Actual source code: aijAssemble.cu

petsc-3.8.4 2018-03-24
Report Typos and Errors
  1: #define PETSC_SKIP_COMPLEX
  2: #define PETSC_SKIP_SPINLOCK

  4: #include <petscconf.h>
  5:  #include <../src/mat/impls/aij/seq/aij.h>
  6:  #include <petscbt.h>
  7:  #include <../src/vec/vec/impls/dvecimpl.h>
  8:  #include <petsc/private/vecimpl.h>
  9: #undef VecType
 10:  #include <../src/mat/impls/aij/seq/seqcusp/cuspmatimpl.h>

 12: #include <thrust/reduce.h>
 13: #include <thrust/inner_product.h>

 15: #include <cusp/array1d.h>
 16: #include <cusp/print.h>
 17: #include <cusp/coo_matrix.h>

 19: #include <cusp/io/matrix_market.h>

 21: #include <thrust/iterator/counting_iterator.h>
 22: #include <thrust/iterator/transform_iterator.h>
 23: #include <thrust/iterator/permutation_iterator.h>
 24: #include <thrust/functional.h>

 26: // this example illustrates how to make repeated access to a range of values
 27: // examples:
 28: //   repeated_range([0, 1, 2, 3], 1) -> [0, 1, 2, 3]
 29: //   repeated_range([0, 1, 2, 3], 2) -> [0, 0, 1, 1, 2, 2, 3, 3]
 30: //   repeated_range([0, 1, 2, 3], 3) -> [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]
 31: //   ...

 33: template <typename Iterator>
 34: class repeated_range
 35: {
 36: public:

 38:   typedef typename thrust::iterator_difference<Iterator>::type difference_type;

 40:   struct repeat_functor : public thrust::unary_function<difference_type,difference_type>
 41:   {
 42:     difference_type repeats;

 44:     repeat_functor(difference_type repeats) : repeats(repeats) {}

 46:     __host__ __device__
 47:     difference_type operator()(const difference_type &i) const {
 48:       return i / repeats;
 49:     }
 50:   };

 52:   typedef typename thrust::counting_iterator<difference_type>                   CountingIterator;
 53:   typedef typename thrust::transform_iterator<repeat_functor, CountingIterator> TransformIterator;
 54:   typedef typename thrust::permutation_iterator<Iterator,TransformIterator>     PermutationIterator;

 56:   // type of the repeated_range iterator
 57:   typedef PermutationIterator iterator;

 59:   // construct repeated_range for the range [first,last)
 60:   repeated_range(Iterator first, Iterator last, difference_type repeats) : first(first), last(last), repeats(repeats) {}

 62:   iterator begin(void) const
 63:   {
 64:     return PermutationIterator(first, TransformIterator(CountingIterator(0), repeat_functor(repeats)));
 65:   }

 67:   iterator end(void) const
 68:   {
 69:     return begin() + repeats * (last - first);
 70:   }

 72: protected:
 73:   difference_type repeats;
 74:   Iterator        first;
 75:   Iterator        last;

 77: };

 79: // this example illustrates how to repeat blocks in a range multiple times
 80: // examples:
 81: //   tiled_range([0, 1, 2, 3], 2)    -> [0, 1, 2, 3, 0, 1, 2, 3]
 82: //   tiled_range([0, 1, 2, 3], 4, 2) -> [0, 1, 2, 3, 0, 1, 2, 3]
 83: //   tiled_range([0, 1, 2, 3], 2, 2) -> [0, 1, 0, 1, 2, 3, 2, 3]
 84: //   tiled_range([0, 1, 2, 3], 2, 3) -> [0, 1, 0, 1 0, 1, 2, 3, 2, 3, 2, 3]
 85: //   ...

 87: template <typename Iterator>
 88: class tiled_range
 89: {
 90: public:

 92:   typedef typename thrust::iterator_difference<Iterator>::type difference_type;

 94:   struct tile_functor : public thrust::unary_function<difference_type,difference_type>
 95:   {
 96:     difference_type repeats;
 97:     difference_type tile_size;

 99:     tile_functor(difference_type repeats, difference_type tile_size) : tile_size(tile_size), repeats(repeats) {}

101:     __host__ __device__
102:     difference_type operator()(const difference_type &i) const {
103:       return tile_size * (i / (tile_size * repeats)) + i % tile_size;
104:     }
105:   };

107:   typedef typename thrust::counting_iterator<difference_type>                   CountingIterator;
108:   typedef typename thrust::transform_iterator<tile_functor, CountingIterator>   TransformIterator;
109:   typedef typename thrust::permutation_iterator<Iterator,TransformIterator>     PermutationIterator;

111:   // type of the tiled_range iterator
112:   typedef PermutationIterator iterator;

114:   // construct repeated_range for the range [first,last)
115:   tiled_range(Iterator first, Iterator last, difference_type repeats)
116:     : first(first), last(last), repeats(repeats), tile_size(last - first) {}

118:   tiled_range(Iterator first, Iterator last, difference_type repeats, difference_type tile_size)
119:     : first(first), last(last), repeats(repeats), tile_size(tile_size)
120:   {
121:     // ASSERT((last - first) % tile_size == 0)
122:   }

124:   iterator begin(void) const
125:   {
126:     return PermutationIterator(first, TransformIterator(CountingIterator(0), tile_functor(repeats, tile_size)));
127:   }

129:   iterator end(void) const
130:   {
131:     return begin() + repeats * (last - first);
132:   }

134: protected:
135:   difference_type repeats;
136:   difference_type tile_size;
137:   Iterator        first;
138:   Iterator        last;
139: };

141: typedef cusp::device_memory memSpace;
142: typedef int IndexType;
143: typedef PetscScalar ValueType;
144: typedef cusp::array1d<IndexType, memSpace> IndexArray;
145: typedef cusp::array1d<ValueType, memSpace> ValueArray;
146: typedef IndexArray::iterator IndexArrayIterator;
147: typedef ValueArray::iterator ValueArrayIterator;

149: // Ne: Number of elements
150: // Nl: Number of dof per element
151: PetscErrorCode MatSetValuesBatch_SeqAIJCUSP(Mat J, PetscInt Ne, PetscInt Nl, PetscInt *elemRows, const PetscScalar *elemMats)
152: {
153:   size_t         N  = Ne * Nl;
154:   size_t         No = Ne * Nl*Nl;
155:   PetscInt       Nr; // Number of rows

158:   // copy elemRows and elemMat to device
159:   IndexArray d_elemRows(elemRows, elemRows + N);
160:   ValueArray d_elemMats(elemMats, elemMats + No);

163:   MatGetSize(J, &Nr, NULL);
164:   // allocate storage for "fat" COO representation of matrix
165:   PetscInfo1(J, "Making COO matrix of size %d\n", Nr);
166:   cusp::coo_matrix<IndexType,ValueType, memSpace> COO(Nr, Nr, No);

168:   // repeat elemRows entries Nl times
169:   PetscInfo(J, "Making row indices\n");
170:   repeated_range<IndexArrayIterator> rowInd(d_elemRows.begin(), d_elemRows.end(), Nl);
171:   thrust::copy(rowInd.begin(), rowInd.end(), COO.row_indices.begin());

173:   // tile rows of elemRows Nl times
174:   PetscInfo(J, "Making column indices\n");
175:   tiled_range<IndexArrayIterator> colInd(d_elemRows.begin(), d_elemRows.end(), Nl, Nl);
176:   thrust::copy(colInd.begin(), colInd.end(), COO.column_indices.begin());

178:   // copy values from elemMats into COO structure (could be avoided)
179:   thrust::copy(d_elemMats.begin(), d_elemMats.end(), COO.values.begin());

181:   // For MPIAIJ, split this into two COO matrices, and return both
182:   //   Need the column map

184:   // print the "fat" COO representation
185: #if !defined(PETSC_USE_COMPLEX)
186:   if (PetscLogPrintInfo) cusp::print(COO);
187: #endif
188:   // sort COO format by (i,j), this is the most costly step
189:   PetscInfo(J, "Sorting rows and columns\n");
190: #if 1
191:   COO.sort_by_row_and_column();
192: #else
193:   {
194:     PetscInfo(J, "  Making permutation\n");
195:     IndexArray permutation(No);
196:     thrust::sequence(permutation.begin(), permutation.end());

198:     // compute permutation and sort by (I,J)
199:     {
200:       PetscInfo(J, "  Sorting columns\n");
201:       IndexArray temp(No);
202:       thrust::copy(COO.column_indices.begin(), COO.column_indices.end(), temp.begin());
203:       thrust::stable_sort_by_key(temp.begin(), temp.end(), permutation.begin());
204:       PetscInfo(J, "    Sorted columns\n");
205:       if (PetscLogPrintInfo) {
206:         for (IndexArrayIterator t_iter = temp.begin(), p_iter = permutation.begin(); t_iter != temp.end(); ++t_iter, ++p_iter) {
207:           PetscInfo2(J, "%d(%d)\n", *t_iter, *p_iter);
208:         }
209:       }

211:       PetscInfo(J, "  Copying rows\n");
212:       //cusp::copy(COO.row_indices, temp);
213:       thrust::copy(COO.row_indices.begin(), COO.row_indices.end(), temp.begin());
214:       PetscInfo(J, "  Gathering rows\n");
215:       thrust::gather(permutation.begin(), permutation.end(), temp.begin(), COO.row_indices.begin());
216:       PetscInfo(J, "  Sorting rows\n");
217:       thrust::stable_sort_by_key(COO.row_indices.begin(), COO.row_indices.end(), permutation.begin());

219:       PetscInfo(J, "  Gathering columns\n");
220:       cusp::copy(COO.column_indices, temp);
221:       thrust::gather(permutation.begin(), permutation.end(), temp.begin(), COO.column_indices.begin());
222:     }

224:     // use permutation to reorder the values
225:     {
226:       PetscInfo(J, "  Sorting values\n");
227:       ValueArray temp(COO.values);
228:       cusp::copy(COO.values, temp);
229:       thrust::gather(permutation.begin(), permutation.end(), temp.begin(), COO.values.begin());
230:     }
231:   }
232: #endif

234:   // print the "fat" COO representation
235: #if !defined(PETSC_USE_COMPLEX)
236:   if (PetscLogPrintInfo) cusp::print(COO);
237: #endif
238:   // compute number of unique (i,j) entries
239:   //   this counts the number of changes as we move along the (i,j) list
240:   PetscInfo(J, "Computing number of unique entries\n");
241:   size_t num_entries = thrust::inner_product
242:                          (thrust::make_zip_iterator(thrust::make_tuple(COO.row_indices.begin(), COO.column_indices.begin())),
243:                          thrust::make_zip_iterator(thrust::make_tuple(COO.row_indices.end (),  COO.column_indices.end()))   - 1,
244:                          thrust::make_zip_iterator(thrust::make_tuple(COO.row_indices.begin(), COO.column_indices.begin())) + 1,
245:                          size_t(1),
246:                          thrust::plus<size_t>(),
247:                          thrust::not_equal_to< thrust::tuple<IndexType,IndexType> >());

249:   // allocate COO storage for final matrix
250:   PetscInfo(J, "Allocating compressed matrix\n");
251:   cusp::coo_matrix<IndexType, ValueType, memSpace> A(Nr, Nr, num_entries);

253:   // sum values with the same (i,j) index
254:   // XXX thrust::reduce_by_key is unoptimized right now, so we provide a SpMV-based one in cusp::detail
255:   //     the Cusp one is 2x faster, but still not optimal
256:   // This could possibly be done in-place
257:   PetscInfo(J, "Compressing matrix\n");
258:   thrust::reduce_by_key(thrust::make_zip_iterator(thrust::make_tuple(COO.row_indices.begin(), COO.column_indices.begin())),
259:                         thrust::make_zip_iterator(thrust::make_tuple(COO.row_indices.end(),   COO.column_indices.end())),
260:                         COO.values.begin(),
261:                         thrust::make_zip_iterator(thrust::make_tuple(A.row_indices.begin(), A.column_indices.begin())),
262:                         A.values.begin(),
263:                         thrust::equal_to< thrust::tuple<IndexType,IndexType> >(),
264:                         thrust::plus<ValueType>());

266:   // print the final matrix
267: #if !defined(PETSC_USE_COMPLEX)
268:   if (PetscLogPrintInfo) cusp::print(A);
269: #endif
270:   //std::cout << "Writing matrix" << std::endl;
271:   //cusp::io::write_matrix_market_file(A, "A.mtx");

273:   PetscInfo(J, "Converting to PETSc matrix\n");
274:   MatSetType(J, MATSEQAIJCUSP);
275:   //cusp::csr_matrix<PetscInt,PetscScalar,cusp::device_memory> Jgpu;
276:   CUSPMATRIX *Jgpu = new CUSPMATRIX;
277:   cusp::convert(A, *Jgpu);
278: #if !defined(PETSC_USE_COMPLEX)
279:   if (PetscLogPrintInfo) cusp::print(*Jgpu);
280: #endif
281:   PetscInfo(J, "Copying to CPU matrix\n");
282:   MatCUSPCopyFromGPU(J, Jgpu);
283:   return(0);
284: }