Actual source code: aijperm.c

petsc-3.9.4 2018-09-11
Report Typos and Errors

  2: /*
  3:   Defines basic operations for the MATSEQAIJPERM matrix class.
  4:   This class is derived from the MATSEQAIJ class and retains the
  5:   compressed row storage (aka Yale sparse matrix format) but augments
  6:   it with some permutation information that enables some operations
  7:   to be more vectorizable.  A physically rearranged copy of the matrix
  8:   may be stored if the user desires.

 10:   Eventually a variety of permutations may be supported.
 11: */

 13:  #include <../src/mat/impls/aij/seq/aij.h>

 15: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
 16: #include <immintrin.h>

 18: #if !defined(_MM_SCALE_8)
 19: #define _MM_SCALE_8    8
 20: #endif
 21: #if !defined(_MM_SCALE_4)
 22: #define _MM_SCALE_4    4
 23: #endif
 24: #endif

 26: #define NDIM 512
 27: /* NDIM specifies how many rows at a time we should work with when
 28:  * performing the vectorized mat-vec.  This depends on various factors
 29:  * such as vector register length, etc., and I really need to add a
 30:  * way for the user (or the library) to tune this.  I'm setting it to
 31:  * 512 for now since that is what Ed D'Azevedo was using in his Fortran
 32:  * routines. */

 34: typedef struct {
 35:   PetscObjectState nonzerostate; /* used to determine if the nonzero structure has changed and hence the permutations need updating */

 37:   PetscInt         ngroup;
 38:   PetscInt         *xgroup;
 39:   /* Denotes where groups of rows with same number of nonzeros
 40:    * begin and end, i.e., xgroup[i] gives us the position in iperm[]
 41:    * where the ith group begins. */

 43:   PetscInt         *nzgroup; /*  how many nonzeros each row that is a member of group i has. */
 44:   PetscInt         *iperm;  /* The permutation vector. */

 46:   /* Some of this stuff is for Ed's recursive triangular solve.
 47:    * I'm not sure what I need yet. */
 48:   PetscInt         blocksize;
 49:   PetscInt         nstep;
 50:   PetscInt         *jstart_list;
 51:   PetscInt         *jend_list;
 52:   PetscInt         *action_list;
 53:   PetscInt         *ngroup_list;
 54:   PetscInt         **ipointer_list;
 55:   PetscInt         **xgroup_list;
 56:   PetscInt         **nzgroup_list;
 57:   PetscInt         **iperm_list;
 58: } Mat_SeqAIJPERM;

 60: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJPERM_SeqAIJ(Mat A,MatType type,MatReuse reuse,Mat *newmat)
 61: {
 62:   /* This routine is only called to convert a MATAIJPERM to its base PETSc type, */
 63:   /* so we will ignore 'MatType type'. */
 65:   Mat            B       = *newmat;
 66:   Mat_SeqAIJPERM *aijperm=(Mat_SeqAIJPERM*)A->spptr;

 69:   if (reuse == MAT_INITIAL_MATRIX) {
 70:     MatDuplicate(A,MAT_COPY_VALUES,&B);
 71:     aijperm=(Mat_SeqAIJPERM*)B->spptr;
 72:   }

 74:   /* Reset the original function pointers. */
 75:   B->ops->assemblyend = MatAssemblyEnd_SeqAIJ;
 76:   B->ops->destroy     = MatDestroy_SeqAIJ;
 77:   B->ops->duplicate   = MatDuplicate_SeqAIJ;
 78:   B->ops->mult        = MatMult_SeqAIJ;
 79:   B->ops->multadd     = MatMultAdd_SeqAIJ;

 81:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaijperm_seqaij_C",NULL);
 82:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqdense_seqaijperm_C",NULL);
 83:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqdense_seqaijperm_C",NULL);
 84:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqdense_seqaijperm_C",NULL);

 86:   /* Free everything in the Mat_SeqAIJPERM data structure.*/
 87:   PetscFree(aijperm->xgroup);
 88:   PetscFree(aijperm->nzgroup);
 89:   PetscFree(aijperm->iperm);
 90:   PetscFree(B->spptr);

 92:   /* Change the type of B to MATSEQAIJ. */
 93:   PetscObjectChangeTypeName((PetscObject)B, MATSEQAIJ);

 95:   *newmat = B;
 96:   return(0);
 97: }

 99: PetscErrorCode MatDestroy_SeqAIJPERM(Mat A)
100: {
102:   Mat_SeqAIJPERM *aijperm = (Mat_SeqAIJPERM*) A->spptr;

105:   if (aijperm) {
106:     /* If MatHeaderMerge() was used then this SeqAIJPERM matrix will not have a spprt. */
107:     PetscFree(aijperm->xgroup);
108:     PetscFree(aijperm->nzgroup);
109:     PetscFree(aijperm->iperm);
110:     PetscFree(A->spptr);
111:   }
112:   /* Change the type of A back to SEQAIJ and use MatDestroy_SeqAIJ()
113:    * to destroy everything that remains. */
114:   PetscObjectChangeTypeName((PetscObject)A, MATSEQAIJ);
115:   /* Note that I don't call MatSetType().  I believe this is because that
116:    * is only to be called when *building* a matrix.  I could be wrong, but
117:    * that is how things work for the SuperLU matrix class. */
118:   MatDestroy_SeqAIJ(A);
119:   return(0);
120: }

122: PetscErrorCode MatDuplicate_SeqAIJPERM(Mat A, MatDuplicateOption op, Mat *M)
123: {
125:   Mat_SeqAIJPERM *aijperm      = (Mat_SeqAIJPERM*) A->spptr;
126:   Mat_SeqAIJPERM *aijperm_dest;
127:   PetscBool      perm;

130:   MatDuplicate_SeqAIJ(A,op,M);
131:   PetscObjectTypeCompare((PetscObject)*M,MATSEQAIJPERM,&perm);
132:   if (perm) {
133:     aijperm_dest = (Mat_SeqAIJPERM *) (*M)->spptr;
134:     PetscFree(aijperm_dest->xgroup);
135:     PetscFree(aijperm_dest->nzgroup);
136:     PetscFree(aijperm_dest->iperm);
137:   } else {
138:     PetscNewLog(*M,&aijperm_dest);
139:     (*M)->spptr = (void*) aijperm_dest;
140:     PetscObjectChangeTypeName((PetscObject)*M,MATSEQAIJPERM);
141:     PetscObjectComposeFunction((PetscObject)*M,"MatConvert_seqaijperm_seqaij_C",MatConvert_SeqAIJPERM_SeqAIJ);
142:     PetscObjectComposeFunction((PetscObject)*M,"MatMatMult_seqdense_seqaijperm_C",MatMatMult_SeqDense_SeqAIJ);
143:     PetscObjectComposeFunction((PetscObject)*M,"MatMatMultSymbolic_seqdense_seqaijperm_C",MatMatMultSymbolic_SeqDense_SeqAIJ);
144:     PetscObjectComposeFunction((PetscObject)*M,"MatMatMultNumeric_seqdense_seqaijperm_C",MatMatMultNumeric_SeqDense_SeqAIJ);
145:   }
146:   PetscMemcpy(aijperm_dest,aijperm,sizeof(Mat_SeqAIJPERM));
147:   /* Allocate space for, and copy the grouping and permutation info.
148:    * I note that when the groups are initially determined in
149:    * MatSeqAIJPERM_create_perm, xgroup and nzgroup may be sized larger than
150:    * necessary.  But at this point, we know how large they need to be, and
151:    * allocate only the necessary amount of memory.  So the duplicated matrix
152:    * may actually use slightly less storage than the original! */
153:   PetscMalloc1(A->rmap->n, &aijperm_dest->iperm);
154:   PetscMalloc1(aijperm->ngroup+1, &aijperm_dest->xgroup);
155:   PetscMalloc1(aijperm->ngroup, &aijperm_dest->nzgroup);
156:   PetscMemcpy(aijperm_dest->iperm,aijperm->iperm,sizeof(PetscInt)*A->rmap->n);
157:   PetscMemcpy(aijperm_dest->xgroup,aijperm->xgroup,sizeof(PetscInt)*(aijperm->ngroup+1));
158:   PetscMemcpy(aijperm_dest->nzgroup,aijperm->nzgroup,sizeof(PetscInt)*aijperm->ngroup);
159:   return(0);
160: }

162: PetscErrorCode MatSeqAIJPERM_create_perm(Mat A)
163: {
165:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)(A)->data;
166:   Mat_SeqAIJPERM *aijperm = (Mat_SeqAIJPERM*) A->spptr;
167:   PetscInt       m;       /* Number of rows in the matrix. */
168:   PetscInt       *ia;       /* From the CSR representation; points to the beginning  of each row. */
169:   PetscInt       maxnz;      /* Maximum number of nonzeros in any row. */
170:   PetscInt       *rows_in_bucket;
171:   /* To construct the permutation, we sort each row into one of maxnz
172:    * buckets based on how many nonzeros are in the row. */
173:   PetscInt       nz;
174:   PetscInt       *nz_in_row;         /* the number of nonzero elements in row k. */
175:   PetscInt       *ipnz;
176:   /* When constructing the iperm permutation vector,
177:    * ipnz[nz] is used to point to the next place in the permutation vector
178:    * that a row with nz nonzero elements should be placed.*/
179:   PetscInt       i, ngroup, istart, ipos;

182:   if (aijperm->nonzerostate == A->nonzerostate) return(0); /* permutation exists and matches current nonzero structure */
183:   aijperm->nonzerostate = A->nonzerostate;
184:  /* Free anything previously put in the Mat_SeqAIJPERM data structure. */
185:   PetscFree(aijperm->xgroup);
186:   PetscFree(aijperm->nzgroup);
187:   PetscFree(aijperm->iperm);

189:   m  = A->rmap->n;
190:   ia = a->i;

192:   /* Allocate the arrays that will hold the permutation vector. */
193:   PetscMalloc1(m, &aijperm->iperm);

195:   /* Allocate some temporary work arrays that will be used in
196:    * calculating the permuation vector and groupings. */
197:   PetscMalloc1(m, &nz_in_row);

199:   /* Now actually figure out the permutation and grouping. */

201:   /* First pass: Determine number of nonzeros in each row, maximum
202:    * number of nonzeros in any row, and how many rows fall into each
203:    * "bucket" of rows with same number of nonzeros. */
204:   maxnz = 0;
205:   for (i=0; i<m; i++) {
206:     nz_in_row[i] = ia[i+1]-ia[i];
207:     if (nz_in_row[i] > maxnz) maxnz = nz_in_row[i];
208:   }
209:   PetscMalloc1(PetscMax(maxnz,m)+1, &rows_in_bucket);
210:   PetscMalloc1(PetscMax(maxnz,m)+1, &ipnz);

212:   for (i=0; i<=maxnz; i++) {
213:     rows_in_bucket[i] = 0;
214:   }
215:   for (i=0; i<m; i++) {
216:     nz = nz_in_row[i];
217:     rows_in_bucket[nz]++;
218:   }

220:   /* Allocate space for the grouping info.  There will be at most (maxnz + 1)
221:    * groups.  (It is maxnz + 1 instead of simply maxnz because there may be
222:    * rows with no nonzero elements.)  If there are (maxnz + 1) groups,
223:    * then xgroup[] must consist of (maxnz + 2) elements, since the last
224:    * element of xgroup will tell us where the (maxnz + 1)th group ends.
225:    * We allocate space for the maximum number of groups;
226:    * that is potentially a little wasteful, but not too much so.
227:    * Perhaps I should fix it later. */
228:   PetscMalloc1(maxnz+2, &aijperm->xgroup);
229:   PetscMalloc1(maxnz+1, &aijperm->nzgroup);

231:   /* Second pass.  Look at what is in the buckets and create the groupings.
232:    * Note that it is OK to have a group of rows with no non-zero values. */
233:   ngroup = 0;
234:   istart = 0;
235:   for (i=0; i<=maxnz; i++) {
236:     if (rows_in_bucket[i] > 0) {
237:       aijperm->nzgroup[ngroup] = i;
238:       aijperm->xgroup[ngroup]  = istart;
239:       ngroup++;
240:       istart += rows_in_bucket[i];
241:     }
242:   }

244:   aijperm->xgroup[ngroup] = istart;
245:   aijperm->ngroup         = ngroup;

247:   /* Now fill in the permutation vector iperm. */
248:   ipnz[0] = 0;
249:   for (i=0; i<maxnz; i++) {
250:     ipnz[i+1] = ipnz[i] + rows_in_bucket[i];
251:   }

253:   for (i=0; i<m; i++) {
254:     nz                   = nz_in_row[i];
255:     ipos                 = ipnz[nz];
256:     aijperm->iperm[ipos] = i;
257:     ipnz[nz]++;
258:   }

260:   /* Clean up temporary work arrays. */
261:   PetscFree(rows_in_bucket);
262:   PetscFree(ipnz);
263:   PetscFree(nz_in_row);
264:   return(0);
265: }


268: PetscErrorCode MatAssemblyEnd_SeqAIJPERM(Mat A, MatAssemblyType mode)
269: {
271:   Mat_SeqAIJ     *a = (Mat_SeqAIJ*)A->data;

274:   if (mode == MAT_FLUSH_ASSEMBLY) return(0);

276:   /* Since a MATSEQAIJPERM matrix is really just a MATSEQAIJ with some
277:    * extra information, call the AssemblyEnd routine for a MATSEQAIJ.
278:    * I'm not sure if this is the best way to do this, but it avoids
279:    * a lot of code duplication.
280:    * I also note that currently MATSEQAIJPERM doesn't know anything about
281:    * the Mat_CompressedRow data structure that SeqAIJ now uses when there
282:    * are many zero rows.  If the SeqAIJ assembly end routine decides to use
283:    * this, this may break things.  (Don't know... haven't looked at it.) */
284:   a->inode.use = PETSC_FALSE;
285:   MatAssemblyEnd_SeqAIJ(A, mode);

287:   /* Now calculate the permutation and grouping information. */
288:   MatSeqAIJPERM_create_perm(A);
289:   return(0);
290: }

292: PetscErrorCode MatMult_SeqAIJPERM(Mat A,Vec xx,Vec yy)
293: {
294:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
295:   const PetscScalar *x;
296:   PetscScalar       *y;
297:   const MatScalar   *aa;
298:   PetscErrorCode    ierr;
299:   const PetscInt    *aj,*ai;
300: #if !(defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJPERM) && defined(notworking))
301:   PetscInt          i,j;
302: #endif
303: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
304:   __m512d           vec_x,vec_y,vec_vals;
305:   __m256i           vec_idx,vec_ipos,vec_j;
306:   __mmask8           mask;
307: #endif

309:   /* Variables that don't appear in MatMult_SeqAIJ. */
310:   Mat_SeqAIJPERM    *aijperm = (Mat_SeqAIJPERM*) A->spptr;
311:   PetscInt          *iperm;  /* Points to the permutation vector. */
312:   PetscInt          *xgroup;
313:   /* Denotes where groups of rows with same number of nonzeros
314:    * begin and end in iperm. */
315:   PetscInt          *nzgroup;
316:   PetscInt          ngroup;
317:   PetscInt          igroup;
318:   PetscInt          jstart,jend;
319:   /* jstart is used in loops to denote the position in iperm where a
320:    * group starts; jend denotes the position where it ends.
321:    * (jend + 1 is where the next group starts.) */
322:   PetscInt          iold,nz;
323:   PetscInt          istart,iend,isize;
324:   PetscInt          ipos;
325:   PetscScalar       yp[NDIM];
326:   PetscInt          ip[NDIM];    /* yp[] and ip[] are treated as vector "registers" for performing the mat-vec. */

328: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
329: #pragma disjoint(*x,*y,*aa)
330: #endif

333:   VecGetArrayRead(xx,&x);
334:   VecGetArray(yy,&y);
335:   aj   = a->j;   /* aj[k] gives column index for element aa[k]. */
336:   aa   = a->a; /* Nonzero elements stored row-by-row. */
337:   ai   = a->i;  /* ai[k] is the position in aa and aj where row k starts. */

339:   /* Get the info we need about the permutations and groupings. */
340:   iperm   = aijperm->iperm;
341:   ngroup  = aijperm->ngroup;
342:   xgroup  = aijperm->xgroup;
343:   nzgroup = aijperm->nzgroup;

345: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTAIJPERM) && defined(notworking)
346:   fortranmultaijperm_(&m,x,ii,aj,aa,y);
347: #else

349:   for (igroup=0; igroup<ngroup; igroup++) {
350:     jstart = xgroup[igroup];
351:     jend   = xgroup[igroup+1] - 1;
352:     nz     = nzgroup[igroup];

354:     /* Handle the special cases where the number of nonzeros per row
355:      * in the group is either 0 or 1. */
356:     if (nz == 0) {
357:       for (i=jstart; i<=jend; i++) {
358:         y[iperm[i]] = 0.0;
359:       }
360:     } else if (nz == 1) {
361:       for (i=jstart; i<=jend; i++) {
362:         iold    = iperm[i];
363:         ipos    = ai[iold];
364:         y[iold] = aa[ipos] * x[aj[ipos]];
365:       }
366:     } else {

368:       /* We work our way through the current group in chunks of NDIM rows
369:        * at a time. */

371:       for (istart=jstart; istart<=jend; istart+=NDIM) {
372:         /* Figure out where the chunk of 'isize' rows ends in iperm.
373:          * 'isize may of course be less than NDIM for the last chunk. */
374:         iend = istart + (NDIM - 1);

376:         if (iend > jend) iend = jend;

378:         isize = iend - istart + 1;

380:         /* Initialize the yp[] array that will be used to hold part of
381:          * the permuted results vector, and figure out where in aa each
382:          * row of the chunk will begin. */
383:         for (i=0; i<isize; i++) {
384:           iold = iperm[istart + i];
385:           /* iold is a row number from the matrix A *before* reordering. */
386:           ip[i] = ai[iold];
387:           /* ip[i] tells us where the ith row of the chunk begins in aa. */
388:           yp[i] = (PetscScalar) 0.0;
389:         }

391:         /* If the number of zeros per row exceeds the number of rows in
392:          * the chunk, we should vectorize along nz, that is, perform the
393:          * mat-vec one row at a time as in the usual CSR case. */
394:         if (nz > isize) {
395: #if defined(PETSC_HAVE_CRAY_VECTOR)
396: #pragma _CRI preferstream
397: #endif
398:           for (i=0; i<isize; i++) {
399: #if defined(PETSC_HAVE_CRAY_VECTOR)
400: #pragma _CRI prefervector
401: #endif

403: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
404:             vec_y = _mm512_setzero_pd();
405:             ipos = ip[i];
406:             for (j=0; j<(nz>>3); j++) {
407:               vec_idx  = _mm256_loadu_si256((__m256i const*)&aj[ipos]);
408:               vec_vals = _mm512_loadu_pd(&aa[ipos]);
409:               vec_x    = _mm512_i32gather_pd(vec_idx,x,_MM_SCALE_8);
410:               vec_y    = _mm512_fmadd_pd(vec_x,vec_vals,vec_y);
411:               ipos += 8;
412:             }
413:             if ((nz&0x07)>2) {
414:               mask     = (__mmask8)(0xff >> (8-(nz&0x07)));
415:               vec_idx  = _mm256_loadu_si256((__m256i const*)&aj[ipos]);
416:               vec_vals = _mm512_loadu_pd(&aa[ipos]);
417:               vec_x    = _mm512_mask_i32gather_pd(vec_x,mask,vec_idx,x,_MM_SCALE_8);
418:               vec_y    = _mm512_mask3_fmadd_pd(vec_x,vec_vals,vec_y,mask);
419:             } else if ((nz&0x07)==2) {
420:               yp[i] += aa[ipos]*x[aj[ipos]];
421:               yp[i] += aa[ipos+1]*x[aj[ipos+1]];
422:             } else if ((nz&0x07)==1) {
423:               yp[i] += aa[ipos]*x[aj[ipos]];
424:             }
425:             yp[i] += _mm512_reduce_add_pd(vec_y);
426: #else
427:             for (j=0; j<nz; j++) {
428:               ipos   = ip[i] + j;
429:               yp[i] += aa[ipos] * x[aj[ipos]];
430:             }
431: #endif
432:           }
433:         } else {
434:           /* Otherwise, there are enough rows in the chunk to make it
435:            * worthwhile to vectorize across the rows, that is, to do the
436:            * matvec by operating with "columns" of the chunk. */
437:           for (j=0; j<nz; j++) {
438: #if defined(PETSC_HAVE_IMMINTRIN_H) && defined(__AVX512F__) && defined(PETSC_USE_REAL_DOUBLE) && !defined(PETSC_USE_COMPLEX) && !defined(PETSC_USE_64BIT_INDICES)
439:             vec_j = _mm256_set1_epi32(j);
440:             for (i=0; i<((isize>>3)<<3); i+=8) {
441:               vec_y    = _mm512_loadu_pd(&yp[i]);
442:               vec_ipos = _mm256_loadu_si256((__m256i const*)&ip[i]);
443:               vec_ipos = _mm256_add_epi32(vec_ipos,vec_j);
444:               vec_idx  = _mm256_i32gather_epi32(aj,vec_ipos,_MM_SCALE_4);
445:               vec_vals = _mm512_i32gather_pd(vec_ipos,aa,_MM_SCALE_8);
446:               vec_x    = _mm512_i32gather_pd(vec_idx,x,_MM_SCALE_8);
447:               vec_y    = _mm512_fmadd_pd(vec_x,vec_vals,vec_y);
448:               _mm512_storeu_pd(&yp[i],vec_y);
449:             }
450:             for (i=isize-(isize&0x07); i<isize; i++) {
451:               ipos = ip[i]+j;
452:               yp[i] += aa[ipos]*x[aj[ipos]];
453:             }
454: #else
455:             for (i=0; i<isize; i++) {
456:               ipos   = ip[i] + j;
457:               yp[i] += aa[ipos] * x[aj[ipos]];
458:             }
459: #endif
460:           }
461:         }

463: #if defined(PETSC_HAVE_CRAY_VECTOR)
464: #pragma _CRI ivdep
465: #endif
466:         /* Put results from yp[] into non-permuted result vector y. */
467:         for (i=0; i<isize; i++) {
468:           y[iperm[istart+i]] = yp[i];
469:         }
470:       } /* End processing chunk of isize rows of a group. */
471:     } /* End handling matvec for chunk with nz > 1. */
472:   } /* End loop over igroup. */
473: #endif
474:   PetscLogFlops(PetscMax(2.0*a->nz - A->rmap->n,0));
475:   VecRestoreArrayRead(xx,&x);
476:   VecRestoreArray(yy,&y);
477:   return(0);
478: }


481: /* MatMultAdd_SeqAIJPERM() calculates yy = ww + A * xx.
482:  * Note that the names I used to designate the vectors differs from that
483:  * used in MatMultAdd_SeqAIJ().  I did this to keep my notation consistent
484:  * with the MatMult_SeqAIJPERM() routine, which is very similar to this one. */
485: /*
486:     I hate having virtually identical code for the mult and the multadd!!!
487: */
488: PetscErrorCode MatMultAdd_SeqAIJPERM(Mat A,Vec xx,Vec ww,Vec yy)
489: {
490:   Mat_SeqAIJ        *a = (Mat_SeqAIJ*)A->data;
491:   const PetscScalar *x;
492:   PetscScalar       *y,*w;
493:   const MatScalar   *aa;
494:   PetscErrorCode    ierr;
495:   const PetscInt    *aj,*ai;
496: #if !defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJPERM)
497:   PetscInt i,j;
498: #endif

500:   /* Variables that don't appear in MatMultAdd_SeqAIJ. */
501:   Mat_SeqAIJPERM * aijperm;
502:   PetscInt       *iperm;    /* Points to the permutation vector. */
503:   PetscInt       *xgroup;
504:   /* Denotes where groups of rows with same number of nonzeros
505:    * begin and end in iperm. */
506:   PetscInt *nzgroup;
507:   PetscInt ngroup;
508:   PetscInt igroup;
509:   PetscInt jstart,jend;
510:   /* jstart is used in loops to denote the position in iperm where a
511:    * group starts; jend denotes the position where it ends.
512:    * (jend + 1 is where the next group starts.) */
513:   PetscInt    iold,nz;
514:   PetscInt    istart,iend,isize;
515:   PetscInt    ipos;
516:   PetscScalar yp[NDIM];
517:   PetscInt    ip[NDIM];
518:   /* yp[] and ip[] are treated as vector "registers" for performing
519:    * the mat-vec. */

521: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
522: #pragma disjoint(*x,*y,*aa)
523: #endif

526:   VecGetArrayRead(xx,&x);
527:   VecGetArrayPair(yy,ww,&y,&w);

529:   aj = a->j;   /* aj[k] gives column index for element aa[k]. */
530:   aa = a->a;   /* Nonzero elements stored row-by-row. */
531:   ai = a->i;   /* ai[k] is the position in aa and aj where row k starts. */

533:   /* Get the info we need about the permutations and groupings. */
534:   aijperm = (Mat_SeqAIJPERM*) A->spptr;
535:   iperm   = aijperm->iperm;
536:   ngroup  = aijperm->ngroup;
537:   xgroup  = aijperm->xgroup;
538:   nzgroup = aijperm->nzgroup;

540: #if defined(PETSC_USE_FORTRAN_KERNEL_MULTADDAIJPERM)
541:   fortranmultaddaijperm_(&m,x,ii,aj,aa,y,w);
542: #else

544:   for (igroup=0; igroup<ngroup; igroup++) {
545:     jstart = xgroup[igroup];
546:     jend   = xgroup[igroup+1] - 1;

548:     nz = nzgroup[igroup];

550:     /* Handle the special cases where the number of nonzeros per row
551:      * in the group is either 0 or 1. */
552:     if (nz == 0) {
553:       for (i=jstart; i<=jend; i++) {
554:         iold    = iperm[i];
555:         y[iold] = w[iold];
556:       }
557:     }
558:     else if (nz == 1) {
559:       for (i=jstart; i<=jend; i++) {
560:         iold    = iperm[i];
561:         ipos    = ai[iold];
562:         y[iold] = w[iold] + aa[ipos] * x[aj[ipos]];
563:       }
564:     }
565:     /* For the general case: */
566:     else {

568:       /* We work our way through the current group in chunks of NDIM rows
569:        * at a time. */

571:       for (istart=jstart; istart<=jend; istart+=NDIM) {
572:         /* Figure out where the chunk of 'isize' rows ends in iperm.
573:          * 'isize may of course be less than NDIM for the last chunk. */
574:         iend = istart + (NDIM - 1);
575:         if (iend > jend) iend = jend;
576:         isize = iend - istart + 1;

578:         /* Initialize the yp[] array that will be used to hold part of
579:          * the permuted results vector, and figure out where in aa each
580:          * row of the chunk will begin. */
581:         for (i=0; i<isize; i++) {
582:           iold = iperm[istart + i];
583:           /* iold is a row number from the matrix A *before* reordering. */
584:           ip[i] = ai[iold];
585:           /* ip[i] tells us where the ith row of the chunk begins in aa. */
586:           yp[i] = w[iold];
587:         }

589:         /* If the number of zeros per row exceeds the number of rows in
590:          * the chunk, we should vectorize along nz, that is, perform the
591:          * mat-vec one row at a time as in the usual CSR case. */
592:         if (nz > isize) {
593: #if defined(PETSC_HAVE_CRAY_VECTOR)
594: #pragma _CRI preferstream
595: #endif
596:           for (i=0; i<isize; i++) {
597: #if defined(PETSC_HAVE_CRAY_VECTOR)
598: #pragma _CRI prefervector
599: #endif
600:             for (j=0; j<nz; j++) {
601:               ipos   = ip[i] + j;
602:               yp[i] += aa[ipos] * x[aj[ipos]];
603:             }
604:           }
605:         }
606:         /* Otherwise, there are enough rows in the chunk to make it
607:          * worthwhile to vectorize across the rows, that is, to do the
608:          * matvec by operating with "columns" of the chunk. */
609:         else {
610:           for (j=0; j<nz; j++) {
611:             for (i=0; i<isize; i++) {
612:               ipos   = ip[i] + j;
613:               yp[i] += aa[ipos] * x[aj[ipos]];
614:             }
615:           }
616:         }

618: #if defined(PETSC_HAVE_CRAY_VECTOR)
619: #pragma _CRI ivdep
620: #endif
621:         /* Put results from yp[] into non-permuted result vector y. */
622:         for (i=0; i<isize; i++) {
623:           y[iperm[istart+i]] = yp[i];
624:         }
625:       } /* End processing chunk of isize rows of a group. */

627:     } /* End handling matvec for chunk with nz > 1. */
628:   } /* End loop over igroup. */

630: #endif
631:   PetscLogFlops(2.0*a->nz);
632:   VecRestoreArrayRead(xx,&x);
633:   VecRestoreArrayPair(yy,ww,&y,&w);
634:   return(0);
635: }


638: /* MatConvert_SeqAIJ_SeqAIJPERM converts a SeqAIJ matrix into a
639:  * SeqAIJPERM matrix.  This routine is called by the MatCreate_SeqAIJPERM()
640:  * routine, but can also be used to convert an assembled SeqAIJ matrix
641:  * into a SeqAIJPERM one. */
642: PETSC_INTERN PetscErrorCode MatConvert_SeqAIJ_SeqAIJPERM(Mat A,MatType type,MatReuse reuse,Mat *newmat)
643: {
645:   Mat            B = *newmat;
646:   Mat_SeqAIJPERM *aijperm;
647:   PetscBool      sametype;

650:   if (reuse == MAT_INITIAL_MATRIX) {
651:     MatDuplicate(A,MAT_COPY_VALUES,&B);
652:   }
653:   PetscObjectTypeCompare((PetscObject)A,type,&sametype);
654:   if (sametype) return(0);

656:   PetscNewLog(B,&aijperm);
657:   B->spptr = (void*) aijperm;

659:   /* Set function pointers for methods that we inherit from AIJ but override. */
660:   B->ops->duplicate   = MatDuplicate_SeqAIJPERM;
661:   B->ops->assemblyend = MatAssemblyEnd_SeqAIJPERM;
662:   B->ops->destroy     = MatDestroy_SeqAIJPERM;
663:   B->ops->mult        = MatMult_SeqAIJPERM;
664:   B->ops->multadd     = MatMultAdd_SeqAIJPERM;

666:   aijperm->nonzerostate = -1;  /* this will trigger the generation of the permutation information the first time through MatAssembly()*/
667:   /* If A has already been assembled, compute the permutation. */
668:   if (A->assembled) {
669:     MatSeqAIJPERM_create_perm(B);
670:   }

672:   PetscObjectComposeFunction((PetscObject)B,"MatConvert_seqaijperm_seqaij_C",MatConvert_SeqAIJPERM_SeqAIJ);
673:   PetscObjectComposeFunction((PetscObject)B,"MatMatMult_seqdense_seqaijperm_C",MatMatMult_SeqDense_SeqAIJ);
674:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultSymbolic_seqdense_seqaijperm_C",MatMatMultSymbolic_SeqDense_SeqAIJ);
675:   PetscObjectComposeFunction((PetscObject)B,"MatMatMultNumeric_seqdense_seqaijperm_C",MatMatMultNumeric_SeqDense_SeqAIJ);

677:   PetscObjectChangeTypeName((PetscObject)B,MATSEQAIJPERM);
678:   *newmat = B;
679:   return(0);
680: }

682: /*@C
683:    MatCreateSeqAIJPERM - Creates a sparse matrix of type SEQAIJPERM.
684:    This type inherits from AIJ, but calculates some additional permutation
685:    information that is used to allow better vectorization of some
686:    operations.  At the cost of increased storage, the AIJ formatted
687:    matrix can be copied to a format in which pieces of the matrix are
688:    stored in ELLPACK format, allowing the vectorized matrix multiply
689:    routine to use stride-1 memory accesses.  As with the AIJ type, it is
690:    important to preallocate matrix storage in order to get good assembly
691:    performance.

693:    Collective on MPI_Comm

695:    Input Parameters:
696: +  comm - MPI communicator, set to PETSC_COMM_SELF
697: .  m - number of rows
698: .  n - number of columns
699: .  nz - number of nonzeros per row (same for all rows)
700: -  nnz - array containing the number of nonzeros in the various rows
701:          (possibly different for each row) or NULL

703:    Output Parameter:
704: .  A - the matrix

706:    Notes:
707:    If nnz is given then nz is ignored

709:    Level: intermediate

711: .keywords: matrix, cray, sparse, parallel

713: .seealso: MatCreate(), MatCreateMPIAIJPERM(), MatSetValues()
714: @*/
715: PetscErrorCode  MatCreateSeqAIJPERM(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt nz,const PetscInt nnz[],Mat *A)
716: {

720:   MatCreate(comm,A);
721:   MatSetSizes(*A,m,n,m,n);
722:   MatSetType(*A,MATSEQAIJPERM);
723:   MatSeqAIJSetPreallocation_SeqAIJ(*A,nz,nnz);
724:   return(0);
725: }

727: PETSC_EXTERN PetscErrorCode MatCreate_SeqAIJPERM(Mat A)
728: {

732:   MatSetType(A,MATSEQAIJ);
733:   MatConvert_SeqAIJ_SeqAIJPERM(A,MATSEQAIJPERM,MAT_INPLACE_MATRIX,&A);
734:   return(0);
735: }