ts = (TS) ctx;
7375: TSComputeRHSFunction(ts,0,x,y);
7376: return(0);
7377: }
7379: /*@
7380: TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.
7382: Logically Collective on TS and Mat
7384: Input Parameters:
7385: TS - the time stepping routine
7387: Output Parameter:
7388: . flg - PETSC_TRUE if the multiply is likely correct
7390: Options Database:
7391: . -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator
7393: Level: advanced
7395: Notes: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7397: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7398: @*/
7399: PetscErrorCode TSRHSJacobianTest(TS ts,PetscBool *flg)
7400: {
7401: Mat J,B;
7403: TSRHSJacobian func;
7404: void* ctx;
7407: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7408: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7409: MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7410: return(0);
7411: }
7413: /*@C
7414: TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.
7416: Logically Collective on TS and Mat
7418: Input Parameters:
7419: TS - the time stepping routine
7421: Output Parameter:
7422: . flg - PETSC_TRUE if the multiply is likely correct
7424: Options Database:
7425: . -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator
7427: Notes: This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian
7429: Level: advanced
7431: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7432: @*/
7433: PetscErrorCode TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7434: {
7435: Mat J,B;
7437: void *ctx;
7438: TSRHSJacobian func;
7441: TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7442: (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7443: MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7444: return(0);
7445: }