Actual source code: kspimpl.h

petsc-3.8.4 2018-03-24
Report Typos and Errors

  2: #ifndef _KSPIMPL_H
  3: #define _KSPIMPL_H

  5:  #include <petscksp.h>
  6:  #include <petsc/private/petscimpl.h>

  8: PETSC_EXTERN PetscBool KSPRegisterAllCalled;
  9: PETSC_EXTERN PetscErrorCode KSPRegisterAll(void);
 10: PETSC_EXTERN PetscErrorCode KSPGuessRegisterAll(void);
 11: PETSC_EXTERN PetscErrorCode KSPMatRegisterAll(void);

 13: typedef struct _KSPOps *KSPOps;

 15: struct _KSPOps {
 16:   PetscErrorCode (*buildsolution)(KSP,Vec,Vec*);       /* Returns a pointer to the solution, or
 17:                                                           calculates the solution in a
 18:                                                           user-provided area. */
 19:   PetscErrorCode (*buildresidual)(KSP,Vec,Vec,Vec*);   /* Returns a pointer to the residual, or
 20:                                                           calculates the residual in a
 21:                                                           user-provided area.  */
 22:   PetscErrorCode (*solve)(KSP);                        /* actual solver */
 23:   PetscErrorCode (*setup)(KSP);
 24:   PetscErrorCode (*setfromoptions)(PetscOptionItems*,KSP);
 25:   PetscErrorCode (*publishoptions)(KSP);
 26:   PetscErrorCode (*computeextremesingularvalues)(KSP,PetscReal*,PetscReal*);
 27:   PetscErrorCode (*computeeigenvalues)(KSP,PetscInt,PetscReal*,PetscReal*,PetscInt *);
 28:   PetscErrorCode (*computeritz)(KSP,PetscBool,PetscBool,PetscInt*,Vec[],PetscReal*,PetscReal*);
 29:   PetscErrorCode (*destroy)(KSP);
 30:   PetscErrorCode (*view)(KSP,PetscViewer);
 31:   PetscErrorCode (*reset)(KSP);
 32:   PetscErrorCode (*load)(KSP,PetscViewer);
 33: };

 35: typedef struct _KSPGuessOps *KSPGuessOps;

 37: struct _KSPGuessOps {
 38:   PetscErrorCode (*formguess)(KSPGuess,Vec,Vec); /* Form initial guess */
 39:   PetscErrorCode (*update)(KSPGuess,Vec,Vec);    /* Update database */
 40:   PetscErrorCode (*setfromoptions)(KSPGuess);
 41:   PetscErrorCode (*setup)(KSPGuess);
 42:   PetscErrorCode (*destroy)(KSPGuess);
 43:   PetscErrorCode (*view)(KSPGuess,PetscViewer);
 44:   PetscErrorCode (*reset)(KSPGuess);
 45: };

 47: /*
 48:    Defines the KSPGuess data structure.
 49: */
 50: struct _p_KSPGuess {
 51:   PETSCHEADER(struct _KSPGuessOps);
 52:   KSP  ksp;     /* the parent KSP */
 53:   Mat  A;       /* the current linear operator */
 54:   void *data;   /* pointer to the specific implementation */
 55: };

 57: PETSC_EXTERN PetscErrorCode KSPGuessCreate_Fischer(KSPGuess);
 58: PETSC_EXTERN PetscErrorCode KSPGuessCreate_POD(KSPGuess);

 60: /*
 61:      Maximum number of monitors you can run with a single KSP
 62: */
 63: #define MAXKSPMONITORS 5
 64: typedef enum {KSP_SETUP_NEW, KSP_SETUP_NEWMATRIX, KSP_SETUP_NEWRHS} KSPSetUpStage;

 66: /*
 67:    Defines the KSP data structure.
 68: */
 69: struct _p_KSP {
 70:   PETSCHEADER(struct _KSPOps);
 71:   DM              dm;
 72:   PetscBool       dmAuto;       /* DM was created automatically by KSP */
 73:   PetscBool       dmActive;     /* KSP should use DM for computing operators */
 74:   /*------------------------- User parameters--------------------------*/
 75:   PetscInt        max_it;                     /* maximum number of iterations */
 76:   KSPGuess        guess;
 77:   PetscBool       guess_zero,                  /* flag for whether initial guess is 0 */
 78:                   calc_sings,                  /* calculate extreme Singular Values */
 79:                   calc_ritz,                   /* calculate (harmonic) Ritz pairs */
 80:                   guess_knoll;                /* use initial guess of PCApply(ksp->B,b */
 81:   PCSide          pc_side;                  /* flag for left, right, or symmetric preconditioning */
 82:   PetscInt        normsupporttable[KSP_NORM_MAX][PC_SIDE_MAX]; /* Table of supported norms and pc_side, see KSPSetSupportedNorm() */
 83:   PetscReal       rtol,                     /* relative tolerance */
 84:                   abstol,                     /* absolute tolerance */
 85:                   ttol,                     /* (not set by user)  */
 86:                   divtol;                   /* divergence tolerance */
 87:   PetscReal       rnorm0;                   /* initial residual norm (used for divergence testing) */
 88:   PetscReal       rnorm;                    /* current residual norm */
 89:   KSPConvergedReason    reason;
 90:   PetscBool             errorifnotconverged; /* create an error if the KSPSolve() does not converge */

 92:   Vec vec_sol,vec_rhs;            /* pointer to where user has stashed
 93:                                       the solution and rhs, these are
 94:                                       never touched by the code, only
 95:                                       passed back to the user */
 96:   PetscReal     *res_hist;            /* If !0 stores residual at iterations*/
 97:   PetscReal     *res_hist_alloc;      /* If !0 means user did not provide buffer, needs deallocation */
 98:   PetscInt      res_hist_len;         /* current size of residual history array */
 99:   PetscInt      res_hist_max;         /* actual amount of data in residual_history */
100:   PetscBool     res_hist_reset;       /* reset history to size zero for each new solve */

102:   PetscInt      chknorm;             /* only compute/check norm if iterations is great than this */
103:   PetscBool     lagnorm;             /* Lag the residual norm calculation so that it is computed as part of the
104:                                         MPI_Allreduce() for computing the inner products for the next iteration. */
105:   /* --------User (or default) routines (most return -1 on error) --------*/
106:   PetscErrorCode (*monitor[MAXKSPMONITORS])(KSP,PetscInt,PetscReal,void*); /* returns control to user after */
107:   PetscErrorCode (*monitordestroy[MAXKSPMONITORS])(void**);         /* */
108:   void *monitorcontext[MAXKSPMONITORS];                  /* residual calculation, allows user */
109:   PetscInt  numbermonitors;                                   /* to, for instance, print residual norm, etc. */

111:   PetscErrorCode (*converged)(KSP,PetscInt,PetscReal,KSPConvergedReason*,void*);
112:   PetscErrorCode (*convergeddestroy)(void*);
113:   void       *cnvP;

115:   void       *user;             /* optional user-defined context */

117:   PC         pc;

119:   void       *data;                      /* holder for misc stuff associated
120:                                    with a particular iterative solver */

122:   /* ----------------Default work-area management -------------------- */
123:   PetscInt       nwork;
124:   Vec            *work;

126:   KSPSetUpStage  setupstage;
127:   PetscBool      setupnewmatrix; /* true if we need to call ksp->ops->setup with KSP_SETUP_NEWMATRIX */

129:   PetscInt       its;       /* number of iterations so far computed in THIS linear solve*/
130:   PetscInt       totalits;   /* number of iterations used by this KSP object since it was created */

132:   PetscBool      transpose_solve;    /* solve transpose system instead */

134:   KSPNormType    normtype;          /* type of norm used for convergence tests */

136:   PCSide         pc_side_set;   /* PC type set explicitly by user */
137:   KSPNormType    normtype_set;  /* Norm type set explicitly by user */

139:   /*   Allow diagonally scaling the matrix before computing the preconditioner or using
140:        the Krylov method. Note this is NOT just Jacobi preconditioning */

142:   PetscBool    dscale;       /* diagonal scale system; used with KSPSetDiagonalScale() */
143:   PetscBool    dscalefix;    /* unscale system after solve */
144:   PetscBool    dscalefix2;   /* system has been unscaled */
145:   Vec          diagonal;     /* 1/sqrt(diag of matrix) */
146:   Vec          truediagonal;

148:   PetscBool    skippcsetfromoptions; /* if set then KSPSetFromOptions() does not call PCSetFromOptions() */

150:   PetscViewer  eigviewer;   /* Viewer where computed eigenvalues are displayed */

152:   PetscErrorCode (*presolve)(KSP,Vec,Vec,void*);
153:   PetscErrorCode (*postsolve)(KSP,Vec,Vec,void*);
154:   void           *prectx,*postctx;
155: };

157: typedef struct { /* dummy data structure used in KSPMonitorDynamicTolerance() */
158:   PetscReal coef;
159:   PetscReal bnrm;
160: } KSPDynTolCtx;

162: typedef struct {
163:   PetscBool  initialrtol;    /* default relative residual decrease is computing from initial residual, not rhs */
164:   PetscBool  mininitialrtol; /* default relative residual decrease is computing from min of initial residual and rhs */
165:   Vec        work;
166: } KSPConvergedDefaultCtx;

168: PETSC_STATIC_INLINE PetscErrorCode KSPLogResidualHistory(KSP ksp,PetscReal norm)
169: {

173:   PetscObjectSAWsTakeAccess((PetscObject)ksp);
174:   if (ksp->res_hist && ksp->res_hist_max > ksp->res_hist_len) {
175:     ksp->res_hist[ksp->res_hist_len++] = norm;
176:   }
177:   PetscObjectSAWsGrantAccess((PetscObject)ksp);
178:   return(0);
179: }

181: PETSC_INTERN PetscErrorCode KSPSetUpNorms_Private(KSP,PetscBool,KSPNormType*,PCSide*);

183: PETSC_INTERN PetscErrorCode KSPPlotEigenContours_Private(KSP,PetscInt,const PetscReal*,const PetscReal*);

185: typedef struct _p_DMKSP *DMKSP;
186: typedef struct _DMKSPOps *DMKSPOps;
187: struct _DMKSPOps {
188:   PetscErrorCode (*computeoperators)(KSP,Mat,Mat,void*);
189:   PetscErrorCode (*computerhs)(KSP,Vec,void*);
190:   PetscErrorCode (*computeinitialguess)(KSP,Vec,void*);
191:   PetscErrorCode (*destroy)(DMKSP*);
192:   PetscErrorCode (*duplicate)(DMKSP,DMKSP);
193: };

195: struct _p_DMKSP {
196:   PETSCHEADER(struct _DMKSPOps);
197:   void *operatorsctx;
198:   void *rhsctx;
199:   void *initialguessctx;
200:   void *data;

202:   /* This is NOT reference counted. The DM on which this context was first created is cached here to implement one-way
203:    * copy-on-write. When DMGetDMKSPWrite() sees a request using a different DM, it makes a copy. Thus, if a user
204:    * only interacts directly with one level, e.g., using KSPSetComputeOperators(), then coarse levels are constructed by
205:    * PCMG, then the user changes the routine with another call to KSPSetComputeOperators(), it automatically propagates
206:    * to all the levels. If instead, they get out a specific level and set the routines on that level, subsequent changes
207:    * to the original level will no longer propagate to that level.
208:    */
209:   DM originaldm;

211:   void (*fortran_func_pointers[3])(void); /* Store our own function pointers so they are associated with the DMKSP instead of the DM */
212: };
213: PETSC_EXTERN PetscErrorCode DMGetDMKSP(DM,DMKSP*);
214: PETSC_EXTERN PetscErrorCode DMGetDMKSPWrite(DM,DMKSP*);
215: PETSC_EXTERN PetscErrorCode DMCopyDMKSP(DM,DM);

217: /*
218:        These allow the various Krylov methods to apply to either the linear system or its transpose.
219: */
220: PETSC_STATIC_INLINE PetscErrorCode KSP_RemoveNullSpace(KSP ksp,Vec y)
221: {
224:   if (ksp->pc_side == PC_LEFT) {
225:     Mat          A;
226:     MatNullSpace nullsp;
227:     PCGetOperators(ksp->pc,&A,NULL);
228:     MatGetNullSpace(A,&nullsp);
229:     if (nullsp) {
230:       MatNullSpaceRemove(nullsp,y);
231:     }
232:   }
233:   return(0);
234: }

236: PETSC_STATIC_INLINE PetscErrorCode KSP_RemoveNullSpaceTranspose(KSP ksp,Vec y)
237: {
240:   if (ksp->pc_side == PC_LEFT) {
241:     Mat          A;
242:     MatNullSpace nullsp;
243:     PCGetOperators(ksp->pc,&A,NULL);
244:     MatGetTransposeNullSpace(A,&nullsp);
245:     if (nullsp) {
246:       MatNullSpaceRemove(nullsp,y);
247:     }
248:   }
249:   return(0);
250: }

252: PETSC_STATIC_INLINE PetscErrorCode KSP_MatMult(KSP ksp,Mat A,Vec x,Vec y)
253: {
256:   if (!ksp->transpose_solve) {MatMult(A,x,y);}
257:   else                       {MatMultTranspose(A,x,y);}
258:   return(0);
259: }

261: PETSC_STATIC_INLINE PetscErrorCode KSP_MatMultTranspose(KSP ksp,Mat A,Vec x,Vec y)
262: {
265:   if (!ksp->transpose_solve) {MatMultTranspose(A,x,y);}
266:   else                       {MatMult(A,x,y);}
267:   return(0);
268: }

270: PETSC_STATIC_INLINE PetscErrorCode KSP_PCApply(KSP ksp,Vec x,Vec y)
271: {
274:   if (!ksp->transpose_solve) {
275:     PCApply(ksp->pc,x,y);
276:     KSP_RemoveNullSpace(ksp,y);
277:   } else {
278:     PCApplyTranspose(ksp->pc,x,y);
279:     KSP_RemoveNullSpaceTranspose(ksp,y);
280:   }
281:   return(0);
282: }

284: PETSC_STATIC_INLINE PetscErrorCode KSP_PCApplyTranspose(KSP ksp,Vec x,Vec y)
285: {
288:   if (!ksp->transpose_solve) {
289:     PCApplyTranspose(ksp->pc,x,y);
290:     KSP_RemoveNullSpaceTranspose(ksp,y);
291:   } else {
292:     PCApply(ksp->pc,x,y);
293:     KSP_RemoveNullSpace(ksp,y);
294:   }
295:   return(0);
296: }

298: PETSC_STATIC_INLINE PetscErrorCode KSP_PCApplyBAorAB(KSP ksp,Vec x,Vec y,Vec w)
299: {
302:   if (!ksp->transpose_solve) {
303:     PCApplyBAorAB(ksp->pc,ksp->pc_side,x,y,w);
304:     KSP_RemoveNullSpace(ksp,y);
305:   } else {
306:     PCApplyBAorABTranspose(ksp->pc,ksp->pc_side,x,y,w);
307:     KSP_RemoveNullSpaceTranspose(ksp,y);
308:   }
309:   return(0);
310: }

312: PETSC_STATIC_INLINE PetscErrorCode KSP_PCApplyBAorABTranspose(KSP ksp,Vec x,Vec y,Vec w)
313: {
316:   if (!ksp->transpose_solve) {
317:     PCApplyBAorABTranspose(ksp->pc,ksp->pc_side,x,y,w);
318:   } else {
319:     PCApplyBAorAB(ksp->pc,ksp->pc_side,x,y,w);
320:   }
321:   return(0);
322: }

324: PETSC_EXTERN PetscLogEvent KSP_GMRESOrthogonalization, KSP_SetUp, KSP_Solve;
325: PETSC_EXTERN PetscLogEvent KSP_Solve_FS_0,KSP_Solve_FS_1,KSP_Solve_FS_2,KSP_Solve_FS_3,KSP_Solve_FS_4,KSP_Solve_FS_S,KSP_Solve_FS_L,KSP_Solve_FS_U;

327: PETSC_INTERN PetscErrorCode MatGetSchurComplement_Basic(Mat,IS,IS,IS,IS,MatReuse,Mat*,MatSchurComplementAinvType,MatReuse,Mat*);
328: PETSC_INTERN PetscErrorCode PCPreSolveChangeRHS(PC,PetscBool*);

330: /*
331:     Either generate an error or mark as diverged when a scalar from an inner product is Nan or Inf
332: */
333: #define KSPCheckDot(ksp,beta)           \
334:   if (PetscIsInfOrNanScalar(beta)) { \
335:     if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf inner product");\
336:     else {\
338:       PCFailedReason pcreason;\
339:       PetscInt       sendbuf,pcreason_max; \
340:       PCGetSetUpFailedReason(ksp->pc,&pcreason);\
341:       sendbuf = (PetscInt)pcreason; \
342:       MPI_Allreduce(&sendbuf,&pcreason_max,1,MPIU_INT,MPI_MAX,PetscObjectComm((PetscObject)ksp)); \
343:       if (pcreason_max) {\
344:         ksp->reason = KSP_DIVERGED_PCSETUP_FAILED;\
345:         VecSetInf(ksp->vec_sol);\
346:       } else {\
347:         ksp->reason = KSP_DIVERGED_NANORINF;\
348:       }\
349:       return(0);\
350:     }\
351:   }

353: /*
354:     Either generate an error or mark as diverged when a real from a norm is Nan or Inf
355: */
356: #define KSPCheckNorm(ksp,beta)           \
357:   if (PetscIsInfOrNanReal(beta)) { \
358:     if (ksp->errorifnotconverged) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"KSPSolve has not converged due to Nan or Inf norm");\
359:     else {\
361:       PCFailedReason pcreason;\
362:       PetscInt       sendbuf,pcreason_max; \
363:       PCGetSetUpFailedReason(ksp->pc,&pcreason);\
364:       sendbuf = (PetscInt)pcreason; \
365:       MPI_Allreduce(&sendbuf,&pcreason_max,1,MPIU_INT,MPI_MAX,PetscObjectComm((PetscObject)ksp)); \
366:       if (pcreason_max) {\
367:         ksp->reason = KSP_DIVERGED_PCSETUP_FAILED;\
368:         VecSetInf(ksp->vec_sol);\
369:       } else {\
370:         ksp->reason = KSP_DIVERGED_NANORINF;\
371:       }\
372:       return(0);\
373:     }\
374:   }

376: #endif