Actual source code: fasgalerkin.c
petsc-3.9.4 2018-09-11
1: #include <../src/snes/impls/fas/fasimpls.h>
3: /*@
4: SNESFASGetGalerkin - Gets if the coarse problems are formed by projection to the fine problem
6: Input Parameter:
7: . snes - the nonlinear solver context
9: Output parameter:
10: . flg - the status of the galerkin problem
12: Level: advanced
14: .keywords: FAS, galerkin
16: .seealso: SNESFASSetLevels(), SNESFASSetGalerkin()
17: @*/
18: PetscErrorCode SNESFASGetGalerkin(SNES snes, PetscBool *flg)
19: {
20: SNES_FAS * fas = (SNES_FAS*)snes->data;
23: *flg = fas->galerkin;
24: return(0);
25: }
27: /*@
28: SNESFASSetGalerkin - Sets coarse problems as formed by projection to the fine problem
30: Input Parameter:
31: . snes - the nonlinear solver context
32: . flg - the status of the galerkin problem
34: Level: advanced
36: .keywords: FAS, galerkin
38: .seealso: SNESFASSetLevels(), SNESFASGetGalerkin()
39: @*/
40: PetscErrorCode SNESFASSetGalerkin(SNES snes, PetscBool flg)
41: {
42: SNES_FAS * fas = (SNES_FAS*)snes->data;
46: fas->galerkin = flg;
47: if (fas->next) {SNESFASSetGalerkin(fas->next, flg);}
48: return(0);
49: }
51: /*
52: SNESFASGalerkinDefaultFunction
54: */
55: PetscErrorCode SNESFASGalerkinDefaultFunction(SNES snes, Vec X, Vec F, void * ctx)
56: {
57: /* the Galerkin FAS function evalutation is defined as
58: F^l(x^l) = I^l_0F^0(P^0_lx^l)
59: */
60: SNES fassnes;
61: SNES_FAS *fas;
62: SNES_FAS *prevfas;
63: SNES prevsnes;
64: Vec b_temp;
68: /* prolong to the fine level and evaluate there. */
69: fassnes = (SNES)ctx;
70: fas = (SNES_FAS*)fassnes->data;
71: prevsnes = fas->previous;
72: prevfas = (SNES_FAS*)prevsnes->data;
73: /* interpolate down the solution */
74: MatInterpolate(prevfas->interpolate, X, prevfas->Xg);
75: /* the RHS we care about is at the coarsest level */
76: b_temp = prevsnes->vec_rhs;
77: prevsnes->vec_rhs = NULL;
78: SNESComputeFunction(prevsnes, prevfas->Xg, prevfas->Fg);
79: prevsnes->vec_rhs = b_temp;
80: /* restrict up the function */
81: MatRestrict(prevfas->restrct, prevfas->Fg, F);
82: return(0);
83: }