Actual source code: ex2.c
petsc-3.8.4 2018-03-24
1: static char help[] = "Test file for the PCFactorSetShiftType()\n";
2: /*
3: * Test file for the PCFactorSetShiftType() routine or -pc_factor_shift_type POSITIVE_DEFINITE option.
4: * The test matrix is the example from Kershaw's paper [J.Comp.Phys 1978]
5: * of a positive definite matrix for which ILU(0) will give a negative pivot.
6: * This means that the CG method will break down; the Manteuffel shift
7: * [Math. Comp. 1980] repairs this.
8: *
9: * Run the executable twice:
10: * 1/ without options: the iterative method diverges because of an
11: * indefinite preconditioner
12: * 2/ with -pc_factor_shift_positive_definite option (or comment in the PCFactorSetShiftType() line below):
13: * the method will now successfully converge.
14: */
16: #include <petscksp.h>
18: int main(int argc,char **argv)
19: {
20: KSP ksp;
21: PC pc;
22: Mat A,M;
23: Vec X,B,D;
24: MPI_Comm comm;
25: PetscScalar v;
26: KSPConvergedReason reason;
27: PetscInt i,j,its;
28: PetscErrorCode ierr;
31: PetscInitialize(&argc,&argv,0,help);if (ierr) return ierr;
32: comm = MPI_COMM_SELF;
34: /*
35: * Construct the Kershaw matrix
36: * and a suitable rhs / initial guess
37: */
38: MatCreateSeqAIJ(comm,4,4,4,0,&A);
39: VecCreateSeq(comm,4,&B);
40: VecDuplicate(B,&X);
41: for (i=0; i<4; i++) {
42: v = 3;
43: MatSetValues(A,1,&i,1,&i,&v,INSERT_VALUES);
44: v = 1;
45: VecSetValues(B,1,&i,&v,INSERT_VALUES);
46: VecSetValues(X,1,&i,&v,INSERT_VALUES);
47: }
49: i =0; v=0;
50: VecSetValues(X,1,&i,&v,INSERT_VALUES);
52: for (i=0; i<3; i++) {
53: v = -2; j=i+1;
54: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
55: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
56: }
57: i=0; j=3; v=2;
59: MatSetValues(A,1,&i,1,&j,&v,INSERT_VALUES);
60: MatSetValues(A,1,&j,1,&i,&v,INSERT_VALUES);
61: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
62: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
63: VecAssemblyBegin(B);
64: VecAssemblyEnd(B);
65: PetscPrintf(PETSC_COMM_WORLD,"\nThe Kershaw matrix:\n\n");
66: MatView(A,PETSC_VIEWER_STDOUT_WORLD);
68: /*
69: * A Conjugate Gradient method
70: * with ILU(0) preconditioning
71: */
72: KSPCreate(comm,&ksp);
73: KSPSetOperators(ksp,A,A);
75: KSPSetType(ksp,KSPCG);
76: KSPSetInitialGuessNonzero(ksp,PETSC_TRUE);
78: /*
79: * ILU preconditioner;
80: * The iterative method will break down unless you comment in the SetShift
81: * line below, or use the -pc_factor_shift_positive_definite option.
82: * Run the code twice: once as given to see the negative pivot and the
83: * divergence behaviour, then comment in the Shift line, or add the
84: * command line option, and see that the pivots are all positive and
85: * the method converges.
86: */
87: KSPGetPC(ksp,&pc);
88: PCSetType(pc,PCICC);
89: /* PCFactorSetShiftType(prec,MAT_SHIFT_POSITIVE_DEFINITE); */
91: KSPSetFromOptions(ksp);
92: KSPSetUp(ksp);
94: /*
95: * Now that the factorisation is done, show the pivots;
96: * note that the last one is negative. This in itself is not an error,
97: * but it will make the iterative method diverge.
98: */
99: PCFactorGetMatrix(pc,&M);
100: VecDuplicate(B,&D);
101: MatGetDiagonal(M,D);
102: PetscPrintf(PETSC_COMM_WORLD,"\nPivots:\n\n");
103: VecView(D,0);
105: /*
106: * Solve the system;
107: * without the shift this will diverge with
108: * an indefinite preconditioner
109: */
110: KSPSolve(ksp,B,X);
111: KSPGetConvergedReason(ksp,&reason);
112: if (reason==KSP_DIVERGED_INDEFINITE_PC) {
113: PetscPrintf(PETSC_COMM_WORLD,"\nDivergence because of indefinite preconditioner;\n");
114: PetscPrintf(PETSC_COMM_WORLD,"Run the executable again but with -pc_factor_shift_positive_definite option.\n");
115: } else if (reason<0) {
116: PetscPrintf(PETSC_COMM_WORLD,"\nOther kind of divergence: this should not happen.\n");
117: } else {
118: KSPGetIterationNumber(ksp,&its);
119: PetscPrintf(PETSC_COMM_WORLD,"\nConvergence in %d iterations.\n",(int)its);
120: }
121: PetscPrintf(PETSC_COMM_WORLD,"\n");
123: KSPDestroy(&ksp);
124: MatDestroy(&A);
125: VecDestroy(&B);
126: VecDestroy(&X);
127: VecDestroy(&D);
128: PetscFinalize();
129: return ierr;
130: }