Actual source code: ex62.c

petsc-3.8.4 2018-03-24
Report Typos and Errors
  1: static char help[] = "Illustrates use of PCGASM.\n\
  2: The Generalized Additive Schwarz Method for solving a linear system in parallel with KSP.  The\n\
  3: code indicates the procedure for setting user-defined subdomains.\n\
  4: See section 'ex62' below for command-line options.\n\
  5: Without -user_set_subdomains, the general PCGASM options are meaningful:\n\
  6:   -pc_gasm_total_subdomains\n\
  7:   -pc_gasm_print_subdomains\n\
  8: \n";

 10: /*
 11:    Note:  This example focuses on setting the subdomains for the GASM
 12:    preconditioner for a problem on a 2D rectangular grid.  See ex1.c
 13:    and ex2.c for more detailed comments on the basic usage of KSP
 14:    (including working with matrices and vectors).

 16:    The GASM preconditioner is fully parallel.  The user-space routine
 17:    CreateSubdomains2D that computes the domain decomposition is also parallel
 18:    and attempts to generate both subdomains straddling processors and multiple
 19:    domains per processor.


 22:    This matrix in this linear system arises from the discretized Laplacian,
 23:    and thus is not very interesting in terms of experimenting with variants
 24:    of the GASM preconditioner.
 25: */

 27: /*T
 28:    Concepts: KSP^Additive Schwarz Method (GASM) with user-defined subdomains
 29:    Processors: n
 30: T*/

 32: /*
 33:   Include "petscksp.h" so that we can use KSP solvers.  Note that this file
 34:   automatically includes:
 35:      petscsys.h    - base PETSc routines   petscvec.h - vectors
 36:      petscmat.h    - matrices
 37:      petscis.h     - index sets            petscksp.h - Krylov subspace methods
 38:      petscviewer.h - viewers               petscpc.h  - preconditioners
 39: */
 40:  #include <petscksp.h>

 42: PetscErrorCode AssembleMatrix(Mat,PetscInt m,PetscInt n);

 44: int main(int argc,char **args)
 45: {
 46:   Vec            x,b,u;                  /* approx solution, RHS, exact solution */
 47:   Mat            A;                      /* linear system matrix */
 48:   KSP            ksp;                    /* linear solver context */
 49:   PC             pc;                     /* PC context */
 50:   IS             *inneris,*outeris;      /* array of index sets that define the subdomains */
 51:   PetscInt       overlap;                /* width of subdomain overlap */
 52:   PetscInt       Nsub;                   /* number of subdomains */
 53:   PetscInt       m,n;                    /* mesh dimensions in x- and y- directions */
 54:   PetscInt       M,N;                    /* number of subdomains in x- and y- directions */
 56:   PetscMPIInt    size;
 57:   PetscBool      flg=PETSC_FALSE;
 58:   PetscBool      user_set_subdomains=PETSC_FALSE;
 59:   PetscReal      one,e;

 61:   PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
 62:   MPI_Comm_size(PETSC_COMM_WORLD,&size);
 63:   PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ex62","PCGASM");
 64:   m = 15;
 65:   PetscOptionsInt("-M", "Number of mesh points in the x-direction","PCGASMCreateSubdomains2D",m,&m,NULL);
 66:   n = 17;
 67:   PetscOptionsInt("-N","Number of mesh points in the y-direction","PCGASMCreateSubdomains2D",n,&n,NULL);
 68:   user_set_subdomains = PETSC_FALSE;
 69:   PetscOptionsBool("-user_set_subdomains","Use the user-specified 2D tiling of mesh by subdomains","PCGASMCreateSubdomains2D",user_set_subdomains,&user_set_subdomains,NULL);
 70:   M = 2;
 71:   PetscOptionsInt("-Mdomains","Number of subdomain tiles in the x-direction","PCGASMSetSubdomains2D",M,&M,NULL);
 72:   N = 1;
 73:   PetscOptionsInt("-Ndomains","Number of subdomain tiles in the y-direction","PCGASMSetSubdomains2D",N,&N,NULL);
 74:   overlap = 1;
 75:   PetscOptionsInt("-overlap","Size of tile overlap.","PCGASMSetSubdomains2D",overlap,&overlap,NULL);
 76:   PetscOptionsEnd();

 78:   /* -------------------------------------------------------------------
 79:          Compute the matrix and right-hand-side vector that define
 80:          the linear system, Ax = b.
 81:      ------------------------------------------------------------------- */

 83:   /*
 84:      Assemble the matrix for the five point stencil, YET AGAIN
 85:   */
 86:   MatCreate(PETSC_COMM_WORLD,&A);
 87:   MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);
 88:   MatSetFromOptions(A);
 89:   MatSetUp(A);
 90:   AssembleMatrix(A,m,n);

 92:   /*
 93:      Create and set vectors
 94:   */
 95:   VecCreate(PETSC_COMM_WORLD,&b);
 96:   VecSetSizes(b,PETSC_DECIDE,m*n);
 97:   VecSetFromOptions(b);
 98:   VecDuplicate(b,&u);
 99:   VecDuplicate(b,&x);
100:   one  = 1.0;
101:   VecSet(u,one);
102:   MatMult(A,u,b);

104:   /*
105:      Create linear solver context
106:   */
107:   KSPCreate(PETSC_COMM_WORLD,&ksp);

109:   /*
110:      Set operators. Here the matrix that defines the linear system
111:      also serves as the preconditioning matrix.
112:   */
113:   KSPSetOperators(ksp,A,A);

115:   /*
116:      Set the default preconditioner for this program to be GASM
117:   */
118:   KSPGetPC(ksp,&pc);
119:   PCSetType(pc,PCGASM);

121:   /* -------------------------------------------------------------------
122:                   Define the problem decomposition
123:      ------------------------------------------------------------------- */

125:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
126:        Basic method, should be sufficient for the needs of many users.
127:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

129:      Set the overlap, using the default PETSc decomposition via
130:          PCGASMSetOverlap(pc,overlap);
131:      Could instead use the option -pc_gasm_overlap <ovl>

133:      Set the total number of blocks via -pc_gasm_blocks <blks>
134:      Note:  The GASM default is to use 1 block per processor.  To
135:      experiment on a single processor with various overlaps, you
136:      must specify use of multiple blocks!
137:   */

139:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
140:        More advanced method, setting user-defined subdomains
141:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

143:      Firstly, create index sets that define the subdomains.  The utility
144:      routine PCGASMCreateSubdomains2D() is a simple example, which partitions
145:      the 2D grid into MxN subdomains with an optional overlap.
146:      More generally, the user should write a custom routine for a particular
147:      problem geometry.

149:      Then call PCGASMSetLocalSubdomains() with resulting index sets
150:      to set the subdomains for the GASM preconditioner.
151:   */

153:   if (user_set_subdomains) { /* user-control version */
154:     PCGASMCreateSubdomains2D(pc, m,n,M,N,1,overlap,&Nsub,&inneris,&outeris);
155:     PCGASMSetSubdomains(pc,Nsub,inneris,outeris);
156:     PCGASMDestroySubdomains(Nsub,&inneris,&outeris);
157:     flg  = PETSC_FALSE;
158:     PetscOptionsGetBool(NULL,NULL,"-subdomain_view",&flg,NULL);
159:     if (flg) {
160:       PetscInt i;
161:       PetscPrintf(PETSC_COMM_SELF,"Nmesh points: %D x %D; subdomain partition: %D x %D; overlap: %D; Nsub: %D\n",m,n,M,N,overlap,Nsub);
162:       PetscPrintf(PETSC_COMM_SELF,"Outer IS:\n");
163:       for (i=0; i<Nsub; i++) {
164:         PetscPrintf(PETSC_COMM_SELF,"  outer IS[%D]\n",i);
165:         ISView(outeris[i],PETSC_VIEWER_STDOUT_SELF);
166:       }
167:       PetscPrintf(PETSC_COMM_SELF,"Inner IS:\n");
168:       for (i=0; i<Nsub; i++) {
169:         PetscPrintf(PETSC_COMM_SELF,"  inner IS[%D]\n",i);
170:         ISView(inneris[i],PETSC_VIEWER_STDOUT_SELF);
171:       }
172:     }
173:   } else { /* basic setup */
174:     KSPSetFromOptions(ksp);
175:   }

177:   /* -------------------------------------------------------------------
178:                 Set the linear solvers for the subblocks
179:      ------------------------------------------------------------------- */

181:   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
182:        Basic method, should be sufficient for the needs of most users.
183:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

185:      By default, the GASM preconditioner uses the same solver on each
186:      block of the problem.  To set the same solver options on all blocks,
187:      use the prefix -sub before the usual PC and KSP options, e.g.,
188:           -sub_pc_type <pc> -sub_ksp_type <ksp> -sub_ksp_rtol 1.e-4

190:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
191:         Advanced method, setting different solvers for various blocks.
192:      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

194:      Note that each block's KSP context is completely independent of
195:      the others, and the full range of uniprocessor KSP options is
196:      available for each block.

198:      - Use PCGASMGetSubKSP() to extract the array of KSP contexts for
199:        the local blocks.
200:      - See ex7.c for a simple example of setting different linear solvers
201:        for the individual blocks for the block Jacobi method (which is
202:        equivalent to the GASM method with zero overlap).
203:   */

205:   flg  = PETSC_FALSE;
206:   PetscOptionsGetBool(NULL,NULL,"-user_set_subdomain_solvers",&flg,NULL);
207:   if (flg) {
208:     KSP       *subksp;        /* array of KSP contexts for local subblocks */
209:     PetscInt  i,nlocal,first;   /* number of local subblocks, first local subblock */
210:     PC        subpc;          /* PC context for subblock */
211:     PetscBool isasm;

213:     PetscPrintf(PETSC_COMM_WORLD,"User explicitly sets subdomain solvers.\n");

215:     /*
216:        Set runtime options
217:     */
218:     KSPSetFromOptions(ksp);

220:     /*
221:        Flag an error if PCTYPE is changed from the runtime options
222:      */
223:     PetscObjectTypeCompare((PetscObject)pc,PCGASM,&isasm);
224:     if (!isasm) SETERRQ(PETSC_COMM_WORLD,1,"Cannot Change the PCTYPE when manually changing the subdomain solver settings");

226:     /*
227:        Call KSPSetUp() to set the block Jacobi data structures (including
228:        creation of an internal KSP context for each block).

230:        Note: KSPSetUp() MUST be called before PCGASMGetSubKSP().
231:     */
232:     KSPSetUp(ksp);

234:     /*
235:        Extract the array of KSP contexts for the local blocks
236:     */
237:     PCGASMGetSubKSP(pc,&nlocal,&first,&subksp);

239:     /*
240:        Loop over the local blocks, setting various KSP options
241:        for each block.
242:     */
243:     for (i=0; i<nlocal; i++) {
244:       KSPGetPC(subksp[i],&subpc);
245:       PCSetType(subpc,PCILU);
246:       KSPSetType(subksp[i],KSPGMRES);
247:       KSPSetTolerances(subksp[i],1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);
248:     }
249:   } else {
250:     /*
251:        Set runtime options
252:     */
253:     KSPSetFromOptions(ksp);
254:   }

256:   /* -------------------------------------------------------------------
257:                       Solve the linear system
258:      ------------------------------------------------------------------- */

260:   KSPSolve(ksp,b,x);

262:   /* -------------------------------------------------------------------
263:         Assemble the matrix again to test repeated setup and solves.
264:      ------------------------------------------------------------------- */

266:   AssembleMatrix(A,m,n);
267:   KSPSolve(ksp,b,x);

269:   /* -------------------------------------------------------------------
270:                       Compare result to the exact solution
271:      ------------------------------------------------------------------- */
272:   VecAXPY(x,-1.0,u);
273:   VecNorm(x,NORM_INFINITY, &e);

275:   flg  = PETSC_FALSE;
276:   PetscOptionsGetBool(NULL,NULL,"-print_error",&flg,NULL);
277:   if (flg) {
278:     PetscPrintf(PETSC_COMM_WORLD, "Infinity norm of the error: %g\n", (double)e);
279:   }

281:   /*
282:      Free work space.  All PETSc objects should be destroyed when they
283:      are no longer needed.
284:   */

286:   KSPDestroy(&ksp);
287:   VecDestroy(&u);
288:   VecDestroy(&x);
289:   VecDestroy(&b);
290:   MatDestroy(&A);
291:   PetscFinalize();
292:   return ierr;
293: }

295: PetscErrorCode AssembleMatrix(Mat A,PetscInt m,PetscInt n)
296: {
298:   PetscInt       i,j,Ii,J,Istart,Iend;
299:   PetscScalar    v;

302:   MatGetOwnershipRange(A,&Istart,&Iend);
303:   for (Ii=Istart; Ii<Iend; Ii++) {
304:     v = -1.0; i = Ii/n; j = Ii - i*n;
305:     if (i>0)   {J = Ii - n; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
306:     if (i<m-1) {J = Ii + n; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
307:     if (j>0)   {J = Ii - 1; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
308:     if (j<n-1) {J = Ii + 1; MatSetValues(A,1,&Ii,1,&J,&v,INSERT_VALUES);}
309:     v = 4.0; MatSetValues(A,1,&Ii,1,&Ii,&v,INSERT_VALUES);
310:   }
311:   MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
312:   MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

314:   return(0);
315: }