Actual source code: morethuente.c

petsc-3.8.4 2018-03-24
Report Typos and Errors
  1:  #include <petsc/private/taolinesearchimpl.h>
  2:  #include <../src/tao/linesearch/impls/morethuente/morethuente.h>

  4: /*
  5:    This algorithm is taken from More' and Thuente, "Line search algorithms
  6:    with guaranteed sufficient decrease", Argonne National Laboratory,
  7:    Technical Report MCS-P330-1092.
  8: */

 10: static PetscErrorCode Tao_mcstep(TaoLineSearch ls,PetscReal *stx,PetscReal *fx,PetscReal *dx,PetscReal *sty,PetscReal *fy,PetscReal *dy,PetscReal *stp,PetscReal *fp,PetscReal *dp);

 12: static PetscErrorCode TaoLineSearchDestroy_MT(TaoLineSearch ls)
 13: {
 14:   PetscErrorCode   ierr;
 15:   TaoLineSearch_MT *mt;

 19:   mt = (TaoLineSearch_MT*)(ls->data);
 20:   if (mt->x) {
 21:     PetscObjectDereference((PetscObject)mt->x);
 22:   }
 23:   VecDestroy(&mt->work);
 24:   PetscFree(ls->data);
 25:   return(0);
 26: }

 28: static PetscErrorCode TaoLineSearchSetFromOptions_MT(PetscOptionItems *PetscOptionsObject,TaoLineSearch ls)
 29: {
 32:   return(0);
 33: }


 36: /* @ TaoApply_LineSearch - This routine takes step length of 1.0.

 38:    Input Parameters:
 39: +  tao - Tao context
 40: .  X - current iterate (on output X contains new iterate, X + step*S)
 41: .  f - objective function evaluated at X
 42: .  G - gradient evaluated at X
 43: -  D - search direction


 46:    Info is set to 0.

 48: @ */

 50: static PetscErrorCode TaoLineSearchApply_MT(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s)
 51: {
 52:   PetscErrorCode   ierr;
 53:   TaoLineSearch_MT *mt;

 55:   PetscReal        xtrapf = 4.0;
 56:   PetscReal        finit, width, width1, dginit, fm, fxm, fym, dgm, dgxm, dgym;
 57:   PetscReal        dgx, dgy, dg, dg2, fx, fy, stx, sty, dgtest;
 58:   PetscReal        ftest1=0.0, ftest2=0.0;
 59:   PetscInt         i, stage1,n1,n2,nn1,nn2;
 60:   PetscReal        bstepmin1, bstepmin2, bstepmax;
 61:   PetscBool        g_computed=PETSC_FALSE; /* to prevent extra gradient computation */


 70:   /* comm,type,size checks are done in interface TaoLineSearchApply */
 71:   mt = (TaoLineSearch_MT*)(ls->data);
 72:   ls->reason = TAOLINESEARCH_CONTINUE_ITERATING;

 74:   /* Check work vector */
 75:   if (!mt->work) {
 76:     VecDuplicate(x,&mt->work);
 77:     mt->x = x;
 78:     PetscObjectReference((PetscObject)mt->x);
 79:   } else if (x != mt->x) {
 80:     VecDestroy(&mt->work);
 81:     VecDuplicate(x,&mt->work);
 82:     PetscObjectDereference((PetscObject)mt->x);
 83:     mt->x = x;
 84:     PetscObjectReference((PetscObject)mt->x);
 85:   }

 87:   if (ls->bounded) {
 88:     /* Compute step length needed to make all variables equal a bound */
 89:     /* Compute the smallest steplength that will make one nonbinding variable
 90:      equal the bound */
 91:     VecGetLocalSize(ls->upper,&n1);
 92:     VecGetLocalSize(mt->x, &n2);
 93:     VecGetSize(ls->upper,&nn1);
 94:     VecGetSize(mt->x,&nn2);
 95:     if (n1 != n2 || nn1 != nn2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Variable vector not compatible with bounds vector");
 96:     VecScale(s,-1.0);
 97:     VecBoundGradientProjection(s,x,ls->lower,ls->upper,s);
 98:     VecScale(s,-1.0);
 99:     VecStepBoundInfo(x,s,ls->lower,ls->upper,&bstepmin1,&bstepmin2,&bstepmax);
100:     ls->stepmax = PetscMin(bstepmax,1.0e15);
101:   }

103:   VecDot(g,s,&dginit);
104:   if (PetscIsInfOrNanReal(dginit)) {
105:     PetscInfo1(ls,"Initial Line Search step * g is Inf or Nan (%g)\n",(double)dginit);
106:     ls->reason=TAOLINESEARCH_FAILED_INFORNAN;
107:     return(0);
108:   }
109:   if (dginit >= 0.0) {
110:     PetscInfo1(ls,"Initial Line Search step * g is not descent direction (%g)\n",(double)dginit);
111:     ls->reason = TAOLINESEARCH_FAILED_ASCENT;
112:     return(0);
113:   }


116:   /* Initialization */
117:   mt->bracket = 0;
118:   stage1 = 1;
119:   finit = *f;
120:   dgtest = ls->ftol * dginit;
121:   width = ls->stepmax - ls->stepmin;
122:   width1 = width * 2.0;
123:   VecCopy(x,mt->work);
124:   /* Variable dictionary:
125:    stx, fx, dgx - the step, function, and derivative at the best step
126:    sty, fy, dgy - the step, function, and derivative at the other endpoint
127:    of the interval of uncertainty
128:    step, f, dg - the step, function, and derivative at the current step */

130:   stx = 0.0;
131:   fx  = finit;
132:   dgx = dginit;
133:   sty = 0.0;
134:   fy  = finit;
135:   dgy = dginit;

137:   ls->step=ls->initstep;
138:   for (i=0; i< ls->max_funcs; i++) {
139:     /* Set min and max steps to correspond to the interval of uncertainty */
140:     if (mt->bracket) {
141:       ls->stepmin = PetscMin(stx,sty);
142:       ls->stepmax = PetscMax(stx,sty);
143:     } else {
144:       ls->stepmin = stx;
145:       ls->stepmax = ls->step + xtrapf * (ls->step - stx);
146:     }

148:     /* Force the step to be within the bounds */
149:     ls->step = PetscMax(ls->step,ls->stepmin);
150:     ls->step = PetscMin(ls->step,ls->stepmax);

152:     /* If an unusual termination is to occur, then let step be the lowest
153:      point obtained thus far */
154:     if ((stx!=0) && (((mt->bracket) && (ls->step <= ls->stepmin || ls->step >= ls->stepmax)) || ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol * ls->stepmax)) ||
155:                      ((ls->nfeval+ls->nfgeval) >= ls->max_funcs - 1) || (mt->infoc == 0))) {
156:       ls->step = stx;
157:     }

159:     VecCopy(x,mt->work);
160:     VecAXPY(mt->work,ls->step,s);   /* W = X + step*S */

162:     if (ls->bounded) {
163:       VecMedian(ls->lower, mt->work, ls->upper, mt->work);
164:     }
165:     if (ls->usegts) {
166:       TaoLineSearchComputeObjectiveAndGTS(ls,mt->work,f,&dg);
167:       g_computed=PETSC_FALSE;
168:     } else {
169:       TaoLineSearchComputeObjectiveAndGradient(ls,mt->work,f,g);
170:       g_computed=PETSC_TRUE;
171:       if (ls->bounded) {
172:         VecDot(g,x,&dg);
173:         VecDot(g,mt->work,&dg2);
174:         dg = (dg2 - dg)/ls->step;
175:       } else {
176:         VecDot(g,s,&dg);
177:       }
178:     }

180:     if (0 == i) {
181:       ls->f_fullstep=*f;
182:     }

184:     if (PetscIsInfOrNanReal(*f) || PetscIsInfOrNanReal(dg)) {
185:       /* User provided compute function generated Not-a-Number, assume
186:        domain violation and set function value and directional
187:        derivative to infinity. */
188:       *f = PETSC_INFINITY;
189:       dg = PETSC_INFINITY;
190:     }

192:     ftest1 = finit + ls->step * dgtest;
193:     if (ls->bounded) {
194:       ftest2 = finit + ls->step * dgtest * ls->ftol;
195:     }
196:     /* Convergence testing */
197:     if (((*f - ftest1 <= 1.0e-10 * PetscAbsReal(finit)) &&  (PetscAbsReal(dg) + ls->gtol*dginit <= 0.0))) {
198:       PetscInfo(ls, "Line search success: Sufficient decrease and directional deriv conditions hold\n");
199:       ls->reason = TAOLINESEARCH_SUCCESS;
200:       break;
201:     }

203:     /* Check Armijo if beyond the first breakpoint */
204:     if (ls->bounded && (*f <= ftest2) && (ls->step >= bstepmin2)) {
205:       PetscInfo(ls,"Line search success: Sufficient decrease.\n");
206:       ls->reason = TAOLINESEARCH_SUCCESS;
207:       break;
208:     }

210:     /* Checks for bad cases */
211:     if (((mt->bracket) && (ls->step <= ls->stepmin||ls->step >= ls->stepmax)) || (!mt->infoc)) {
212:       PetscInfo(ls,"Rounding errors may prevent further progress.  May not be a step satisfying\n");
213:       PetscInfo(ls,"sufficient decrease and curvature conditions. Tolerances may be too small.\n");
214:       ls->reason = TAOLINESEARCH_HALTED_OTHER;
215:       break;
216:     }
217:     if ((ls->step == ls->stepmax) && (*f <= ftest1) && (dg <= dgtest)) {
218:       PetscInfo1(ls,"Step is at the upper bound, stepmax (%g)\n",(double)ls->stepmax);
219:       ls->reason = TAOLINESEARCH_HALTED_UPPERBOUND;
220:       break;
221:     }
222:     if ((ls->step == ls->stepmin) && (*f >= ftest1) && (dg >= dgtest)) {
223:       PetscInfo1(ls,"Step is at the lower bound, stepmin (%g)\n",(double)ls->stepmin);
224:       ls->reason = TAOLINESEARCH_HALTED_LOWERBOUND;
225:       break;
226:     }
227:     if ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol*ls->stepmax)){
228:       PetscInfo1(ls,"Relative width of interval of uncertainty is at most rtol (%g)\n",(double)ls->rtol);
229:       ls->reason = TAOLINESEARCH_HALTED_RTOL;
230:       break;
231:     }

233:     /* In the first stage, we seek a step for which the modified function
234:      has a nonpositive value and nonnegative derivative */
235:     if ((stage1) && (*f <= ftest1) && (dg >= dginit * PetscMin(ls->ftol, ls->gtol))) {
236:       stage1 = 0;
237:     }

239:     /* A modified function is used to predict the step only if we
240:      have not obtained a step for which the modified function has a
241:      nonpositive function value and nonnegative derivative, and if a
242:      lower function value has been obtained but the decrease is not
243:      sufficient */

245:     if ((stage1) && (*f <= fx) && (*f > ftest1)) {
246:       fm   = *f - ls->step * dgtest;    /* Define modified function */
247:       fxm  = fx - stx * dgtest;         /* and derivatives */
248:       fym  = fy - sty * dgtest;
249:       dgm  = dg - dgtest;
250:       dgxm = dgx - dgtest;
251:       dgym = dgy - dgtest;

253:       /* if (dgxm * (ls->step - stx) >= 0.0) */
254:       /* Update the interval of uncertainty and compute the new step */
255:       Tao_mcstep(ls,&stx,&fxm,&dgxm,&sty,&fym,&dgym,&ls->step,&fm,&dgm);

257:       fx  = fxm + stx * dgtest; /* Reset the function and */
258:       fy  = fym + sty * dgtest; /* gradient values */
259:       dgx = dgxm + dgtest;
260:       dgy = dgym + dgtest;
261:     } else {
262:       /* Update the interval of uncertainty and compute the new step */
263:       Tao_mcstep(ls,&stx,&fx,&dgx,&sty,&fy,&dgy,&ls->step,f,&dg);
264:     }

266:     /* Force a sufficient decrease in the interval of uncertainty */
267:     if (mt->bracket) {
268:       if (PetscAbsReal(sty - stx) >= 0.66 * width1) ls->step = stx + 0.5*(sty - stx);
269:       width1 = width;
270:       width = PetscAbsReal(sty - stx);
271:     }
272:   }
273:   if ((ls->nfeval+ls->nfgeval) > ls->max_funcs) {
274:     PetscInfo2(ls,"Number of line search function evals (%D) > maximum (%D)\n",(ls->nfeval+ls->nfgeval),ls->max_funcs);
275:     ls->reason = TAOLINESEARCH_HALTED_MAXFCN;
276:   }

278:   /* Finish computations */
279:   PetscInfo2(ls,"%D function evals in line search, step = %g\n",(ls->nfeval+ls->nfgeval),(double)ls->step);

281:   /* Set new solution vector and compute gradient if needed */
282:   VecCopy(mt->work,x);
283:   if (!g_computed) {
284:     TaoLineSearchComputeGradient(ls,mt->work,g);
285:   }
286:   return(0);
287: }

289: PETSC_EXTERN PetscErrorCode TaoLineSearchCreate_MT(TaoLineSearch ls)
290: {
291:   PetscErrorCode   ierr;
292:   TaoLineSearch_MT *ctx;

296:   PetscNewLog(ls,&ctx);
297:   ctx->bracket=0;
298:   ctx->infoc=1;
299:   ls->data = (void*)ctx;
300:   ls->initstep = 1.0;
301:   ls->ops->setup=0;
302:   ls->ops->reset=0;
303:   ls->ops->apply=TaoLineSearchApply_MT;
304:   ls->ops->destroy=TaoLineSearchDestroy_MT;
305:   ls->ops->setfromoptions=TaoLineSearchSetFromOptions_MT;
306:   return(0);
307: }

309: /*
310:      The subroutine mcstep is taken from the work of Jorge Nocedal.
311:      this is a variant of More' and Thuente's routine.

313:      subroutine mcstep

315:      the purpose of mcstep is to compute a safeguarded step for
316:      a linesearch and to update an interval of uncertainty for
317:      a minimizer of the function.

319:      the parameter stx contains the step with the least function
320:      value. the parameter stp contains the current step. it is
321:      assumed that the derivative at stx is negative in the
322:      direction of the step. if bracket is set true then a
323:      minimizer has been bracketed in an interval of uncertainty
324:      with endpoints stx and sty.

326:      the subroutine statement is

328:      subroutine mcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,bracket,
329:                        stpmin,stpmax,info)

331:      where

333:        stx, fx, and dx are variables which specify the step,
334:          the function, and the derivative at the best step obtained
335:          so far. The derivative must be negative in the direction
336:          of the step, that is, dx and stp-stx must have opposite
337:          signs. On output these parameters are updated appropriately.

339:        sty, fy, and dy are variables which specify the step,
340:          the function, and the derivative at the other endpoint of
341:          the interval of uncertainty. On output these parameters are
342:          updated appropriately.

344:        stp, fp, and dp are variables which specify the step,
345:          the function, and the derivative at the current step.
346:          If bracket is set true then on input stp must be
347:          between stx and sty. On output stp is set to the new step.

349:        bracket is a logical variable which specifies if a minimizer
350:          has been bracketed.  If the minimizer has not been bracketed
351:          then on input bracket must be set false.  If the minimizer
352:          is bracketed then on output bracket is set true.

354:        stpmin and stpmax are input variables which specify lower
355:          and upper bounds for the step.

357:        info is an integer output variable set as follows:
358:          if info = 1,2,3,4,5, then the step has been computed
359:          according to one of the five cases below. otherwise
360:          info = 0, and this indicates improper input parameters.

362:      subprograms called

364:        fortran-supplied ... abs,max,min,sqrt

366:      argonne national laboratory. minpack project. june 1983
367:      jorge j. more', david j. thuente

369: */

371: static PetscErrorCode Tao_mcstep(TaoLineSearch ls,PetscReal *stx,PetscReal *fx,PetscReal *dx,PetscReal *sty,PetscReal *fy,PetscReal *dy,PetscReal *stp,PetscReal *fp,PetscReal *dp)
372: {
373:   TaoLineSearch_MT *mtP = (TaoLineSearch_MT *) ls->data;
374:   PetscReal        gamma1, p, q, r, s, sgnd, stpc, stpf, stpq, theta;
375:   PetscInt         bound;

378:   /* Check the input parameters for errors */
379:   mtP->infoc = 0;
380:   if (mtP->bracket && (*stp <= PetscMin(*stx,*sty) || (*stp >= PetscMax(*stx,*sty)))) SETERRQ(PETSC_COMM_SELF,1,"bad stp in bracket");
381:   if (*dx * (*stp-*stx) >= 0.0) SETERRQ(PETSC_COMM_SELF,1,"dx * (stp-stx) >= 0.0");
382:   if (ls->stepmax < ls->stepmin) SETERRQ(PETSC_COMM_SELF,1,"stepmax > stepmin");

384:   /* Determine if the derivatives have opposite sign */
385:   sgnd = *dp * (*dx / PetscAbsReal(*dx));

387:   if (*fp > *fx) {
388:     /* Case 1: a higher function value.
389:      The minimum is bracketed. If the cubic step is closer
390:      to stx than the quadratic step, the cubic step is taken,
391:      else the average of the cubic and quadratic steps is taken. */

393:     mtP->infoc = 1;
394:     bound = 1;
395:     theta = 3 * (*fx - *fp) / (*stp - *stx) + *dx + *dp;
396:     s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dx));
397:     s = PetscMax(s,PetscAbsReal(*dp));
398:     gamma1 = s*PetscSqrtScalar(PetscPowScalar(theta/s,2.0) - (*dx/s)*(*dp/s));
399:     if (*stp < *stx) gamma1 = -gamma1;
400:     /* Can p be 0?  Check */
401:     p = (gamma1 - *dx) + theta;
402:     q = ((gamma1 - *dx) + gamma1) + *dp;
403:     r = p/q;
404:     stpc = *stx + r*(*stp - *stx);
405:     stpq = *stx + ((*dx/((*fx-*fp)/(*stp-*stx)+*dx))*0.5) * (*stp - *stx);

407:     if (PetscAbsReal(stpc-*stx) < PetscAbsReal(stpq-*stx)) {
408:       stpf = stpc;
409:     } else {
410:       stpf = stpc + 0.5*(stpq - stpc);
411:     }
412:     mtP->bracket = 1;
413:   } else if (sgnd < 0.0) {
414:     /* Case 2: A lower function value and derivatives of
415:      opposite sign. The minimum is bracketed. If the cubic
416:      step is closer to stx than the quadratic (secant) step,
417:      the cubic step is taken, else the quadratic step is taken. */

419:     mtP->infoc = 2;
420:     bound = 0;
421:     theta = 3*(*fx - *fp)/(*stp - *stx) + *dx + *dp;
422:     s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dx));
423:     s = PetscMax(s,PetscAbsReal(*dp));
424:     gamma1 = s*PetscSqrtScalar(PetscPowScalar(theta/s,2.0) - (*dx/s)*(*dp/s));
425:     if (*stp > *stx) gamma1 = -gamma1;
426:     p = (gamma1 - *dp) + theta;
427:     q = ((gamma1 - *dp) + gamma1) + *dx;
428:     r = p/q;
429:     stpc = *stp + r*(*stx - *stp);
430:     stpq = *stp + (*dp/(*dp-*dx))*(*stx - *stp);

432:     if (PetscAbsReal(stpc-*stp) > PetscAbsReal(stpq-*stp)) {
433:       stpf = stpc;
434:     } else {
435:       stpf = stpq;
436:     }
437:     mtP->bracket = 1;
438:   } else if (PetscAbsReal(*dp) < PetscAbsReal(*dx)) {
439:     /* Case 3: A lower function value, derivatives of the
440:      same sign, and the magnitude of the derivative decreases.
441:      The cubic step is only used if the cubic tends to infinity
442:      in the direction of the step or if the minimum of the cubic
443:      is beyond stp. Otherwise the cubic step is defined to be
444:      either stepmin or stepmax. The quadratic (secant) step is also
445:      computed and if the minimum is bracketed then the step
446:      closest to stx is taken, else the step farthest away is taken. */

448:     mtP->infoc = 3;
449:     bound = 1;
450:     theta = 3*(*fx - *fp)/(*stp - *stx) + *dx + *dp;
451:     s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dx));
452:     s = PetscMax(s,PetscAbsReal(*dp));

454:     /* The case gamma1 = 0 only arises if the cubic does not tend
455:        to infinity in the direction of the step. */
456:     gamma1 = s*PetscSqrtScalar(PetscMax(0.0,PetscPowScalar(theta/s,2.0) - (*dx/s)*(*dp/s)));
457:     if (*stp > *stx) gamma1 = -gamma1;
458:     p = (gamma1 - *dp) + theta;
459:     q = (gamma1 + (*dx - *dp)) + gamma1;
460:     r = p/q;
461:     if (r < 0.0 && gamma1 != 0.0) stpc = *stp + r*(*stx - *stp);
462:     else if (*stp > *stx)        stpc = ls->stepmax;
463:     else                         stpc = ls->stepmin;
464:     stpq = *stp + (*dp/(*dp-*dx)) * (*stx - *stp);

466:     if (mtP->bracket) {
467:       if (PetscAbsReal(*stp-stpc) < PetscAbsReal(*stp-stpq)) {
468:         stpf = stpc;
469:       } else {
470:         stpf = stpq;
471:       }
472:     } else {
473:       if (PetscAbsReal(*stp-stpc) > PetscAbsReal(*stp-stpq)) {
474:         stpf = stpc;
475:       } else {
476:         stpf = stpq;
477:       }
478:     }
479:   } else {
480:     /* Case 4: A lower function value, derivatives of the
481:        same sign, and the magnitude of the derivative does
482:        not decrease. If the minimum is not bracketed, the step
483:        is either stpmin or stpmax, else the cubic step is taken. */

485:     mtP->infoc = 4;
486:     bound = 0;
487:     if (mtP->bracket) {
488:       theta = 3*(*fp - *fy)/(*sty - *stp) + *dy + *dp;
489:       s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dy));
490:       s = PetscMax(s,PetscAbsReal(*dp));
491:       gamma1 = s*PetscSqrtScalar(PetscPowScalar(theta/s,2.0) - (*dy/s)*(*dp/s));
492:       if (*stp > *sty) gamma1 = -gamma1;
493:       p = (gamma1 - *dp) + theta;
494:       q = ((gamma1 - *dp) + gamma1) + *dy;
495:       r = p/q;
496:       stpc = *stp + r*(*sty - *stp);
497:       stpf = stpc;
498:     } else if (*stp > *stx) {
499:       stpf = ls->stepmax;
500:     } else {
501:       stpf = ls->stepmin;
502:     }
503:   }

505:   /* Update the interval of uncertainty.  This update does not
506:      depend on the new step or the case analysis above. */

508:   if (*fp > *fx) {
509:     *sty = *stp;
510:     *fy = *fp;
511:     *dy = *dp;
512:   } else {
513:     if (sgnd < 0.0) {
514:       *sty = *stx;
515:       *fy = *fx;
516:       *dy = *dx;
517:     }
518:     *stx = *stp;
519:     *fx = *fp;
520:     *dx = *dp;
521:   }

523:   /* Compute the new step and safeguard it. */
524:   stpf = PetscMin(ls->stepmax,stpf);
525:   stpf = PetscMax(ls->stepmin,stpf);
526:   *stp = stpf;
527:   if (mtP->bracket && bound) {
528:     if (*sty > *stx) {
529:       *stp = PetscMin(*stx+0.66*(*sty-*stx),*stp);
530:     } else {
531:       *stp = PetscMax(*stx+0.66*(*sty-*stx),*stp);
532:     }
533:   }
534:   return(0);
535: }