Actual source code: partition.c

petsc-3.8.4 2018-03-24
Report Typos and Errors

  2:  #include <petsc/private/matimpl.h>

  4: /* Logging support */
  5: PetscClassId MAT_PARTITIONING_CLASSID;

  7: /*
  8:    Simplest partitioning, keeps the current partitioning.
  9: */
 10: static PetscErrorCode MatPartitioningApply_Current(MatPartitioning part,IS *partitioning)
 11: {
 13:   PetscInt       m;
 14:   PetscMPIInt    rank,size;

 17:   MPI_Comm_size(PetscObjectComm((PetscObject)part),&size);
 18:   if (part->n != size) {
 19:     const char *prefix;
 20:     PetscObjectGetOptionsPrefix((PetscObject)part,&prefix);
 21:     SETERRQ1(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"This is the DEFAULT NO-OP partitioner, it currently only supports one domain per processor\nuse -%smat_partitioning_type parmetis or chaco or ptscotch for more than one subdomain per processor",prefix ? prefix : "");
 22:   }
 23:   MPI_Comm_rank(PetscObjectComm((PetscObject)part),&rank);

 25:   MatGetLocalSize(part->adj,&m,NULL);
 26:   ISCreateStride(PetscObjectComm((PetscObject)part),m,rank,0,partitioning);
 27:   return(0);
 28: }

 30: /*
 31:    partition an index to rebalance the computation
 32: */
 33: static PetscErrorCode MatPartitioningApply_Average(MatPartitioning part,IS *partitioning)
 34: {
 36:   PetscInt       m,M,nparts,*indices,r,d,*parts,i,start,end,loc;

 39:   MatGetSize(part->adj,&M,NULL);
 40:   MatGetLocalSize(part->adj,&m,NULL);
 41:   nparts = part->n;
 42:   PetscCalloc1(nparts,&parts);
 43:   d = M/nparts;
 44:   for(i=0; i<nparts; i++){
 45:         parts[i] = d;
 46:   }
 47:   r = M%nparts;
 48:   for(i=0; i<r; i++){
 49:         parts[i] += 1;
 50:   }
 51:   for(i=1; i<nparts; i++){
 52:         parts[i] += parts[i-1];
 53:   }
 54:   PetscCalloc1(m,&indices);
 55:   MatGetOwnershipRange(part->adj,&start,&end);
 56:   for(i=start; i<end; i++){
 57:         PetscFindInt(i,nparts,parts,&loc);
 58:         if(loc<0) loc = -(loc+1);
 59:         else loc = loc+1;
 60:         indices[i-start] = loc;
 61:   }
 62:   PetscFree(parts);
 63:   ISCreateGeneral(PetscObjectComm((PetscObject)part),m,indices,PETSC_OWN_POINTER,partitioning);
 64:   return(0);
 65: }

 67: static PetscErrorCode MatPartitioningApply_Square(MatPartitioning part,IS *partitioning)
 68: {
 70:   PetscInt       cell,n,N,p,rstart,rend,*color;
 71:   PetscMPIInt    size;

 74:   MPI_Comm_size(PetscObjectComm((PetscObject)part),&size);
 75:   if (part->n != size) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"Currently only supports one domain per processor");
 76:   p = (PetscInt)PetscSqrtReal((PetscReal)part->n);
 77:   if (p*p != part->n) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"Square partitioning requires \"perfect square\" number of domains");

 79:   MatGetSize(part->adj,&N,NULL);
 80:   n    = (PetscInt)PetscSqrtReal((PetscReal)N);
 81:   if (n*n != N) SETERRQ(PetscObjectComm((PetscObject)part),PETSC_ERR_SUP,"Square partitioning requires square domain");
 82:   if (n%p != 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Square partitioning requires p to divide n");
 83:   MatGetOwnershipRange(part->adj,&rstart,&rend);
 84:   PetscMalloc1(rend-rstart,&color);
 85:   /* for (int cell=rstart; cell<rend; cell++) { color[cell-rstart] = ((cell%n) < (n/2)) + 2 * ((cell/n) < (n/2)); } */
 86:   for (cell=rstart; cell<rend; cell++) {
 87:     color[cell-rstart] = ((cell%n) / (n/p)) + p * ((cell/n) / (n/p));
 88:   }
 89:   ISCreateGeneral(PetscObjectComm((PetscObject)part),rend-rstart,color,PETSC_OWN_POINTER,partitioning);
 90:   return(0);
 91: }

 93: PETSC_EXTERN PetscErrorCode MatPartitioningCreate_Current(MatPartitioning part)
 94: {
 96:   part->ops->apply   = MatPartitioningApply_Current;
 97:   part->ops->view    = 0;
 98:   part->ops->destroy = 0;
 99:   return(0);
100: }

102: PETSC_EXTERN PetscErrorCode MatPartitioningCreate_Average(MatPartitioning part)
103: {
105:   part->ops->apply   = MatPartitioningApply_Average;
106:   part->ops->view    = 0;
107:   part->ops->destroy = 0;
108:   return(0);
109: }

111: PETSC_EXTERN PetscErrorCode MatPartitioningCreate_Square(MatPartitioning part)
112: {
114:   part->ops->apply   = MatPartitioningApply_Square;
115:   part->ops->view    = 0;
116:   part->ops->destroy = 0;
117:   return(0);
118: }


121: /* ===========================================================================================*/

123: PetscFunctionList MatPartitioningList              = 0;
124: PetscBool         MatPartitioningRegisterAllCalled = PETSC_FALSE;


127: /*@C
128:    MatPartitioningRegister - Adds a new sparse matrix partitioning to the  matrix package.

130:    Not Collective

132:    Input Parameters:
133: +  sname - name of partitioning (for example MATPARTITIONINGCURRENT) or parmetis
134: -  function - function pointer that creates the partitioning type

136:    Level: developer

138:    Sample usage:
139: .vb
140:    MatPartitioningRegister("my_part",MyPartCreate);
141: .ve

143:    Then, your partitioner can be chosen with the procedural interface via
144: $     MatPartitioningSetType(part,"my_part")
145:    or at runtime via the option
146: $     -mat_partitioning_type my_part

148: .keywords: matrix, partitioning, register

150: .seealso: MatPartitioningRegisterDestroy(), MatPartitioningRegisterAll()
151: @*/
152: PetscErrorCode  MatPartitioningRegister(const char sname[],PetscErrorCode (*function)(MatPartitioning))
153: {

157:   PetscFunctionListAdd(&MatPartitioningList,sname,function);
158:   return(0);
159: }

161: /*@C
162:    MatPartitioningGetType - Gets the Partitioning method type and name (as a string)
163:         from the partitioning context.

165:    Not collective

167:    Input Parameter:
168: .  partitioning - the partitioning context

170:    Output Parameter:
171: .  type - partitioner type

173:    Level: intermediate

175:    Not Collective

177: .keywords: Partitioning, get, method, name, type
178: @*/
179: PetscErrorCode  MatPartitioningGetType(MatPartitioning partitioning,MatPartitioningType *type)
180: {
184:   *type = ((PetscObject)partitioning)->type_name;
185:   return(0);
186: }

188: /*@C
189:    MatPartitioningSetNParts - Set how many partitions need to be created;
190:         by default this is one per processor. Certain partitioning schemes may
191:         in fact only support that option.

193:    Not collective

195:    Input Parameter:
196: .  partitioning - the partitioning context
197: .  n - the number of partitions

199:    Level: intermediate

201:    Not Collective

203: .keywords: Partitioning, set

205: .seealso: MatPartitioningCreate(), MatPartitioningApply()
206: @*/
207: PetscErrorCode  MatPartitioningSetNParts(MatPartitioning part,PetscInt n)
208: {
210:   part->n = n;
211:   return(0);
212: }

214: /*@
215:    MatPartitioningApply - Gets a partitioning for a matrix.

217:    Collective on Mat

219:    Input Parameters:
220: .  matp - the matrix partitioning object

222:    Output Parameters:
223: .   partitioning - the partitioning. For each local node this tells the processor
224:                    number that that node is assigned to.

226:    Options Database Keys:
227:    To specify the partitioning through the options database, use one of
228:    the following
229: $    -mat_partitioning_type parmetis, -mat_partitioning current
230:    To see the partitioning result
231: $    -mat_partitioning_view

233:    Level: beginner

235:    The user can define additional partitionings; see MatPartitioningRegister().

237: .keywords: matrix, get, partitioning

239: .seealso:  MatPartitioningRegister(), MatPartitioningCreate(),
240:            MatPartitioningDestroy(), MatPartitioningSetAdjacency(), ISPartitioningToNumbering(),
241:            ISPartitioningCount()
242: @*/
243: PetscErrorCode  MatPartitioningApply(MatPartitioning matp,IS *partitioning)
244: {
246:   PetscBool      flag = PETSC_FALSE;

251:   if (!matp->adj->assembled) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled matrix");
252:   if (matp->adj->factortype) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
253:   if (!matp->ops->apply) SETERRQ(PetscObjectComm((PetscObject)matp),PETSC_ERR_ARG_WRONGSTATE,"Must set type with MatPartitioningSetFromOptions() or MatPartitioningSetType()");
254:   PetscLogEventBegin(MAT_Partitioning,matp,0,0,0);
255:   (*matp->ops->apply)(matp,partitioning);
256:   PetscLogEventEnd(MAT_Partitioning,matp,0,0,0);

258:   PetscOptionsGetBool(((PetscObject)matp)->options,NULL,"-mat_partitioning_view",&flag,NULL);
259:   if (flag) {
260:     PetscViewer viewer;
261:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)matp),&viewer);
262:     MatPartitioningView(matp,viewer);
263:     ISView(*partitioning,viewer);
264:   }
265:   return(0);
266: }

268: /*@
269:    MatPartitioningSetAdjacency - Sets the adjacency graph (matrix) of the thing to be
270:       partitioned.

272:    Collective on MatPartitioning and Mat

274:    Input Parameters:
275: +  part - the partitioning context
276: -  adj - the adjacency matrix

278:    Level: beginner

280: .keywords: Partitioning, adjacency

282: .seealso: MatPartitioningCreate()
283: @*/
284: PetscErrorCode  MatPartitioningSetAdjacency(MatPartitioning part,Mat adj)
285: {
289:   part->adj = adj;
290:   return(0);
291: }

293: /*@
294:    MatPartitioningDestroy - Destroys the partitioning context.

296:    Collective on Partitioning

298:    Input Parameters:
299: .  part - the partitioning context

301:    Level: beginner

303: .keywords: Partitioning, destroy, context

305: .seealso: MatPartitioningCreate()
306: @*/
307: PetscErrorCode  MatPartitioningDestroy(MatPartitioning *part)
308: {

312:   if (!*part) return(0);
314:   if (--((PetscObject)(*part))->refct > 0) {*part = 0; return(0);}

316:   if ((*part)->ops->destroy) {
317:     (*(*part)->ops->destroy)((*part));
318:   }
319:   PetscFree((*part)->vertex_weights);
320:   PetscFree((*part)->part_weights);
321:   PetscHeaderDestroy(part);
322:   return(0);
323: }

325: /*@C
326:    MatPartitioningSetVertexWeights - Sets the weights for vertices for a partitioning.

328:    Logically Collective on Partitioning

330:    Input Parameters:
331: +  part - the partitioning context
332: -  weights - the weights, on each process this array must have the same size as the number of local rows

334:    Level: beginner

336:    Notes:
337:       The array weights is freed by PETSc so the user should not free the array. In C/C++
338:    the array must be obtained with a call to PetscMalloc(), not malloc().

340: .keywords: Partitioning, destroy, context

342: .seealso: MatPartitioningCreate(), MatPartitioningSetType(), MatPartitioningSetPartitionWeights()
343: @*/
344: PetscErrorCode  MatPartitioningSetVertexWeights(MatPartitioning part,const PetscInt weights[])
345: {


351:   PetscFree(part->vertex_weights);

353:   part->vertex_weights = (PetscInt*)weights;
354:   return(0);
355: }

357: /*@C
358:    MatPartitioningSetPartitionWeights - Sets the weights for each partition.

360:    Logically Collective on Partitioning

362:    Input Parameters:
363: +  part - the partitioning context
364: -  weights - An array of size nparts that is used to specify the fraction of
365:              vertex weight that should be distributed to each sub-domain for
366:              the balance constraint. If all of the sub-domains are to be of
367:              the same size, then each of the nparts elements should be set
368:              to a value of 1/nparts. Note that the sum of all of the weights
369:              should be one.

371:    Level: beginner

373:    Notes:
374:       The array weights is freed by PETSc so the user should not free the array. In C/C++
375:    the array must be obtained with a call to PetscMalloc(), not malloc().

377: .keywords: Partitioning, destroy, context

379: .seealso: MatPartitioningCreate(), MatPartitioningSetType(), MatPartitioningSetVertexWeights()
380: @*/
381: PetscErrorCode  MatPartitioningSetPartitionWeights(MatPartitioning part,const PetscReal weights[])
382: {


388:   PetscFree(part->part_weights);

390:   part->part_weights = (PetscReal*)weights;
391:   return(0);
392: }

394: /*@
395:    MatPartitioningCreate - Creates a partitioning context.

397:    Collective on MPI_Comm

399:    Input Parameter:
400: .   comm - MPI communicator

402:    Output Parameter:
403: .  newp - location to put the context

405:    Level: beginner

407: .keywords: Partitioning, create, context

409: .seealso: MatPartitioningSetType(), MatPartitioningApply(), MatPartitioningDestroy(),
410:           MatPartitioningSetAdjacency()

412: @*/
413: PetscErrorCode  MatPartitioningCreate(MPI_Comm comm,MatPartitioning *newp)
414: {
415:   MatPartitioning part;
416:   PetscErrorCode  ierr;
417:   PetscMPIInt     size;

420:   *newp = 0;

422:   MatInitializePackage();
423:   PetscHeaderCreate(part,MAT_PARTITIONING_CLASSID,"MatPartitioning","Matrix/graph partitioning","MatOrderings",comm,MatPartitioningDestroy,MatPartitioningView);
424:   part->vertex_weights = NULL;
425:   part->part_weights   = NULL;

427:   MPI_Comm_size(comm,&size);
428:   part->n = (PetscInt)size;

430:   *newp = part;
431:   return(0);
432: }

434: /*@C
435:    MatPartitioningView - Prints the partitioning data structure.

437:    Collective on MatPartitioning

439:    Input Parameters:
440: .  part - the partitioning context
441: .  viewer - optional visualization context

443:    Level: intermediate

445:    Note:
446:    The available visualization contexts include
447: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
448: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
449:          output where only the first processor opens
450:          the file.  All other processors send their
451:          data to the first processor to print.

453:    The user can open alternative visualization contexts with
454: .     PetscViewerASCIIOpen() - output to a specified file

456: .keywords: Partitioning, view

458: .seealso: PetscViewerASCIIOpen()
459: @*/
460: PetscErrorCode  MatPartitioningView(MatPartitioning part,PetscViewer viewer)
461: {
463:   PetscBool      iascii;

467:   if (!viewer) {
468:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)part),&viewer);
469:   }

473:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
474:   if (iascii) {
475:     PetscObjectPrintClassNamePrefixType((PetscObject)part,viewer);
476:     if (part->vertex_weights) {
477:       PetscViewerASCIIPrintf(viewer,"  Using vertex weights\n");
478:     }
479:   }
480:   if (part->ops->view) {
481:     PetscViewerASCIIPushTab(viewer);
482:     (*part->ops->view)(part,viewer);
483:     PetscViewerASCIIPopTab(viewer);
484:   }
485:   return(0);
486: }

488: /*@C
489:    MatPartitioningSetType - Sets the type of partitioner to use

491:    Collective on MatPartitioning

493:    Input Parameter:
494: .  part - the partitioning context.
495: .  type - a known method

497:    Options Database Command:
498: $  -mat_partitioning_type  <type>
499: $      Use -help for a list of available methods
500: $      (for instance, parmetis)

502:    Level: intermediate

504: .keywords: partitioning, set, method, type

506: .seealso: MatPartitioningCreate(), MatPartitioningApply(), MatPartitioningType

508: @*/
509: PetscErrorCode  MatPartitioningSetType(MatPartitioning part,MatPartitioningType type)
510: {
511:   PetscErrorCode ierr,(*r)(MatPartitioning);
512:   PetscBool      match;


518:   PetscObjectTypeCompare((PetscObject)part,type,&match);
519:   if (match) return(0);

521:   if (part->setupcalled) {
522:      (*part->ops->destroy)(part);

524:     part->ops->destroy = NULL;
525:     part->data         = 0;
526:     part->setupcalled  = 0;
527:   }

529:   PetscFunctionListFind(MatPartitioningList,type,&r);
530:   if (!r) SETERRQ1(PetscObjectComm((PetscObject)part),PETSC_ERR_ARG_UNKNOWN_TYPE,"Unknown partitioning type %s",type);

532:   part->ops->destroy = (PetscErrorCode (*)(MatPartitioning)) 0;
533:   part->ops->view    = (PetscErrorCode (*)(MatPartitioning,PetscViewer)) 0;

535:   (*r)(part);

537:   PetscFree(((PetscObject)part)->type_name);
538:   PetscStrallocpy(type,&((PetscObject)part)->type_name);
539:   return(0);
540: }

542: /*@
543:    MatPartitioningSetFromOptions - Sets various partitioning options from the
544:         options database.

546:    Collective on MatPartitioning

548:    Input Parameter:
549: .  part - the partitioning context.

551:    Options Database Command:
552: $  -mat_partitioning_type  <type>
553: $      Use -help for a list of available methods
554: $      (for instance, parmetis)


557:    Notes: If the partitioner has not been set by the user it uses one of the installed partitioner such as ParMetis. If there are
558:    no installed partitioners it uses current which means no repartioning.

560:    Level: beginner

562: .keywords: partitioning, set, method, type
563: @*/
564: PetscErrorCode  MatPartitioningSetFromOptions(MatPartitioning part)
565: {
567:   PetscBool      flag;
568:   char           type[256];
569:   const char     *def;

572:   PetscObjectOptionsBegin((PetscObject)part);
573:   if (!((PetscObject)part)->type_name) {
574: #if defined(PETSC_HAVE_PARMETIS)
575:     def = MATPARTITIONINGPARMETIS;
576: #elif defined(PETSC_HAVE_CHACO)
577:     def = MATPARTITIONINGCHACO;
578: #elif defined(PETSC_HAVE_PARTY)
579:     def = MATPARTITIONINGPARTY;
580: #elif defined(PETSC_HAVE_PTSCOTCH)
581:     def = MATPARTITIONINGPTSCOTCH;
582: #else
583:     def = MATPARTITIONINGCURRENT;
584: #endif
585:   } else {
586:     def = ((PetscObject)part)->type_name;
587:   }
588:   PetscOptionsFList("-mat_partitioning_type","Type of partitioner","MatPartitioningSetType",MatPartitioningList,def,type,256,&flag);
589:   if (flag) {
590:     MatPartitioningSetType(part,type);
591:   }
592:   /*
593:     Set the type if it was never set.
594:   */
595:   if (!((PetscObject)part)->type_name) {
596:     MatPartitioningSetType(part,def);
597:   }

599:   if (part->ops->setfromoptions) {
600:     (*part->ops->setfromoptions)(PetscOptionsObject,part);
601:   }
602:   PetscOptionsEnd();
603:   return(0);
604: }