Actual source code: lcl.c

petsc-3.8.4 2018-03-24
Report Typos and Errors
  1: #include <../src/tao/pde_constrained/impls/lcl/lcl.h>
  2: #include <../src/tao/matrix/lmvmmat.h>
  3: static PetscErrorCode LCLComputeLagrangianAndGradient(TaoLineSearch,Vec,PetscReal*,Vec,void*);
  4: static PetscErrorCode LCLComputeAugmentedLagrangianAndGradient(TaoLineSearch,Vec,PetscReal*,Vec,void*);
  5: static PetscErrorCode LCLScatter(TAO_LCL*,Vec,Vec,Vec);
  6: static PetscErrorCode LCLGather(TAO_LCL*,Vec,Vec,Vec);

  8: static PetscErrorCode TaoDestroy_LCL(Tao tao)
  9: {
 10:   TAO_LCL        *lclP = (TAO_LCL*)tao->data;

 14:   if (tao->setupcalled) {
 15:     MatDestroy(&lclP->R);
 16:     VecDestroy(&lclP->lamda);
 17:     VecDestroy(&lclP->lamda0);
 18:     VecDestroy(&lclP->WL);
 19:     VecDestroy(&lclP->W);
 20:     VecDestroy(&lclP->X0);
 21:     VecDestroy(&lclP->G0);
 22:     VecDestroy(&lclP->GL);
 23:     VecDestroy(&lclP->GAugL);
 24:     VecDestroy(&lclP->dbar);
 25:     VecDestroy(&lclP->U);
 26:     VecDestroy(&lclP->U0);
 27:     VecDestroy(&lclP->V);
 28:     VecDestroy(&lclP->V0);
 29:     VecDestroy(&lclP->V1);
 30:     VecDestroy(&lclP->GU);
 31:     VecDestroy(&lclP->GV);
 32:     VecDestroy(&lclP->GU0);
 33:     VecDestroy(&lclP->GV0);
 34:     VecDestroy(&lclP->GL_U);
 35:     VecDestroy(&lclP->GL_V);
 36:     VecDestroy(&lclP->GAugL_U);
 37:     VecDestroy(&lclP->GAugL_V);
 38:     VecDestroy(&lclP->GL_U0);
 39:     VecDestroy(&lclP->GL_V0);
 40:     VecDestroy(&lclP->GAugL_U0);
 41:     VecDestroy(&lclP->GAugL_V0);
 42:     VecDestroy(&lclP->DU);
 43:     VecDestroy(&lclP->DV);
 44:     VecDestroy(&lclP->WU);
 45:     VecDestroy(&lclP->WV);
 46:     VecDestroy(&lclP->g1);
 47:     VecDestroy(&lclP->g2);
 48:     VecDestroy(&lclP->con1);

 50:     VecDestroy(&lclP->r);
 51:     VecDestroy(&lclP->s);

 53:     ISDestroy(&tao->state_is);
 54:     ISDestroy(&tao->design_is);

 56:     VecScatterDestroy(&lclP->state_scatter);
 57:     VecScatterDestroy(&lclP->design_scatter);
 58:   }
 59:   PetscFree(tao->data);
 60:   return(0);
 61: }

 63: static PetscErrorCode TaoSetFromOptions_LCL(PetscOptionItems *PetscOptionsObject,Tao tao)
 64: {
 65:   TAO_LCL        *lclP = (TAO_LCL*)tao->data;

 69:   PetscOptionsHead(PetscOptionsObject,"Linearly-Constrained Augmented Lagrangian Method for PDE-constrained optimization");
 70:   PetscOptionsReal("-tao_lcl_eps1","epsilon 1 tolerance","",lclP->eps1,&lclP->eps1,NULL);
 71:   PetscOptionsReal("-tao_lcl_eps2","epsilon 2 tolerance","",lclP->eps2,&lclP->eps2,NULL);
 72:   PetscOptionsReal("-tao_lcl_rho0","init value for rho","",lclP->rho0,&lclP->rho0,NULL);
 73:   PetscOptionsReal("-tao_lcl_rhomax","max value for rho","",lclP->rhomax,&lclP->rhomax,NULL);
 74:   lclP->phase2_niter = 1;
 75:   PetscOptionsInt("-tao_lcl_phase2_niter","Number of phase 2 iterations in LCL algorithm","",lclP->phase2_niter,&lclP->phase2_niter,NULL);
 76:   lclP->verbose = PETSC_FALSE;
 77:   PetscOptionsBool("-tao_lcl_verbose","Print verbose output","",lclP->verbose,&lclP->verbose,NULL);
 78:   lclP->tau[0] = lclP->tau[1] = lclP->tau[2] = lclP->tau[3] = 1.0e-4;
 79:   PetscOptionsReal("-tao_lcl_tola","Tolerance for first forward solve","",lclP->tau[0],&lclP->tau[0],NULL);
 80:   PetscOptionsReal("-tao_lcl_tolb","Tolerance for first adjoint solve","",lclP->tau[1],&lclP->tau[1],NULL);
 81:   PetscOptionsReal("-tao_lcl_tolc","Tolerance for second forward solve","",lclP->tau[2],&lclP->tau[2],NULL);
 82:   PetscOptionsReal("-tao_lcl_told","Tolerance for second adjoint solve","",lclP->tau[3],&lclP->tau[3],NULL);
 83:   PetscOptionsTail();
 84:   TaoLineSearchSetFromOptions(tao->linesearch);
 85:   return(0);
 86: }

 88: static PetscErrorCode TaoView_LCL(Tao tao, PetscViewer viewer)
 89: {
 90:   return 0;
 91: }

 93: static PetscErrorCode TaoSetup_LCL(Tao tao)
 94: {
 95:   TAO_LCL        *lclP = (TAO_LCL*)tao->data;
 96:   PetscInt       lo, hi, nlocalstate, nlocaldesign;
 98:   IS             is_state, is_design;

101:   if (!tao->state_is) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONGSTATE,"LCL Solver requires an initial state index set -- use TaoSetStateIS()");
102:   VecDuplicate(tao->solution, &tao->gradient);
103:   VecDuplicate(tao->solution, &tao->stepdirection);
104:   VecDuplicate(tao->solution, &lclP->W);
105:   VecDuplicate(tao->solution, &lclP->X0);
106:   VecDuplicate(tao->solution, &lclP->G0);
107:   VecDuplicate(tao->solution, &lclP->GL);
108:   VecDuplicate(tao->solution, &lclP->GAugL);

110:   VecDuplicate(tao->constraints, &lclP->lamda);
111:   VecDuplicate(tao->constraints, &lclP->WL);
112:   VecDuplicate(tao->constraints, &lclP->lamda0);
113:   VecDuplicate(tao->constraints, &lclP->con1);

115:   VecSet(lclP->lamda,0.0);

117:   VecGetSize(tao->solution, &lclP->n);
118:   VecGetSize(tao->constraints, &lclP->m);

120:   VecCreate(((PetscObject)tao)->comm,&lclP->U);
121:   VecCreate(((PetscObject)tao)->comm,&lclP->V);
122:   ISGetLocalSize(tao->state_is,&nlocalstate);
123:   ISGetLocalSize(tao->design_is,&nlocaldesign);
124:   VecSetSizes(lclP->U,nlocalstate,lclP->m);
125:   VecSetSizes(lclP->V,nlocaldesign,lclP->n-lclP->m);
126:   VecSetType(lclP->U,((PetscObject)(tao->solution))->type_name);
127:   VecSetType(lclP->V,((PetscObject)(tao->solution))->type_name);
128:   VecSetFromOptions(lclP->U);
129:   VecSetFromOptions(lclP->V);
130:   VecDuplicate(lclP->U,&lclP->DU);
131:   VecDuplicate(lclP->U,&lclP->U0);
132:   VecDuplicate(lclP->U,&lclP->GU);
133:   VecDuplicate(lclP->U,&lclP->GU0);
134:   VecDuplicate(lclP->U,&lclP->GAugL_U);
135:   VecDuplicate(lclP->U,&lclP->GL_U);
136:   VecDuplicate(lclP->U,&lclP->GAugL_U0);
137:   VecDuplicate(lclP->U,&lclP->GL_U0);
138:   VecDuplicate(lclP->U,&lclP->WU);
139:   VecDuplicate(lclP->U,&lclP->r);
140:   VecDuplicate(lclP->V,&lclP->V0);
141:   VecDuplicate(lclP->V,&lclP->V1);
142:   VecDuplicate(lclP->V,&lclP->DV);
143:   VecDuplicate(lclP->V,&lclP->s);
144:   VecDuplicate(lclP->V,&lclP->GV);
145:   VecDuplicate(lclP->V,&lclP->GV0);
146:   VecDuplicate(lclP->V,&lclP->dbar);
147:   VecDuplicate(lclP->V,&lclP->GAugL_V);
148:   VecDuplicate(lclP->V,&lclP->GL_V);
149:   VecDuplicate(lclP->V,&lclP->GAugL_V0);
150:   VecDuplicate(lclP->V,&lclP->GL_V0);
151:   VecDuplicate(lclP->V,&lclP->WV);
152:   VecDuplicate(lclP->V,&lclP->g1);
153:   VecDuplicate(lclP->V,&lclP->g2);

155:   /* create scatters for state, design subvecs */
156:   VecGetOwnershipRange(lclP->U,&lo,&hi);
157:   ISCreateStride(((PetscObject)lclP->U)->comm,hi-lo,lo,1,&is_state);
158:   VecGetOwnershipRange(lclP->V,&lo,&hi);
159:   if (0) {
160:     PetscInt sizeU,sizeV;
161:     VecGetSize(lclP->U,&sizeU);
162:     VecGetSize(lclP->V,&sizeV);
163:     PetscPrintf(PETSC_COMM_WORLD,"size(U)=%D, size(V)=%D\n",sizeU,sizeV);
164:   }
165:   ISCreateStride(((PetscObject)lclP->V)->comm,hi-lo,lo,1,&is_design);
166:   VecScatterCreate(tao->solution,tao->state_is,lclP->U,is_state,&lclP->state_scatter);
167:   VecScatterCreate(tao->solution,tao->design_is,lclP->V,is_design,&lclP->design_scatter);
168:   ISDestroy(&is_state);
169:   ISDestroy(&is_design);
170:   return(0);
171: }

173: static PetscErrorCode TaoSolve_LCL(Tao tao)
174: {
175:   TAO_LCL                      *lclP = (TAO_LCL*)tao->data;
176:   PetscInt                     phase2_iter,nlocal,its;
177:   TaoConvergedReason           reason = TAO_CONTINUE_ITERATING;
178:   TaoLineSearchConvergedReason ls_reason = TAOLINESEARCH_CONTINUE_ITERATING;
179:   PetscReal                    step=1.0,f, descent, aldescent;
180:   PetscReal                    cnorm, mnorm;
181:   PetscReal                    adec,r2,rGL_U,rWU;
182:   PetscBool                    set,pset,flag,pflag,symmetric;
183:   PetscErrorCode               ierr;

186:   lclP->rho = lclP->rho0;
187:   VecGetLocalSize(lclP->U,&nlocal);
188:   VecGetLocalSize(lclP->V,&nlocal);
189:   MatCreateLMVM(((PetscObject)tao)->comm,nlocal,lclP->n-lclP->m,&lclP->R);
190:   MatLMVMAllocateVectors(lclP->R,lclP->V);
191:   lclP->recompute_jacobian_flag = PETSC_TRUE;

193:   /* Scatter to U,V */
194:   LCLScatter(lclP,tao->solution,lclP->U,lclP->V);

196:   /* Evaluate Function, Gradient, Constraints, and Jacobian */
197:   TaoComputeObjectiveAndGradient(tao,tao->solution,&f,tao->gradient);
198:   TaoComputeJacobianState(tao,tao->solution,tao->jacobian_state,tao->jacobian_state_pre,tao->jacobian_state_inv);
199:   TaoComputeJacobianDesign(tao,tao->solution,tao->jacobian_design);
200:   TaoComputeConstraints(tao,tao->solution, tao->constraints);

202:   /* Scatter gradient to GU,GV */
203:   LCLScatter(lclP,tao->gradient,lclP->GU,lclP->GV);

205:   /* Evaluate Lagrangian function and gradient */
206:   /* p0 */
207:   VecSet(lclP->lamda,0.0); /*  Initial guess in CG */
208:   MatIsSymmetricKnown(tao->jacobian_state,&set,&flag);
209:   if (tao->jacobian_state_pre) {
210:     MatIsSymmetricKnown(tao->jacobian_state_pre,&pset,&pflag);
211:   } else {
212:     pset = pflag = PETSC_TRUE;
213:   }
214:   if (set && pset && flag && pflag) symmetric = PETSC_TRUE;
215:   else symmetric = PETSC_FALSE;

217:   lclP->solve_type = LCL_ADJOINT2;
218:   if (tao->jacobian_state_inv) {
219:     if (symmetric) {
220:       MatMult(tao->jacobian_state_inv, lclP->GU, lclP->lamda); } else {
221:       MatMultTranspose(tao->jacobian_state_inv, lclP->GU, lclP->lamda);
222:     }
223:   } else {
224:     KSPSetOperators(tao->ksp, tao->jacobian_state, tao->jacobian_state_pre);
225:     if (symmetric) {
226:       KSPSolve(tao->ksp, lclP->GU,  lclP->lamda);
227:     } else {
228:       KSPSolveTranspose(tao->ksp, lclP->GU,  lclP->lamda);
229:     }
230:     KSPGetIterationNumber(tao->ksp,&its);
231:     tao->ksp_its+=its;
232:     tao->ksp_tot_its+=its;
233:   }
234:   VecCopy(lclP->lamda,lclP->lamda0);
235:   LCLComputeAugmentedLagrangianAndGradient(tao->linesearch,tao->solution,&lclP->aug,lclP->GAugL,tao);

237:   LCLScatter(lclP,lclP->GL,lclP->GL_U,lclP->GL_V);
238:   LCLScatter(lclP,lclP->GAugL,lclP->GAugL_U,lclP->GAugL_V);

240:   /* Evaluate constraint norm */
241:   VecNorm(tao->constraints, NORM_2, &cnorm);
242:   VecNorm(lclP->GAugL, NORM_2, &mnorm);

244:   /* Monitor convergence */
245:   TaoMonitor(tao, tao->niter,f,mnorm,cnorm,step,&reason);

247:   while (reason == TAO_CONTINUE_ITERATING) {
248:     tao->ksp_its=0;
249:     /* Compute a descent direction for the linearly constrained subproblem
250:        minimize f(u+du, v+dv)
251:        s.t. A(u0,v0)du + B(u0,v0)dv = -g(u0,v0) */

253:     /* Store the points around the linearization */
254:     VecCopy(lclP->U, lclP->U0);
255:     VecCopy(lclP->V, lclP->V0);
256:     VecCopy(lclP->GU,lclP->GU0);
257:     VecCopy(lclP->GV,lclP->GV0);
258:     VecCopy(lclP->GAugL_U,lclP->GAugL_U0);
259:     VecCopy(lclP->GAugL_V,lclP->GAugL_V0);
260:     VecCopy(lclP->GL_U,lclP->GL_U0);
261:     VecCopy(lclP->GL_V,lclP->GL_V0);

263:     lclP->aug0 = lclP->aug;
264:     lclP->lgn0 = lclP->lgn;

266:     /* Given the design variables, we need to project the current iterate
267:        onto the linearized constraint.  We choose to fix the design variables
268:        and solve the linear system for the state variables.  The resulting
269:        point is the Newton direction */

271:     /* Solve r = A\con */
272:     lclP->solve_type = LCL_FORWARD1;
273:     VecSet(lclP->r,0.0); /*  Initial guess in CG */

275:     if (tao->jacobian_state_inv) {
276:       MatMult(tao->jacobian_state_inv, tao->constraints, lclP->r);
277:     } else {
278:       KSPSetOperators(tao->ksp, tao->jacobian_state, tao->jacobian_state_pre);
279:       KSPSolve(tao->ksp, tao->constraints,  lclP->r);
280:       KSPGetIterationNumber(tao->ksp,&its);
281:       tao->ksp_its+=its;
282:       tao->ksp_tot_its+=tao->ksp_its;
283:     }

285:     /* Set design step direction dv to zero */
286:     VecSet(lclP->s, 0.0);

288:     /*
289:        Check sufficient descent for constraint merit function .5*||con||^2
290:        con' Ak r >= eps1 ||r||^(2+eps2)
291:     */

293:     /* Compute WU= Ak' * con */
294:     if (symmetric)  {
295:       MatMult(tao->jacobian_state,tao->constraints,lclP->WU);
296:     } else {
297:       MatMultTranspose(tao->jacobian_state,tao->constraints,lclP->WU);
298:     }
299:     /* Compute r * Ak' * con */
300:     VecDot(lclP->r,lclP->WU,&rWU);

302:     /* compute ||r||^(2+eps2) */
303:     VecNorm(lclP->r,NORM_2,&r2);
304:     r2 = PetscPowScalar(r2,2.0+lclP->eps2);
305:     adec = lclP->eps1 * r2;

307:     if (rWU < adec) {
308:       PetscInfo(tao,"Newton direction not descent for constraint, feasibility phase required\n");
309:       if (lclP->verbose) {
310:         PetscPrintf(PETSC_COMM_WORLD,"Newton direction not descent for constraint: %g -- using steepest descent\n",(double)descent);
311:       }

313:       PetscInfo(tao,"Using steepest descent direction instead.\n");
314:       VecSet(lclP->r,0.0);
315:       VecAXPY(lclP->r,-1.0,lclP->WU);
316:       VecDot(lclP->r,lclP->r,&rWU);
317:       VecNorm(lclP->r,NORM_2,&r2);
318:       r2 = PetscPowScalar(r2,2.0+lclP->eps2);
319:       VecDot(lclP->r,lclP->GAugL_U,&descent);
320:       adec = lclP->eps1 * r2;
321:     }


324:     /*
325:        Check descent for aug. lagrangian
326:        r' (GUk - Ak'*yk - rho*Ak'*con) <= -eps1 ||r||^(2+eps2)
327:           GL_U = GUk - Ak'*yk
328:           WU   = Ak'*con
329:                                          adec=eps1||r||^(2+eps2)

331:        ==>
332:        Check r'GL_U - rho*r'WU <= adec
333:     */

335:     VecDot(lclP->r,lclP->GL_U,&rGL_U);
336:     aldescent =  rGL_U - lclP->rho*rWU;
337:     if (aldescent > -adec) {
338:       if (lclP->verbose) {
339:         PetscPrintf(PETSC_COMM_WORLD," Newton direction not descent for augmented Lagrangian: %g",(double)aldescent);
340:       }
341:       PetscInfo1(tao,"Newton direction not descent for augmented Lagrangian: %g\n",(double)aldescent);
342:       lclP->rho =  (rGL_U - adec)/rWU;
343:       if (lclP->rho > lclP->rhomax) {
344:         lclP->rho = lclP->rhomax;
345:         SETERRQ1(PETSC_COMM_WORLD,0,"rho=%g > rhomax, case not implemented.  Increase rhomax (-tao_lcl_rhomax)",(double)lclP->rho);
346:       }
347:       if (lclP->verbose) {
348:         PetscPrintf(PETSC_COMM_WORLD,"  Increasing penalty parameter to %g\n",(double)lclP->rho);
349:       }
350:       PetscInfo1(tao,"  Increasing penalty parameter to %g\n",(double)lclP->rho);
351:     }

353:     LCLComputeAugmentedLagrangianAndGradient(tao->linesearch,tao->solution,&lclP->aug,lclP->GAugL,tao);
354:     LCLScatter(lclP,lclP->GL,lclP->GL_U,lclP->GL_V);
355:     LCLScatter(lclP,lclP->GAugL,lclP->GAugL_U,lclP->GAugL_V);

357:     /* We now minimize the augmented Lagrangian along the Newton direction */
358:     VecScale(lclP->r,-1.0);
359:     LCLGather(lclP, lclP->r,lclP->s,tao->stepdirection);
360:     VecScale(lclP->r,-1.0);
361:     LCLGather(lclP, lclP->GAugL_U0, lclP->GAugL_V0, lclP->GAugL);
362:     LCLGather(lclP, lclP->U0,lclP->V0,lclP->X0);

364:     lclP->recompute_jacobian_flag = PETSC_TRUE;

366:     TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);
367:     TaoLineSearchSetType(tao->linesearch, TAOLINESEARCHMT);
368:     TaoLineSearchSetFromOptions(tao->linesearch);
369:     TaoLineSearchApply(tao->linesearch, tao->solution, &lclP->aug, lclP->GAugL, tao->stepdirection, &step, &ls_reason);
370:     if (lclP->verbose) {
371:       PetscPrintf(PETSC_COMM_WORLD,"Steplength = %g\n",(double)step);
372:     }

374:     LCLScatter(lclP,tao->solution,lclP->U,lclP->V);
375:     TaoComputeObjectiveAndGradient(tao,tao->solution,&f,tao->gradient);
376:     LCLScatter(lclP,tao->gradient,lclP->GU,lclP->GV);

378:     LCLScatter(lclP,lclP->GAugL,lclP->GAugL_U,lclP->GAugL_V);

380:     /* Check convergence */
381:     VecNorm(lclP->GAugL, NORM_2, &mnorm);
382:     VecNorm(tao->constraints, NORM_2, &cnorm);
383:     TaoMonitor(tao,tao->niter,f,mnorm,cnorm,step,&reason);
384:     if (reason != TAO_CONTINUE_ITERATING){
385:       break;
386:     }

388:     /* TODO: use a heuristic to choose how many iterations should be performed within phase 2 */
389:     for (phase2_iter=0; phase2_iter<lclP->phase2_niter; phase2_iter++){
390:       /* We now minimize the objective function starting from the fraction of
391:          the Newton point accepted by applying one step of a reduced-space
392:          method.  The optimization problem is:

394:          minimize f(u+du, v+dv)
395:          s. t.    A(u0,v0)du + B(u0,v0)du = -alpha g(u0,v0)

397:          In particular, we have that
398:          du = -inv(A)*(Bdv + alpha g) */

400:       TaoComputeJacobianState(tao,lclP->X0,tao->jacobian_state,tao->jacobian_state_pre,tao->jacobian_state_inv);
401:       TaoComputeJacobianDesign(tao,lclP->X0,tao->jacobian_design);

403:       /* Store V and constraints */
404:       VecCopy(lclP->V, lclP->V1);
405:       VecCopy(tao->constraints,lclP->con1);

407:       /* Compute multipliers */
408:       /* p1 */
409:       VecSet(lclP->lamda,0.0); /*  Initial guess in CG */
410:       lclP->solve_type = LCL_ADJOINT1;
411:       MatIsSymmetricKnown(tao->jacobian_state,&set,&flag);
412:       if (tao->jacobian_state_pre) {
413:         MatIsSymmetricKnown(tao->jacobian_state_pre,&pset,&pflag);
414:       } else {
415:         pset = pflag = PETSC_TRUE;
416:       }
417:       if (set && pset && flag && pflag) symmetric = PETSC_TRUE;
418:       else symmetric = PETSC_FALSE;

420:       if (tao->jacobian_state_inv) {
421:         if (symmetric) {
422:           MatMult(tao->jacobian_state_inv, lclP->GAugL_U, lclP->lamda);
423:         } else {
424:           MatMultTranspose(tao->jacobian_state_inv, lclP->GAugL_U, lclP->lamda);
425:         }
426:       } else {
427:         if (symmetric) {
428:           KSPSolve(tao->ksp, lclP->GAugL_U,  lclP->lamda);
429:         } else {
430:           KSPSolveTranspose(tao->ksp, lclP->GAugL_U,  lclP->lamda);
431:         }
432:         KSPGetIterationNumber(tao->ksp,&its);
433:         tao->ksp_its+=its;
434:         tao->ksp_tot_its+=its;
435:       }
436:       MatMultTranspose(tao->jacobian_design,lclP->lamda,lclP->g1);
437:       VecAXPY(lclP->g1,-1.0,lclP->GAugL_V);

439:       /* Compute the limited-memory quasi-newton direction */
440:       if (tao->niter > 0) {
441:         MatLMVMSolve(lclP->R,lclP->g1,lclP->s);
442:         VecDot(lclP->s,lclP->g1,&descent);
443:         if (descent <= 0) {
444:           if (lclP->verbose) {
445:             PetscPrintf(PETSC_COMM_WORLD,"Reduced-space direction not descent: %g\n",(double)descent);
446:           }
447:           VecCopy(lclP->g1,lclP->s);
448:         }
449:       } else {
450:         VecCopy(lclP->g1,lclP->s);
451:       }
452:       VecScale(lclP->g1,-1.0);

454:       /* Recover the full space direction */
455:       MatMult(tao->jacobian_design,lclP->s,lclP->WU);
456:       /* VecSet(lclP->r,0.0); */ /*  Initial guess in CG */
457:       lclP->solve_type = LCL_FORWARD2;
458:       if (tao->jacobian_state_inv) {
459:         MatMult(tao->jacobian_state_inv,lclP->WU,lclP->r);
460:       } else {
461:         KSPSolve(tao->ksp, lclP->WU, lclP->r);
462:         KSPGetIterationNumber(tao->ksp,&its);
463:         tao->ksp_its += its;
464:         tao->ksp_tot_its+=its;
465:       }

467:       /* We now minimize the augmented Lagrangian along the direction -r,s */
468:       VecScale(lclP->r, -1.0);
469:       LCLGather(lclP,lclP->r,lclP->s,tao->stepdirection);
470:       VecScale(lclP->r, -1.0);
471:       lclP->recompute_jacobian_flag = PETSC_TRUE;

473:       TaoLineSearchSetInitialStepLength(tao->linesearch,1.0);
474:       TaoLineSearchSetType(tao->linesearch,TAOLINESEARCHMT);
475:       TaoLineSearchSetFromOptions(tao->linesearch);
476:       TaoLineSearchApply(tao->linesearch, tao->solution, &lclP->aug, lclP->GAugL, tao->stepdirection,&step,&ls_reason);
477:       if (lclP->verbose){
478:         PetscPrintf(PETSC_COMM_WORLD,"Reduced-space steplength =  %g\n",(double)step);
479:       }

481:       LCLScatter(lclP,tao->solution,lclP->U,lclP->V);
482:       LCLScatter(lclP,lclP->GL,lclP->GL_U,lclP->GL_V);
483:       LCLScatter(lclP,lclP->GAugL,lclP->GAugL_U,lclP->GAugL_V);
484:       TaoComputeObjectiveAndGradient(tao,tao->solution,&f,tao->gradient);
485:       LCLScatter(lclP,tao->gradient,lclP->GU,lclP->GV);

487:       /* Compute the reduced gradient at the new point */

489:       TaoComputeJacobianState(tao,lclP->X0,tao->jacobian_state,tao->jacobian_state_pre,tao->jacobian_state_inv);
490:       TaoComputeJacobianDesign(tao,lclP->X0,tao->jacobian_design);

492:       /* p2 */
493:       /* Compute multipliers, using lamda-rho*con as an initial guess in PCG */
494:       if (phase2_iter==0){
495:         VecWAXPY(lclP->lamda,-lclP->rho,lclP->con1,lclP->lamda0);
496:       } else {
497:         VecAXPY(lclP->lamda,-lclP->rho,tao->constraints);
498:       }

500:       MatIsSymmetricKnown(tao->jacobian_state,&set,&flag);
501:       if (tao->jacobian_state_pre) {
502:         MatIsSymmetricKnown(tao->jacobian_state_pre,&pset,&pflag);
503:       } else {
504:         pset = pflag = PETSC_TRUE;
505:       }
506:       if (set && pset && flag && pflag) symmetric = PETSC_TRUE;
507:       else symmetric = PETSC_FALSE;

509:       lclP->solve_type = LCL_ADJOINT2;
510:       if (tao->jacobian_state_inv) {
511:         if (symmetric) {
512:           MatMult(tao->jacobian_state_inv, lclP->GU, lclP->lamda);
513:         } else {
514:           MatMultTranspose(tao->jacobian_state_inv, lclP->GU, lclP->lamda);
515:         }
516:       } else {
517:         if (symmetric) {
518:           KSPSolve(tao->ksp, lclP->GU,  lclP->lamda);
519:         } else {
520:           KSPSolveTranspose(tao->ksp, lclP->GU,  lclP->lamda);
521:         }
522:         KSPGetIterationNumber(tao->ksp,&its);
523:         tao->ksp_its += its;
524:         tao->ksp_tot_its += its;
525:       }

527:       MatMultTranspose(tao->jacobian_design,lclP->lamda,lclP->g2);
528:       VecAXPY(lclP->g2,-1.0,lclP->GV);

530:       VecScale(lclP->g2,-1.0);

532:       /* Update the quasi-newton approximation */
533:       if (phase2_iter >= 0){
534:         MatLMVMSetPrev(lclP->R,lclP->V1,lclP->g1);
535:       }
536:       MatLMVMUpdate(lclP->R,lclP->V,lclP->g2);
537:       /* Use "-tao_ls_type gpcg -tao_ls_ftol 0 -tao_lmm_broyden_phi 0.0 -tao_lmm_scale_type scalar" to obtain agreement with Matlab code */

539:     }

541:     VecCopy(lclP->lamda,lclP->lamda0);

543:     /* Evaluate Function, Gradient, Constraints, and Jacobian */
544:     TaoComputeObjectiveAndGradient(tao,tao->solution,&f,tao->gradient);
545:     LCLScatter(lclP,tao->solution,lclP->U,lclP->V);
546:     LCLScatter(lclP,tao->gradient,lclP->GU,lclP->GV);

548:     TaoComputeJacobianState(tao,tao->solution,tao->jacobian_state,tao->jacobian_state_pre,tao->jacobian_state_inv);
549:     TaoComputeJacobianDesign(tao,tao->solution,tao->jacobian_design);
550:     TaoComputeConstraints(tao,tao->solution, tao->constraints);

552:     LCLComputeAugmentedLagrangianAndGradient(tao->linesearch,tao->solution,&lclP->aug,lclP->GAugL,tao);

554:     VecNorm(lclP->GAugL, NORM_2, &mnorm);

556:     /* Evaluate constraint norm */
557:     VecNorm(tao->constraints, NORM_2, &cnorm);

559:     /* Monitor convergence */
560:     tao->niter++;
561:     TaoMonitor(tao, tao->niter,f,mnorm,cnorm,step,&reason);
562:   }
563:   MatDestroy(&lclP->R);
564:   return(0);
565: }

567: /*MC
568:  TAOLCL - linearly constrained lagrangian method for pde-constrained optimization

570: + -tao_lcl_eps1 - epsilon 1 tolerance
571: . -tao_lcl_eps2","epsilon 2 tolerance","",lclP->eps2,&lclP->eps2,NULL);
572: . -tao_lcl_rho0","init value for rho","",lclP->rho0,&lclP->rho0,NULL);
573: . -tao_lcl_rhomax","max value for rho","",lclP->rhomax,&lclP->rhomax,NULL);
574: . -tao_lcl_phase2_niter - Number of phase 2 iterations in LCL algorithm
575: . -tao_lcl_verbose - Print verbose output if True
576: . -tao_lcl_tola - Tolerance for first forward solve
577: . -tao_lcl_tolb - Tolerance for first adjoint solve
578: . -tao_lcl_tolc - Tolerance for second forward solve
579: - -tao_lcl_told - Tolerance for second adjoint solve

581:   Level: beginner
582: M*/
583: PETSC_EXTERN PetscErrorCode TaoCreate_LCL(Tao tao)
584: {
585:   TAO_LCL        *lclP;
587:   const char     *morethuente_type = TAOLINESEARCHMT;

590:   tao->ops->setup = TaoSetup_LCL;
591:   tao->ops->solve = TaoSolve_LCL;
592:   tao->ops->view = TaoView_LCL;
593:   tao->ops->setfromoptions = TaoSetFromOptions_LCL;
594:   tao->ops->destroy = TaoDestroy_LCL;
595:   PetscNewLog(tao,&lclP);
596:   tao->data = (void*)lclP;

598:   /* Override default settings (unless already changed) */
599:   if (!tao->max_it_changed) tao->max_it = 200;
600:   if (!tao->catol_changed) tao->catol = 1.0e-4;
601:   if (!tao->gatol_changed) tao->gttol = 1.0e-4;
602:   if (!tao->grtol_changed) tao->gttol = 1.0e-4;
603:   if (!tao->gttol_changed) tao->gttol = 1.0e-4;
604:   lclP->rho0 = 1.0e-4;
605:   lclP->rhomax=1e5;
606:   lclP->eps1 = 1.0e-8;
607:   lclP->eps2 = 0.0;
608:   lclP->solve_type=2;
609:   lclP->tau[0] = lclP->tau[1] = lclP->tau[2] = lclP->tau[3] = 1.0e-4;
610:   TaoLineSearchCreate(((PetscObject)tao)->comm, &tao->linesearch);
611:   TaoLineSearchSetType(tao->linesearch, morethuente_type);
612:   TaoLineSearchSetOptionsPrefix(tao->linesearch,tao->hdr.prefix);

614:   TaoLineSearchSetObjectiveAndGradientRoutine(tao->linesearch,LCLComputeAugmentedLagrangianAndGradient, tao);
615:   KSPCreate(((PetscObject)tao)->comm,&tao->ksp);
616:   KSPSetOptionsPrefix(tao->ksp, tao->hdr.prefix);
617:   KSPSetFromOptions(tao->ksp);
618:   return(0);
619: }

621: static PetscErrorCode LCLComputeLagrangianAndGradient(TaoLineSearch ls, Vec X, PetscReal *f, Vec G, void *ptr)
622: {
623:   Tao            tao = (Tao)ptr;
624:   TAO_LCL        *lclP = (TAO_LCL*)tao->data;
625:   PetscBool      set,pset,flag,pflag,symmetric;
626:   PetscReal      cdotl;

630:   TaoComputeObjectiveAndGradient(tao,X,f,G);
631:   LCLScatter(lclP,G,lclP->GU,lclP->GV);
632:   if (lclP->recompute_jacobian_flag) {
633:     TaoComputeJacobianState(tao,X,tao->jacobian_state,tao->jacobian_state_pre,tao->jacobian_state_inv);
634:     TaoComputeJacobianDesign(tao,X,tao->jacobian_design);
635:   }
636:   TaoComputeConstraints(tao,X, tao->constraints);
637:   MatIsSymmetricKnown(tao->jacobian_state,&set,&flag);
638:   if (tao->jacobian_state_pre) {
639:     MatIsSymmetricKnown(tao->jacobian_state_pre,&pset,&pflag);
640:   } else {
641:     pset = pflag = PETSC_TRUE;
642:   }
643:   if (set && pset && flag && pflag) symmetric = PETSC_TRUE;
644:   else symmetric = PETSC_FALSE;

646:   VecDot(lclP->lamda0, tao->constraints, &cdotl);
647:   lclP->lgn = *f - cdotl;

649:   /* Gradient of Lagrangian GL = G - J' * lamda */
650:   /*      WU = A' * WL
651:           WV = B' * WL */
652:   if (symmetric) {
653:     MatMult(tao->jacobian_state,lclP->lamda0,lclP->GL_U);
654:   } else {
655:     MatMultTranspose(tao->jacobian_state,lclP->lamda0,lclP->GL_U);
656:   }
657:   MatMultTranspose(tao->jacobian_design,lclP->lamda0,lclP->GL_V);
658:   VecScale(lclP->GL_U,-1.0);
659:   VecScale(lclP->GL_V,-1.0);
660:   VecAXPY(lclP->GL_U,1.0,lclP->GU);
661:   VecAXPY(lclP->GL_V,1.0,lclP->GV);
662:   LCLGather(lclP,lclP->GL_U,lclP->GL_V,lclP->GL);

664:   f[0] = lclP->lgn;
665:   VecCopy(lclP->GL,G);
666:   return(0);
667: }

669: static PetscErrorCode LCLComputeAugmentedLagrangianAndGradient(TaoLineSearch ls, Vec X, PetscReal *f, Vec G, void *ptr)
670: {
671:   Tao            tao = (Tao)ptr;
672:   TAO_LCL        *lclP = (TAO_LCL*)tao->data;
673:   PetscReal      con2;
674:   PetscBool      flag,pflag,set,pset,symmetric;

678:   LCLComputeLagrangianAndGradient(tao->linesearch,X,f,G,tao);
679:   LCLScatter(lclP,G,lclP->GL_U,lclP->GL_V);
680:   VecDot(tao->constraints,tao->constraints,&con2);
681:   lclP->aug = lclP->lgn + 0.5*lclP->rho*con2;

683:   /* Gradient of Aug. Lagrangian GAugL = GL + rho * J' c */
684:   /*      WU = A' * c
685:           WV = B' * c */
686:   MatIsSymmetricKnown(tao->jacobian_state,&set,&flag);
687:   if (tao->jacobian_state_pre) {
688:     MatIsSymmetricKnown(tao->jacobian_state_pre,&pset,&pflag);
689:   } else {
690:     pset = pflag = PETSC_TRUE;
691:   }
692:   if (set && pset && flag && pflag) symmetric = PETSC_TRUE;
693:   else symmetric = PETSC_FALSE;

695:   if (symmetric) {
696:     MatMult(tao->jacobian_state,tao->constraints,lclP->GAugL_U);
697:   } else {
698:     MatMultTranspose(tao->jacobian_state,tao->constraints,lclP->GAugL_U);
699:   }

701:   MatMultTranspose(tao->jacobian_design,tao->constraints,lclP->GAugL_V);
702:   VecAYPX(lclP->GAugL_U,lclP->rho,lclP->GL_U);
703:   VecAYPX(lclP->GAugL_V,lclP->rho,lclP->GL_V);
704:   LCLGather(lclP,lclP->GAugL_U,lclP->GAugL_V,lclP->GAugL);

706:   f[0] = lclP->aug;
707:   VecCopy(lclP->GAugL,G);
708:   return(0);
709: }

711: PetscErrorCode LCLGather(TAO_LCL *lclP, Vec u, Vec v, Vec x)
712: {
715:   VecScatterBegin(lclP->state_scatter, u, x, INSERT_VALUES, SCATTER_REVERSE);
716:   VecScatterEnd(lclP->state_scatter, u, x, INSERT_VALUES, SCATTER_REVERSE);
717:   VecScatterBegin(lclP->design_scatter, v, x, INSERT_VALUES, SCATTER_REVERSE);
718:   VecScatterEnd(lclP->design_scatter, v, x, INSERT_VALUES, SCATTER_REVERSE);
719:   return(0);

721: }
722: PetscErrorCode LCLScatter(TAO_LCL *lclP, Vec x, Vec u, Vec v)
723: {
726:   VecScatterBegin(lclP->state_scatter, x, u, INSERT_VALUES, SCATTER_FORWARD);
727:   VecScatterEnd(lclP->state_scatter, x, u, INSERT_VALUES, SCATTER_FORWARD);
728:   VecScatterBegin(lclP->design_scatter, x, v, INSERT_VALUES, SCATTER_FORWARD);
729:   VecScatterEnd(lclP->design_scatter, x, v, INSERT_VALUES, SCATTER_FORWARD);
730:   return(0);

732: }