Actual source code: mkl_pardiso.c

petsc-3.7.7 2017-09-25
Report Typos and Errors
  1: #if defined(PETSC_HAVE_LIBMKL_INTEL_ILP64)
  2: #define MKL_ILP64
  3: #endif

  5: #include <../src/mat/impls/aij/seq/aij.h>        /*I "petscmat.h" I*/
  6: #include <../src/mat/impls/sbaij/seq/sbaij.h>
  7: #include <../src/mat/impls/dense/seq/dense.h>
  8: #include <petscblaslapack.h>

 10: #include <stdio.h>
 11: #include <stdlib.h>
 12: #include <math.h>
 13: #include <mkl_pardiso.h>

 15: PETSC_EXTERN void PetscSetMKL_PARDISOThreads(int);

 17: /*
 18:  *  Possible mkl_pardiso phases that controls the execution of the solver.
 19:  *  For more information check mkl_pardiso manual.
 20:  */
 21: #define JOB_ANALYSIS 11
 22: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION 12
 23: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 13
 24: #define JOB_NUMERICAL_FACTORIZATION 22
 25: #define JOB_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 23
 26: #define JOB_SOLVE_ITERATIVE_REFINEMENT 33
 27: #define JOB_SOLVE_FORWARD_SUBSTITUTION 331
 28: #define JOB_SOLVE_DIAGONAL_SUBSTITUTION 332
 29: #define JOB_SOLVE_BACKWARD_SUBSTITUTION 333
 30: #define JOB_RELEASE_OF_LU_MEMORY 0
 31: #define JOB_RELEASE_OF_ALL_MEMORY -1

 33: #define IPARM_SIZE 64

 35: #if defined(PETSC_USE_64BIT_INDICES)
 36:  #if defined(PETSC_HAVE_LIBMKL_INTEL_ILP64)
 37:   /* sizeof(MKL_INT) == sizeof(long long int) if ilp64*/
 38:   #define INT_TYPE long long int
 39:   #define MKL_PARDISO pardiso
 40:   #define MKL_PARDISO_INIT pardisoinit
 41:  #else
 42:   #define INT_TYPE long long int
 43:   #define MKL_PARDISO pardiso_64
 44:   #define MKL_PARDISO_INIT pardiso_64init
 45:  #endif
 46: #else
 47:  #define INT_TYPE int
 48:  #define MKL_PARDISO pardiso
 49:  #define MKL_PARDISO_INIT pardisoinit
 50: #endif


 53: /*
 54:  *  Internal data structure.
 55:  *  For more information check mkl_pardiso manual.
 56:  */
 57: typedef struct {

 59:   /* Configuration vector*/
 60:   INT_TYPE     iparm[IPARM_SIZE];

 62:   /*
 63:    * Internal mkl_pardiso memory location.
 64:    * After the first call to mkl_pardiso do not modify pt, as that could cause a serious memory leak.
 65:    */
 66:   void         *pt[IPARM_SIZE];

 68:   /* Basic mkl_pardiso info*/
 69:   INT_TYPE     phase, maxfct, mnum, mtype, n, nrhs, msglvl, err;

 71:   /* Matrix structure*/
 72:   void         *a;
 73:   INT_TYPE     *ia, *ja;

 75:   /* Number of non-zero elements*/
 76:   INT_TYPE     nz;

 78:   /* Row permutaton vector*/
 79:   INT_TYPE     *perm;

 81:   /* Define if matrix preserves sparse structure.*/
 82:   MatStructure matstruc;

 84:   PetscBool    needsym;
 85:   PetscBool    freeaij;

 87:   /* Schur complement */
 88:   PetscScalar  *schur;
 89:   PetscInt     schur_size;
 90:   PetscInt     *schur_idxs;
 91:   PetscScalar  *schur_work;
 92:   PetscBLASInt schur_work_size;
 93:   PetscInt     schur_solver_type;
 94:   PetscInt     *schur_pivots;
 95:   PetscBool    schur_factored;
 96:   PetscBool    schur_inverted;
 97:   PetscBool    solve_interior;

 99:   /* True if mkl_pardiso function have been used.*/
100:   PetscBool CleanUp;

102:   /* Conversion to a format suitable for MKL */
103:   PetscErrorCode (*Convert)(Mat, PetscBool, MatReuse, PetscBool*, INT_TYPE*, INT_TYPE**, INT_TYPE**, PetscScalar**);
104:   PetscErrorCode (*Destroy)(Mat);
105: } Mat_MKL_PARDISO;

109: PetscErrorCode MatMKLPardiso_Convert_seqsbaij(Mat A,PetscBool sym,MatReuse reuse,PetscBool *free,INT_TYPE *nnz,INT_TYPE **r,INT_TYPE **c,PetscScalar **v)
110: {
111:   Mat_SeqSBAIJ   *aa = (Mat_SeqSBAIJ*)A->data;
112:   PetscInt       bs  = A->rmap->bs;

115:   if (!sym) {
116:     SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_PLIB,"This should not happen");
117:   }
118:   if (bs == 1) { /* already in the correct format */
119:     *v    = aa->a;
120:     *r    = aa->i;
121:     *c    = aa->j;
122:     *nnz  = aa->nz;
123:     *free = PETSC_FALSE;
124:   } else {
125:     SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Conversion from SeqSBAIJ to MKL Pardiso format still need to be implemented");
126:   }
127:   return(0);
128: }

132: PetscErrorCode MatMKLPardiso_Convert_seqbaij(Mat A,PetscBool sym,MatReuse reuse,PetscBool *free,INT_TYPE *nnz,INT_TYPE **r,INT_TYPE **c,PetscScalar **v)
133: {
135:   SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Conversion from SeqBAIJ to MKL Pardiso format still need to be implemented");
136:   return(0);
137: }

141: PetscErrorCode MatMKLPardiso_Convert_seqaij(Mat A,PetscBool sym,MatReuse reuse,PetscBool *free,INT_TYPE *nnz,INT_TYPE **r,INT_TYPE **c,PetscScalar **v)
142: {
143:   Mat_SeqAIJ     *aa = (Mat_SeqAIJ*)A->data;

147:   if (!sym) { /* already in the correct format */
148:     *v    = aa->a;
149:     *r    = aa->i;
150:     *c    = aa->j;
151:     *nnz  = aa->nz;
152:     *free = PETSC_FALSE;
153:     return(0);
154:   }
155:   /* need to get the triangular part */
156:   if (reuse == MAT_INITIAL_MATRIX) {
157:     PetscScalar *vals,*vv;
158:     PetscInt    *row,*col,*jj;
159:     PetscInt    m = A->rmap->n,nz,i;

161:     nz = 0;
162:     for (i=0; i<m; i++) {
163:       nz += aa->i[i+1] - aa->diag[i];
164:     }
165:     PetscMalloc2(m+1,&row,nz,&col);
166:     PetscMalloc1(nz,&vals);
167:     jj = col;
168:     vv = vals;

170:     row[0] = 0;
171:     for (i=0; i<m; i++) {
172:       PetscInt    *aj = aa->j + aa->diag[i];
173:       PetscScalar *av = aa->a + aa->diag[i];
174:       PetscInt    rl = aa->i[i+1] - aa->diag[i],j;
175:       for (j=0; j<rl; j++) {
176:         *jj = *aj; jj++; aj++;
177:         *vv = *av; vv++; av++;
178:       }
179:       row[i+1]    = row[i] + rl;
180:     }
181:     *v    = vals;
182:     *r    = row;
183:     *c    = col;
184:     *nnz  = nz;
185:     *free = PETSC_TRUE;
186:   } else {
187:     PetscScalar *vv;
188:     PetscInt    m = A->rmap->n,i;

190:     vv = *v;
191:     for (i=0; i<m; i++) {
192:       PetscScalar *av = aa->a + aa->diag[i];
193:       PetscInt    rl = aa->i[i+1] - aa->diag[i],j;
194:       for (j=0; j<rl; j++) {
195:         *vv = *av; vv++; av++;
196:       }
197:     }
198:     *free = PETSC_TRUE;
199:   }
200:   return(0);
201: }

203: void pardiso_64init(void *pt, INT_TYPE *mtype, INT_TYPE iparm [])
204: {
205:   int iparm_copy[IPARM_SIZE], mtype_copy, i;
206: 
207:   mtype_copy = *mtype;
208:   pardisoinit(pt, &mtype_copy, iparm_copy);
209:   for(i = 0; i < IPARM_SIZE; i++){
210:     iparm[i] = iparm_copy[i];
211:   }
212: }

216: static PetscErrorCode MatMKLPardisoFactorSchur_Private(Mat_MKL_PARDISO* mpardiso)
217: {
218:   PetscBLASInt   B_N,B_ierr;
219:   PetscScalar    *work,val;
220:   PetscBLASInt   lwork = -1;

224:   if (mpardiso->schur_factored) {
225:     return(0);
226:   }
227:   PetscBLASIntCast(mpardiso->schur_size,&B_N);
228:   switch (mpardiso->schur_solver_type) {
229:     case 1: /* hermitian solver */
230:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
231:       PetscStackCallBLAS("LAPACKpotrf",LAPACKpotrf_("L",&B_N,mpardiso->schur,&B_N,&B_ierr));
232:       PetscFPTrapPop();
233:       if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in POTRF Lapack routine %d",(int)B_ierr);
234:       break;
235:     case 2: /* symmetric */
236:       if (!mpardiso->schur_pivots) {
237:         PetscMalloc1(B_N,&mpardiso->schur_pivots);
238:       }
239:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
240:       PetscStackCallBLAS("LAPACKsytrf",LAPACKsytrf_("L",&B_N,mpardiso->schur,&B_N,mpardiso->schur_pivots,&val,&lwork,&B_ierr));
241:       PetscBLASIntCast((PetscInt)PetscRealPart(val),&lwork);
242:       PetscMalloc1(lwork,&work);
243:       PetscStackCallBLAS("LAPACKsytrf",LAPACKsytrf_("L",&B_N,mpardiso->schur,&B_N,mpardiso->schur_pivots,work,&lwork,&B_ierr));
244:       PetscFree(work);
245:       PetscFPTrapPop();
246:       if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in SYTRF Lapack routine %d",(int)B_ierr);
247:       break;
248:     default: /* general */
249:       if (!mpardiso->schur_pivots) {
250:         PetscMalloc1(B_N,&mpardiso->schur_pivots);
251:       }
252:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
253:       PetscStackCallBLAS("LAPACKgetrf",LAPACKgetrf_(&B_N,&B_N,mpardiso->schur,&B_N,mpardiso->schur_pivots,&B_ierr));
254:       PetscFPTrapPop();
255:       if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in GETRF Lapack routine %d",(int)B_ierr);
256:       break;
257:   }
258:   mpardiso->schur_factored = PETSC_TRUE;
259:   return(0);
260: }

264: static PetscErrorCode MatMKLPardisoInvertSchur_Private(Mat_MKL_PARDISO* mpardiso)
265: {
266:   PetscBLASInt   B_N,B_ierr;

270:   MatMKLPardisoFactorSchur_Private(mpardiso);
271:   PetscBLASIntCast(mpardiso->schur_size,&B_N);
272:   switch (mpardiso->schur_solver_type) {
273:     case 1: /* hermitian solver */
274:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
275:       PetscStackCallBLAS("LAPACKpotri",LAPACKpotri_("L",&B_N,mpardiso->schur,&B_N,&B_ierr));
276:       PetscFPTrapPop();
277:       if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in POTRI Lapack routine %d",(int)B_ierr);
278:       break;
279:     case 2: /* symmetric */
280:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
281:       PetscStackCallBLAS("LAPACKsytri",LAPACKsytri_("L",&B_N,mpardiso->schur,&B_N,mpardiso->schur_pivots,mpardiso->schur_work,&B_ierr));
282:       PetscFPTrapPop();
283:       if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in SYTRI Lapack routine %d",(int)B_ierr);
284:       break;
285:     default: /* general */
286:       PetscFPTrapPush(PETSC_FP_TRAP_OFF);
287:       PetscStackCallBLAS("LAPACKgetri",LAPACKgetri_(&B_N,mpardiso->schur,&B_N,mpardiso->schur_pivots,mpardiso->schur_work,&mpardiso->schur_work_size,&B_ierr));
288:       PetscFPTrapPop();
289:       if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in GETRI Lapack routine %d",(int)B_ierr);
290:       break;
291:   }
292:   mpardiso->schur_inverted = PETSC_TRUE;
293:   return(0);
294: }

298: static PetscErrorCode MatMKLPardisoSolveSchur_Private(Mat_MKL_PARDISO* mpardiso, PetscScalar *B, PetscScalar *X)
299: {
300:   PetscScalar    one=1.,zero=0.,*schur_rhs,*schur_sol;
301:   PetscBLASInt   B_N,B_Nrhs,B_ierr;
302:   char           type[2];

306:   MatMKLPardisoFactorSchur_Private(mpardiso);
307:   PetscBLASIntCast(mpardiso->schur_size,&B_N);
308:   PetscBLASIntCast(mpardiso->nrhs,&B_Nrhs);
309:   if (X == B && mpardiso->schur_inverted) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"X and B cannot point to the same address");
310:   if (X != B) { /* using LAPACK *TRS subroutines */
311:     PetscMemcpy(X,B,B_N*B_Nrhs*sizeof(PetscScalar));
312:   }
313:   schur_rhs = B;
314:   schur_sol = X;
315:   switch (mpardiso->schur_solver_type) {
316:     case 1: /* hermitian solver */
317:       if (mpardiso->schur_inverted) { /* BLAShemm should go here */
318:         PetscStackCallBLAS("BLASsymm",BLASsymm_("L","L",&B_N,&B_Nrhs,&one,mpardiso->schur,&B_N,schur_rhs,&B_N,&zero,schur_sol,&B_N));
319:       } else {
320:         PetscFPTrapPush(PETSC_FP_TRAP_OFF);
321:         PetscStackCallBLAS("LAPACKpotrs",LAPACKpotrs_("L",&B_N,&B_Nrhs,mpardiso->schur,&B_N,schur_sol,&B_N,&B_ierr));
322:         PetscFPTrapPop();
323:         if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in POTRS Lapack routine %d",(int)B_ierr);
324:       }
325:       break;
326:     case 2: /* symmetric solver */
327:       if (mpardiso->schur_inverted) {
328:         PetscStackCallBLAS("BLASsymm",BLASsymm_("L","L",&B_N,&B_Nrhs,&one,mpardiso->schur,&B_N,schur_rhs,&B_N,&zero,schur_sol,&B_N));
329:       } else {
330:         PetscFPTrapPush(PETSC_FP_TRAP_OFF);
331:         PetscStackCallBLAS("LAPACKsytrs",LAPACKsytrs_("L",&B_N,&B_Nrhs,mpardiso->schur,&B_N,mpardiso->schur_pivots,schur_sol,&B_N,&B_ierr));
332:         PetscFPTrapPop();
333:         if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in SYTRS Lapack routine %d",(int)B_ierr);
334:       }
335:       break;
336:     default: /* general */
337:       switch (mpardiso->iparm[12-1]) {
338:         case 1:
339:           sprintf(type,"C");
340:           break;
341:         case 2:
342:           sprintf(type,"T");
343:           break;
344:         default:
345:           sprintf(type,"N");
346:           break;
347:       }
348:       if (mpardiso->schur_inverted) {
349:         PetscStackCallBLAS("BLASgemm",BLASgemm_(type,"N",&B_N,&B_Nrhs,&B_N,&one,mpardiso->schur,&B_N,schur_rhs,&B_N,&zero,schur_sol,&B_N));
350:       } else {
351:         PetscFPTrapPush(PETSC_FP_TRAP_OFF);
352:         PetscStackCallBLAS("LAPACKgetrs",LAPACKgetrs_(type,&B_N,&B_Nrhs,mpardiso->schur,&B_N,mpardiso->schur_pivots,schur_sol,&B_N,&B_ierr));
353:         PetscFPTrapPop();
354:         if (B_ierr) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error in GETRS Lapack routine %d",(int)B_ierr);
355:       }
356:       break;
357:   }
358:   return(0);
359: }


364: PetscErrorCode MatFactorSetSchurIS_MKL_PARDISO(Mat F, IS is)
365: {
366:   Mat_MKL_PARDISO *mpardiso =(Mat_MKL_PARDISO*)F->spptr;
367:   const PetscInt  *idxs;
368:   PetscInt        size,i;
369:   PetscMPIInt     csize;
370:   PetscBool       sorted;
371:   PetscErrorCode  ierr;

374:   MPI_Comm_size(PetscObjectComm((PetscObject)F),&csize);
375:   if (csize > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MKL_PARDISO parallel Schur complements not yet supported from PETSc\n");
376:   ISSorted(is,&sorted);
377:   if (!sorted) {
378:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"IS for MKL_PARDISO Schur complements needs to be sorted\n");
379:   }
380:   ISGetLocalSize(is,&size);
381:   if (mpardiso->schur_size != size) {
382:     mpardiso->schur_size = size;
383:     PetscFree2(mpardiso->schur,mpardiso->schur_work);
384:     PetscFree(mpardiso->schur_idxs);
385:     PetscFree(mpardiso->schur_pivots);
386:     PetscBLASIntCast(PetscMax(mpardiso->n,2*size),&mpardiso->schur_work_size);
387:     PetscMalloc2(size*size,&mpardiso->schur,mpardiso->schur_work_size,&mpardiso->schur_work);
388:     PetscMalloc1(size,&mpardiso->schur_idxs);
389:   }
390:   PetscMemzero(mpardiso->perm,mpardiso->n*sizeof(INT_TYPE));
391:   ISGetIndices(is,&idxs);
392:   PetscMemcpy(mpardiso->schur_idxs,idxs,size*sizeof(PetscInt));
393:   for (i=0;i<size;i++) mpardiso->perm[idxs[i]] = 1;
394:   ISRestoreIndices(is,&idxs);
395:   if (size) { /* turn on Schur switch if we the set of indices is not empty */
396:     mpardiso->iparm[36-1] = 2;
397:   }
398:   mpardiso->schur_factored = PETSC_FALSE;
399:   mpardiso->schur_inverted = PETSC_FALSE;
400:   return(0);
401: }

405: PetscErrorCode MatFactorCreateSchurComplement_MKL_PARDISO(Mat F,Mat* S)
406: {
407:   Mat             St;
408:   Mat_MKL_PARDISO *mpardiso =(Mat_MKL_PARDISO*)F->spptr;
409:   PetscScalar     *array;
410:   PetscErrorCode  ierr;

413:   if (!mpardiso->iparm[36-1]) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur complement mode not selected! You should call MatFactorSetSchurIS to enable it");
414:   else if (!mpardiso->schur_size) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur indices not set! You should call MatFactorSetSchurIS before");

416:   MatCreate(PetscObjectComm((PetscObject)F),&St);
417:   MatSetSizes(St,PETSC_DECIDE,PETSC_DECIDE,mpardiso->schur_size,mpardiso->schur_size);
418:   MatSetType(St,MATDENSE);
419:   MatSetUp(St);
420:   MatDenseGetArray(St,&array);
421:   PetscMemcpy(array,mpardiso->schur,mpardiso->schur_size*mpardiso->schur_size*sizeof(PetscScalar));
422:   MatDenseRestoreArray(St,&array);
423:   *S = St;
424:   return(0);
425: }

429: PetscErrorCode MatFactorGetSchurComplement_MKL_PARDISO(Mat F,Mat* S)
430: {
431:   Mat             St;
432:   Mat_MKL_PARDISO *mpardiso =(Mat_MKL_PARDISO*)F->spptr;
433:   PetscErrorCode  ierr;

436:   if (!mpardiso->iparm[36-1]) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur complement mode not selected! You should call MatFactorSetSchurIS to enable it");
437:   else if (!mpardiso->schur_size) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur indices not set! You should call MatFactorSetSchurIS before");

439:   MatCreateSeqDense(PetscObjectComm((PetscObject)F),mpardiso->schur_size,mpardiso->schur_size,mpardiso->schur,&St);
440:   *S = St;
441:   return(0);
442: }

446: PetscErrorCode MatFactorInvertSchurComplement_MKL_PARDISO(Mat F)
447: {
448:   Mat_MKL_PARDISO *mpardiso =(Mat_MKL_PARDISO*)F->spptr;
449:   PetscErrorCode  ierr;

452:   if (!mpardiso->iparm[36-1]) { /* do nothing */
453:     return(0);
454:   }
455:   if (!mpardiso->schur_size) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur indices not set! You should call MatFactorSetSchurIS before");
456:   MatMKLPardisoInvertSchur_Private(mpardiso);
457:   return(0);
458: }

462: PetscErrorCode MatFactorSolveSchurComplement_MKL_PARDISO(Mat F, Vec rhs, Vec sol)
463: {
464:   Mat_MKL_PARDISO   *mpardiso =(Mat_MKL_PARDISO*)F->spptr;
465:   PetscScalar       *asol,*arhs;

469:   if (!mpardiso->iparm[36-1]) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur complement mode not selected! You should call MatFactorSetSchurIS to enable it");
470:   else if (!mpardiso->schur_size) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur indices not set! You should call MatFactorSetSchurIS before");

472:   mpardiso->nrhs = 1;
473:   VecGetArrayRead(rhs,(const PetscScalar**)&arhs);
474:   VecGetArray(sol,&asol);
475:   MatMKLPardisoSolveSchur_Private(mpardiso,arhs,asol);
476:   VecRestoreArrayRead(rhs,(const PetscScalar**)&arhs);
477:   VecRestoreArray(sol,&asol);
478:   return(0);
479: }

483: PetscErrorCode MatFactorSolveSchurComplementTranspose_MKL_PARDISO(Mat F, Vec rhs, Vec sol)
484: {
485:   Mat_MKL_PARDISO   *mpardiso =(Mat_MKL_PARDISO*)F->spptr;
486:   PetscScalar       *asol,*arhs;
487:   PetscInt          oiparm12;
488:   PetscErrorCode    ierr;

491:   if (!mpardiso->iparm[36-1]) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur complement mode not selected! You should call MatFactorSetSchurIS to enable it");
492:   else if (!mpardiso->schur_size) SETERRQ(PetscObjectComm((PetscObject)F),PETSC_ERR_ORDER,"Schur indices not set! You should call MatFactorSetSchurIS before");

494:   mpardiso->nrhs = 1;
495:   VecGetArrayRead(rhs,(const PetscScalar**)&arhs);
496:   VecGetArray(sol,&asol);
497:   oiparm12 = mpardiso->iparm[12 - 1];
498:   mpardiso->iparm[12 - 1] = 2;
499:   MatMKLPardisoSolveSchur_Private(mpardiso,arhs,asol);
500:   mpardiso->iparm[12 - 1] = oiparm12;
501:   VecRestoreArrayRead(rhs,(const PetscScalar**)&arhs);
502:   VecRestoreArray(sol,&asol);
503:   return(0);
504: }

508: PetscErrorCode MatDestroy_MKL_PARDISO(Mat A)
509: {
510:   Mat_MKL_PARDISO *mat_mkl_pardiso=(Mat_MKL_PARDISO*)A->spptr;
511:   PetscErrorCode  ierr;

514:   if (mat_mkl_pardiso->CleanUp) {
515:     mat_mkl_pardiso->phase = JOB_RELEASE_OF_ALL_MEMORY;

517:     MKL_PARDISO (mat_mkl_pardiso->pt,
518:       &mat_mkl_pardiso->maxfct,
519:       &mat_mkl_pardiso->mnum,
520:       &mat_mkl_pardiso->mtype,
521:       &mat_mkl_pardiso->phase,
522:       &mat_mkl_pardiso->n,
523:       NULL,
524:       NULL,
525:       NULL,
526:       mat_mkl_pardiso->perm,
527:       &mat_mkl_pardiso->nrhs,
528:       mat_mkl_pardiso->iparm,
529:       &mat_mkl_pardiso->msglvl,
530:       NULL,
531:       NULL,
532:       &mat_mkl_pardiso->err);
533:   }
534:   PetscFree(mat_mkl_pardiso->perm);
535:   PetscFree2(mat_mkl_pardiso->schur,mat_mkl_pardiso->schur_work);
536:   PetscFree(mat_mkl_pardiso->schur_idxs);
537:   PetscFree(mat_mkl_pardiso->schur_pivots);
538:   if (mat_mkl_pardiso->freeaij) {
539:     PetscFree2(mat_mkl_pardiso->ia,mat_mkl_pardiso->ja);
540:     PetscFree(mat_mkl_pardiso->a);
541:   }
542:   if (mat_mkl_pardiso->Destroy) {
543:     (mat_mkl_pardiso->Destroy)(A);
544:   }
545:   PetscFree(A->spptr);

547:   /* clear composed functions */
548:   PetscObjectComposeFunction((PetscObject)A,"MatFactorGetSolverPackage_C",NULL);
549:   PetscObjectComposeFunction((PetscObject)A,"MatFactorSetSchurIS_C",NULL);
550:   PetscObjectComposeFunction((PetscObject)A,"MatFactorCreateSchurComplement_C",NULL);
551:   PetscObjectComposeFunction((PetscObject)A,"MatFactorGetSchurComplement_C",NULL);
552:   PetscObjectComposeFunction((PetscObject)A,"MatFactorInvertSchurComplement_C",NULL);
553:   PetscObjectComposeFunction((PetscObject)A,"MatFactorSolveSchurComplement_C",NULL);
554:   PetscObjectComposeFunction((PetscObject)A,"MatFactorSolveSchurComplementTranspose_C",NULL);
555:   PetscObjectComposeFunction((PetscObject)A,"MatMkl_PardisoSetCntl_C",NULL);
556:   return(0);
557: }

561: static PetscErrorCode MatMKLPardisoScatterSchur_Private(Mat_MKL_PARDISO *mpardiso, PetscScalar *whole, PetscScalar *schur, PetscBool reduce)
562: {
564:   if (reduce) { /* data given for the whole matrix */
565:     PetscInt i,m=0,p=0;
566:     for (i=0;i<mpardiso->nrhs;i++) {
567:       PetscInt j;
568:       for (j=0;j<mpardiso->schur_size;j++) {
569:         schur[p+j] = whole[m+mpardiso->schur_idxs[j]];
570:       }
571:       m += mpardiso->n;
572:       p += mpardiso->schur_size;
573:     }
574:   } else { /* from Schur to whole */
575:     PetscInt i,m=0,p=0;
576:     for (i=0;i<mpardiso->nrhs;i++) {
577:       PetscInt j;
578:       for (j=0;j<mpardiso->schur_size;j++) {
579:         whole[m+mpardiso->schur_idxs[j]] = schur[p+j];
580:       }
581:       m += mpardiso->n;
582:       p += mpardiso->schur_size;
583:     }
584:   }
585:   return(0);
586: }

590: PetscErrorCode MatSolve_MKL_PARDISO(Mat A,Vec b,Vec x)
591: {
592:   Mat_MKL_PARDISO   *mat_mkl_pardiso=(Mat_MKL_PARDISO*)(A)->spptr;
593:   PetscErrorCode    ierr;
594:   PetscScalar       *xarray;
595:   const PetscScalar *barray;

598:   mat_mkl_pardiso->nrhs = 1;
599:   VecGetArray(x,&xarray);
600:   VecGetArrayRead(b,&barray);

602:   if (!mat_mkl_pardiso->schur) {
603:     mat_mkl_pardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
604:   } else {
605:     mat_mkl_pardiso->phase = JOB_SOLVE_FORWARD_SUBSTITUTION;
606:   }
607:   mat_mkl_pardiso->iparm[6-1] = 0;

609:   MKL_PARDISO (mat_mkl_pardiso->pt,
610:     &mat_mkl_pardiso->maxfct,
611:     &mat_mkl_pardiso->mnum,
612:     &mat_mkl_pardiso->mtype,
613:     &mat_mkl_pardiso->phase,
614:     &mat_mkl_pardiso->n,
615:     mat_mkl_pardiso->a,
616:     mat_mkl_pardiso->ia,
617:     mat_mkl_pardiso->ja,
618:     mat_mkl_pardiso->perm,
619:     &mat_mkl_pardiso->nrhs,
620:     mat_mkl_pardiso->iparm,
621:     &mat_mkl_pardiso->msglvl,
622:     (void*)barray,
623:     (void*)xarray,
624:     &mat_mkl_pardiso->err);

626:   if (mat_mkl_pardiso->err < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_PARDISO: err=%d. Please check manual\n",mat_mkl_pardiso->err);

628:   if (mat_mkl_pardiso->schur) { /* solve Schur complement and expand solution */
629:     PetscInt shift = mat_mkl_pardiso->schur_size;

631:     /* if inverted, uses BLAS *MM subroutines, otherwise LAPACK *TRS */
632:     if (!mat_mkl_pardiso->schur_inverted) {
633:       shift = 0;
634:     }

636:     if (!mat_mkl_pardiso->solve_interior) {
637:       /* solve Schur complement */
638:       MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso,xarray,mat_mkl_pardiso->schur_work,PETSC_TRUE);
639:       MatMKLPardisoSolveSchur_Private(mat_mkl_pardiso,mat_mkl_pardiso->schur_work,mat_mkl_pardiso->schur_work+shift);
640:       MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso,xarray,mat_mkl_pardiso->schur_work+shift,PETSC_FALSE);
641:     } else { /* if we are solving for the interior problem, any value in barray[schur] forward-substitued to xarray[schur] will be neglected */
642:       PetscInt i;
643:       for (i=0;i<mat_mkl_pardiso->schur_size;i++) {
644:         xarray[mat_mkl_pardiso->schur_idxs[i]] = 0.;
645:       }
646:     }
647:     /* expansion phase */
648:     mat_mkl_pardiso->iparm[6-1] = 1;
649:     mat_mkl_pardiso->phase = JOB_SOLVE_BACKWARD_SUBSTITUTION;
650:     MKL_PARDISO (mat_mkl_pardiso->pt,
651:       &mat_mkl_pardiso->maxfct,
652:       &mat_mkl_pardiso->mnum,
653:       &mat_mkl_pardiso->mtype,
654:       &mat_mkl_pardiso->phase,
655:       &mat_mkl_pardiso->n,
656:       mat_mkl_pardiso->a,
657:       mat_mkl_pardiso->ia,
658:       mat_mkl_pardiso->ja,
659:       mat_mkl_pardiso->perm,
660:       &mat_mkl_pardiso->nrhs,
661:       mat_mkl_pardiso->iparm,
662:       &mat_mkl_pardiso->msglvl,
663:       (void*)xarray,
664:       (void*)mat_mkl_pardiso->schur_work, /* according to the specs, the solution vector is always used */
665:       &mat_mkl_pardiso->err);

667:     if (mat_mkl_pardiso->err < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_PARDISO: err=%d. Please check manual\n",mat_mkl_pardiso->err);
668:     mat_mkl_pardiso->iparm[6-1] = 0;
669:   }
670:   VecRestoreArray(x,&xarray);
671:   VecRestoreArrayRead(b,&barray);
672:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
673:   return(0);
674: }

678: PetscErrorCode MatSolveTranspose_MKL_PARDISO(Mat A,Vec b,Vec x)
679: {
680:   Mat_MKL_PARDISO *mat_mkl_pardiso=(Mat_MKL_PARDISO*)A->spptr;
681:   PetscInt        oiparm12;
682:   PetscErrorCode  ierr;

685:   oiparm12 = mat_mkl_pardiso->iparm[12 - 1];
686:   mat_mkl_pardiso->iparm[12 - 1] = 2;
687:   MatSolve_MKL_PARDISO(A,b,x);
688:   mat_mkl_pardiso->iparm[12 - 1] = oiparm12;
689:   return(0);
690: }

694: PetscErrorCode MatMatSolve_MKL_PARDISO(Mat A,Mat B,Mat X)
695: {
696:   Mat_MKL_PARDISO   *mat_mkl_pardiso=(Mat_MKL_PARDISO*)(A)->spptr;
697:   PetscErrorCode    ierr;
698:   PetscScalar       *barray, *xarray;
699:   PetscBool         flg;

702:   PetscObjectTypeCompare((PetscObject)B,MATSEQDENSE,&flg);
703:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATSEQDENSE matrix");
704:   PetscObjectTypeCompare((PetscObject)X,MATSEQDENSE,&flg);
705:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATSEQDENSE matrix");

707:   MatGetSize(B,NULL,(PetscInt*)&mat_mkl_pardiso->nrhs);

709:   if(mat_mkl_pardiso->nrhs > 0){
710:     MatDenseGetArray(B,&barray);
711:     MatDenseGetArray(X,&xarray);

713:     if (!mat_mkl_pardiso->schur) {
714:       mat_mkl_pardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
715:     } else {
716:       mat_mkl_pardiso->phase = JOB_SOLVE_FORWARD_SUBSTITUTION;
717:     }
718:     mat_mkl_pardiso->iparm[6-1] = 0;

720:     MKL_PARDISO (mat_mkl_pardiso->pt,
721:       &mat_mkl_pardiso->maxfct,
722:       &mat_mkl_pardiso->mnum,
723:       &mat_mkl_pardiso->mtype,
724:       &mat_mkl_pardiso->phase,
725:       &mat_mkl_pardiso->n,
726:       mat_mkl_pardiso->a,
727:       mat_mkl_pardiso->ia,
728:       mat_mkl_pardiso->ja,
729:       mat_mkl_pardiso->perm,
730:       &mat_mkl_pardiso->nrhs,
731:       mat_mkl_pardiso->iparm,
732:       &mat_mkl_pardiso->msglvl,
733:       (void*)barray,
734:       (void*)xarray,
735:       &mat_mkl_pardiso->err);
736:     if (mat_mkl_pardiso->err < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_PARDISO: err=%d. Please check manual\n",mat_mkl_pardiso->err);

738:     if (mat_mkl_pardiso->schur) { /* solve Schur complement and expand solution */
739:       PetscScalar *o_schur_work = NULL;
740:       PetscInt    shift = mat_mkl_pardiso->schur_size*mat_mkl_pardiso->nrhs,scale;
741:       PetscInt    mem = mat_mkl_pardiso->n*mat_mkl_pardiso->nrhs;

743:       /* allocate extra memory if it is needed */
744:       scale = 1;
745:       if (mat_mkl_pardiso->schur_inverted) {
746:         scale = 2;
747:       }
748:       mem *= scale;
749:       if (mem > mat_mkl_pardiso->schur_work_size) {
750:         o_schur_work = mat_mkl_pardiso->schur_work;
751:         PetscMalloc1(mem,&mat_mkl_pardiso->schur_work);
752:       }

754:       /* if inverted, uses BLAS *MM subroutines, otherwise LAPACK *TRS */
755:       if (!mat_mkl_pardiso->schur_inverted) {
756:         shift = 0;
757:       }

759:       /* solve Schur complement */
760:       if (!mat_mkl_pardiso->solve_interior) {
761:         MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso,xarray,mat_mkl_pardiso->schur_work,PETSC_TRUE);
762:         MatMKLPardisoSolveSchur_Private(mat_mkl_pardiso,mat_mkl_pardiso->schur_work,mat_mkl_pardiso->schur_work+shift);
763:         MatMKLPardisoScatterSchur_Private(mat_mkl_pardiso,xarray,mat_mkl_pardiso->schur_work+shift,PETSC_FALSE);
764:       } else { /* if we are solving for the interior problem, any value in barray[schur,n] forward-substitued to xarray[schur,n] will be neglected */
765:         PetscInt i,n,m=0;
766:         for (n=0;n<mat_mkl_pardiso->nrhs;n++) {
767:           for (i=0;i<mat_mkl_pardiso->schur_size;i++) {
768:             xarray[mat_mkl_pardiso->schur_idxs[i]+m] = 0.;
769:           }
770:           m += mat_mkl_pardiso->n;
771:         }
772:       }
773:       /* expansion phase */
774:       mat_mkl_pardiso->iparm[6-1] = 1;
775:       mat_mkl_pardiso->phase = JOB_SOLVE_BACKWARD_SUBSTITUTION;
776:       MKL_PARDISO (mat_mkl_pardiso->pt,
777:         &mat_mkl_pardiso->maxfct,
778:         &mat_mkl_pardiso->mnum,
779:         &mat_mkl_pardiso->mtype,
780:         &mat_mkl_pardiso->phase,
781:         &mat_mkl_pardiso->n,
782:         mat_mkl_pardiso->a,
783:         mat_mkl_pardiso->ia,
784:         mat_mkl_pardiso->ja,
785:         mat_mkl_pardiso->perm,
786:         &mat_mkl_pardiso->nrhs,
787:         mat_mkl_pardiso->iparm,
788:         &mat_mkl_pardiso->msglvl,
789:         (void*)xarray,
790:         (void*)mat_mkl_pardiso->schur_work, /* according to the specs, the solution vector is always used */
791:         &mat_mkl_pardiso->err);
792:       if (o_schur_work) { /* restore original schur_work (minimal size) */
793:         PetscFree(mat_mkl_pardiso->schur_work);
794:         mat_mkl_pardiso->schur_work = o_schur_work;
795:       }
796:       if (mat_mkl_pardiso->err < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_PARDISO: err=%d. Please check manual\n",mat_mkl_pardiso->err);
797:       mat_mkl_pardiso->iparm[6-1] = 0;
798:     }
799:   }
800:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;
801:   return(0);
802: }

806: PetscErrorCode MatFactorNumeric_MKL_PARDISO(Mat F,Mat A,const MatFactorInfo *info)
807: {
808:   Mat_MKL_PARDISO *mat_mkl_pardiso=(Mat_MKL_PARDISO*)(F)->spptr;
809:   PetscErrorCode  ierr;

812:   mat_mkl_pardiso->matstruc = SAME_NONZERO_PATTERN;
813:   (*mat_mkl_pardiso->Convert)(A,mat_mkl_pardiso->needsym,MAT_REUSE_MATRIX,&mat_mkl_pardiso->freeaij,&mat_mkl_pardiso->nz,&mat_mkl_pardiso->ia,&mat_mkl_pardiso->ja,(PetscScalar**)&mat_mkl_pardiso->a);

815:   mat_mkl_pardiso->phase = JOB_NUMERICAL_FACTORIZATION;
816:   MKL_PARDISO (mat_mkl_pardiso->pt,
817:     &mat_mkl_pardiso->maxfct,
818:     &mat_mkl_pardiso->mnum,
819:     &mat_mkl_pardiso->mtype,
820:     &mat_mkl_pardiso->phase,
821:     &mat_mkl_pardiso->n,
822:     mat_mkl_pardiso->a,
823:     mat_mkl_pardiso->ia,
824:     mat_mkl_pardiso->ja,
825:     mat_mkl_pardiso->perm,
826:     &mat_mkl_pardiso->nrhs,
827:     mat_mkl_pardiso->iparm,
828:     &mat_mkl_pardiso->msglvl,
829:     NULL,
830:     (void*)mat_mkl_pardiso->schur,
831:     &mat_mkl_pardiso->err);
832:   if (mat_mkl_pardiso->err < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_PARDISO: err=%d. Please check manual\n",mat_mkl_pardiso->err);

834:   if (mat_mkl_pardiso->schur) { /* schur output from pardiso is in row major format */
835:     PetscInt j,k,n=mat_mkl_pardiso->schur_size;
836:     if (!mat_mkl_pardiso->schur_solver_type) {
837:       for (j=0; j<n; j++) {
838:         for (k=0; k<j; k++) {
839:           PetscScalar tmp = mat_mkl_pardiso->schur[j + k*n];
840:           mat_mkl_pardiso->schur[j + k*n] = mat_mkl_pardiso->schur[k + j*n];
841:           mat_mkl_pardiso->schur[k + j*n] = tmp;
842:         }
843:       }
844:     } else { /* we could use row-major in LAPACK routines (e.g. use 'U' instead of 'L'; instead, I prefer consistency between data structures and swap to column major */
845:       for (j=0; j<n; j++) {
846:         for (k=0; k<j; k++) {
847:           mat_mkl_pardiso->schur[j + k*n] = mat_mkl_pardiso->schur[k + j*n];
848:         }
849:       }
850:     }
851:   }
852:   mat_mkl_pardiso->matstruc = SAME_NONZERO_PATTERN;
853:   mat_mkl_pardiso->CleanUp  = PETSC_TRUE;
854:   mat_mkl_pardiso->schur_factored = PETSC_FALSE;
855:   mat_mkl_pardiso->schur_inverted = PETSC_FALSE;
856:   return(0);
857: }

861: PetscErrorCode PetscSetMKL_PARDISOFromOptions(Mat F, Mat A)
862: {
863:   Mat_MKL_PARDISO     *mat_mkl_pardiso = (Mat_MKL_PARDISO*)F->spptr;
864:   PetscErrorCode      ierr;
865:   PetscInt            icntl,threads=1;
866:   PetscBool           flg;

869:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"MKL_PARDISO Options","Mat");

871:   PetscOptionsInt("-mat_mkl_pardiso_65","Number of threads to use within PARDISO","None",threads,&threads,&flg);
872:   if (flg) PetscSetMKL_PARDISOThreads((int)threads);

874:   PetscOptionsInt("-mat_mkl_pardiso_66","Maximum number of factors with identical sparsity structure that must be kept in memory at the same time","None",mat_mkl_pardiso->maxfct,&icntl,&flg);
875:   if (flg) mat_mkl_pardiso->maxfct = icntl;

877:   PetscOptionsInt("-mat_mkl_pardiso_67","Indicates the actual matrix for the solution phase","None",mat_mkl_pardiso->mnum,&icntl,&flg);
878:   if (flg) mat_mkl_pardiso->mnum = icntl;
879: 
880:   PetscOptionsInt("-mat_mkl_pardiso_68","Message level information","None",mat_mkl_pardiso->msglvl,&icntl,&flg);
881:   if (flg) mat_mkl_pardiso->msglvl = icntl;

883:   PetscOptionsInt("-mat_mkl_pardiso_69","Defines the matrix type","None",mat_mkl_pardiso->mtype,&icntl,&flg);
884:   if(flg){
885:     void *pt[IPARM_SIZE];
886:     mat_mkl_pardiso->mtype = icntl;
887:     MKL_PARDISO_INIT(pt, &mat_mkl_pardiso->mtype, mat_mkl_pardiso->iparm);
888: #if defined(PETSC_USE_REAL_SINGLE)
889:     mat_mkl_pardiso->iparm[27] = 1;
890: #else
891:     mat_mkl_pardiso->iparm[27] = 0;
892: #endif
893:     mat_mkl_pardiso->iparm[34] = 1; /* use 0-based indexing */
894:   }
895:   PetscOptionsInt("-mat_mkl_pardiso_1","Use default values","None",mat_mkl_pardiso->iparm[0],&icntl,&flg);

897:   if(flg && icntl != 0){
898:     PetscOptionsInt("-mat_mkl_pardiso_2","Fill-in reducing ordering for the input matrix","None",mat_mkl_pardiso->iparm[1],&icntl,&flg);
899:     if (flg) mat_mkl_pardiso->iparm[1] = icntl;

901:     PetscOptionsInt("-mat_mkl_pardiso_4","Preconditioned CGS/CG","None",mat_mkl_pardiso->iparm[3],&icntl,&flg);
902:     if (flg) mat_mkl_pardiso->iparm[3] = icntl;

904:     PetscOptionsInt("-mat_mkl_pardiso_5","User permutation","None",mat_mkl_pardiso->iparm[4],&icntl,&flg);
905:     if (flg) mat_mkl_pardiso->iparm[4] = icntl;

907:     PetscOptionsInt("-mat_mkl_pardiso_6","Write solution on x","None",mat_mkl_pardiso->iparm[5],&icntl,&flg);
908:     if (flg) mat_mkl_pardiso->iparm[5] = icntl;

910:     PetscOptionsInt("-mat_mkl_pardiso_8","Iterative refinement step","None",mat_mkl_pardiso->iparm[7],&icntl,&flg);
911:     if (flg) mat_mkl_pardiso->iparm[7] = icntl;

913:     PetscOptionsInt("-mat_mkl_pardiso_10","Pivoting perturbation","None",mat_mkl_pardiso->iparm[9],&icntl,&flg);
914:     if (flg) mat_mkl_pardiso->iparm[9] = icntl;

916:     PetscOptionsInt("-mat_mkl_pardiso_11","Scaling vectors","None",mat_mkl_pardiso->iparm[10],&icntl,&flg);
917:     if (flg) mat_mkl_pardiso->iparm[10] = icntl;

919:     PetscOptionsInt("-mat_mkl_pardiso_12","Solve with transposed or conjugate transposed matrix A","None",mat_mkl_pardiso->iparm[11],&icntl,&flg);
920:     if (flg) mat_mkl_pardiso->iparm[11] = icntl;

922:     PetscOptionsInt("-mat_mkl_pardiso_13","Improved accuracy using (non-) symmetric weighted matching","None",mat_mkl_pardiso->iparm[12],&icntl,&flg);
923:     if (flg) mat_mkl_pardiso->iparm[12] = icntl;

925:     PetscOptionsInt("-mat_mkl_pardiso_18","Numbers of non-zero elements","None",mat_mkl_pardiso->iparm[17],&icntl,&flg);
926:     if (flg) mat_mkl_pardiso->iparm[17] = icntl;

928:     PetscOptionsInt("-mat_mkl_pardiso_19","Report number of floating point operations","None",mat_mkl_pardiso->iparm[18],&icntl,&flg);
929:     if (flg) mat_mkl_pardiso->iparm[18] = icntl;

931:     PetscOptionsInt("-mat_mkl_pardiso_21","Pivoting for symmetric indefinite matrices","None",mat_mkl_pardiso->iparm[20],&icntl,&flg);
932:     if (flg) mat_mkl_pardiso->iparm[20] = icntl;

934:     PetscOptionsInt("-mat_mkl_pardiso_24","Parallel factorization control","None",mat_mkl_pardiso->iparm[23],&icntl,&flg);
935:     if (flg) mat_mkl_pardiso->iparm[23] = icntl;

937:     PetscOptionsInt("-mat_mkl_pardiso_25","Parallel forward/backward solve control","None",mat_mkl_pardiso->iparm[24],&icntl,&flg);
938:     if (flg) mat_mkl_pardiso->iparm[24] = icntl;

940:     PetscOptionsInt("-mat_mkl_pardiso_27","Matrix checker","None",mat_mkl_pardiso->iparm[26],&icntl,&flg);
941:     if (flg) mat_mkl_pardiso->iparm[26] = icntl;

943:     PetscOptionsInt("-mat_mkl_pardiso_31","Partial solve and computing selected components of the solution vectors","None",mat_mkl_pardiso->iparm[30],&icntl,&flg);
944:     if (flg) mat_mkl_pardiso->iparm[30] = icntl;

946:     PetscOptionsInt("-mat_mkl_pardiso_34","Optimal number of threads for conditional numerical reproducibility (CNR) mode","None",mat_mkl_pardiso->iparm[33],&icntl,&flg);
947:     if (flg) mat_mkl_pardiso->iparm[33] = icntl;

949:     PetscOptionsInt("-mat_mkl_pardiso_60","Intel MKL_PARDISO mode","None",mat_mkl_pardiso->iparm[59],&icntl,&flg);
950:     if (flg) mat_mkl_pardiso->iparm[59] = icntl;
951:   }
952:   PetscOptionsEnd();
953:   return(0);
954: }

958: PetscErrorCode MatFactorMKL_PARDISOInitialize_Private(Mat A, MatFactorType ftype, Mat_MKL_PARDISO *mat_mkl_pardiso)
959: {
961:   PetscInt       i;

964:   for ( i = 0; i < IPARM_SIZE; i++ ){
965:     mat_mkl_pardiso->iparm[i] = 0;
966:   }
967:   for ( i = 0; i < IPARM_SIZE; i++ ){
968:     mat_mkl_pardiso->pt[i] = 0;
969:   }
970:   /* Default options for both sym and unsym */
971:   mat_mkl_pardiso->iparm[ 0] =  1; /* Solver default parameters overriden with provided by iparm */
972:   mat_mkl_pardiso->iparm[ 1] =  2; /* Metis reordering */
973:   mat_mkl_pardiso->iparm[ 5] =  0; /* Write solution into x */
974:   mat_mkl_pardiso->iparm[ 7] =  0; /* Max number of iterative refinement steps */
975:   mat_mkl_pardiso->iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
976:   mat_mkl_pardiso->iparm[18] = -1; /* Output: Mflops for LU factorization */
977: #if 0
978:   mat_mkl_pardiso->iparm[23] =  1; /* Parallel factorization control*/
979: #endif
980:   mat_mkl_pardiso->iparm[34] =  1; /* Cluster Sparse Solver use C-style indexing for ia and ja arrays */
981:   mat_mkl_pardiso->iparm[39] =  0; /* Input: matrix/rhs/solution stored on master */
982: 
983:   mat_mkl_pardiso->CleanUp   = PETSC_FALSE;
984:   mat_mkl_pardiso->maxfct    = 1; /* Maximum number of numerical factorizations. */
985:   mat_mkl_pardiso->mnum      = 1; /* Which factorization to use. */
986:   mat_mkl_pardiso->msglvl    = 0; /* 0: do not print 1: Print statistical information in file */
987:   mat_mkl_pardiso->phase     = -1;
988:   mat_mkl_pardiso->err       = 0;
989: 
990:   mat_mkl_pardiso->n         = A->rmap->N;
991:   mat_mkl_pardiso->nrhs      = 1;
992:   mat_mkl_pardiso->err       = 0;
993:   mat_mkl_pardiso->phase     = -1;
994: 
995:   if(ftype == MAT_FACTOR_LU){
996:     mat_mkl_pardiso->iparm[ 9] = 13; /* Perturb the pivot elements with 1E-13 */
997:     mat_mkl_pardiso->iparm[10] =  1; /* Use nonsymmetric permutation and scaling MPS */
998:     mat_mkl_pardiso->iparm[12] =  1; /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */

1000:   } else {
1001:     mat_mkl_pardiso->iparm[ 9] = 13; /* Perturb the pivot elements with 1E-13 */
1002:     mat_mkl_pardiso->iparm[10] = 0; /* Use nonsymmetric permutation and scaling MPS */
1003:     mat_mkl_pardiso->iparm[12] = 1; /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
1004: /*    mat_mkl_pardiso->iparm[20] =  1; */ /* Apply 1x1 and 2x2 Bunch-Kaufman pivoting during the factorization process */
1005: #if defined(PETSC_USE_DEBUG)
1006:     mat_mkl_pardiso->iparm[26] = 1; /* Matrix checker */
1007: #endif
1008:   }
1009:   PetscMalloc1(A->rmap->N*sizeof(INT_TYPE), &mat_mkl_pardiso->perm);
1010:   for(i = 0; i < A->rmap->N; i++){
1011:     mat_mkl_pardiso->perm[i] = 0;
1012:   }
1013:   mat_mkl_pardiso->schur_size = 0;
1014:   return(0);
1015: }

1019: PetscErrorCode MatFactorSymbolic_AIJMKL_PARDISO_Private(Mat F,Mat A,const MatFactorInfo *info)
1020: {
1021:   Mat_MKL_PARDISO *mat_mkl_pardiso = (Mat_MKL_PARDISO*)F->spptr;
1022:   PetscErrorCode  ierr;

1025:   mat_mkl_pardiso->matstruc = DIFFERENT_NONZERO_PATTERN;
1026:   PetscSetMKL_PARDISOFromOptions(F,A);

1028:   /* throw away any previously computed structure */
1029:   if (mat_mkl_pardiso->freeaij) {
1030:     PetscFree2(mat_mkl_pardiso->ia,mat_mkl_pardiso->ja);
1031:     PetscFree(mat_mkl_pardiso->a);
1032:   }
1033:   (*mat_mkl_pardiso->Convert)(A,mat_mkl_pardiso->needsym,MAT_INITIAL_MATRIX,&mat_mkl_pardiso->freeaij,&mat_mkl_pardiso->nz,&mat_mkl_pardiso->ia,&mat_mkl_pardiso->ja,(PetscScalar**)&mat_mkl_pardiso->a);
1034:   mat_mkl_pardiso->n = A->rmap->N;

1036:   mat_mkl_pardiso->phase = JOB_ANALYSIS;

1038:   MKL_PARDISO (mat_mkl_pardiso->pt,
1039:     &mat_mkl_pardiso->maxfct,
1040:     &mat_mkl_pardiso->mnum,
1041:     &mat_mkl_pardiso->mtype,
1042:     &mat_mkl_pardiso->phase,
1043:     &mat_mkl_pardiso->n,
1044:     mat_mkl_pardiso->a,
1045:     mat_mkl_pardiso->ia,
1046:     mat_mkl_pardiso->ja,
1047:     mat_mkl_pardiso->perm,
1048:     &mat_mkl_pardiso->nrhs,
1049:     mat_mkl_pardiso->iparm,
1050:     &mat_mkl_pardiso->msglvl,
1051:     NULL,
1052:     NULL,
1053:     &mat_mkl_pardiso->err);
1054:   if (mat_mkl_pardiso->err < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_PARDISO: err=%d\n. Please check manual",mat_mkl_pardiso->err);

1056:   mat_mkl_pardiso->CleanUp = PETSC_TRUE;

1058:   if (F->factortype == MAT_FACTOR_LU) {
1059:     F->ops->lufactornumeric = MatFactorNumeric_MKL_PARDISO;
1060:   } else {
1061:     F->ops->choleskyfactornumeric = MatFactorNumeric_MKL_PARDISO;
1062:   }
1063:   F->ops->solve           = MatSolve_MKL_PARDISO;
1064:   F->ops->solvetranspose  = MatSolveTranspose_MKL_PARDISO;
1065:   F->ops->matsolve        = MatMatSolve_MKL_PARDISO;
1066:   return(0);
1067: }

1071: PetscErrorCode MatLUFactorSymbolic_AIJMKL_PARDISO(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
1072: {

1076:   MatFactorSymbolic_AIJMKL_PARDISO_Private(F, A, info);
1077:   return(0);
1078: }

1082: PetscErrorCode MatCholeskyFactorSymbolic_AIJMKL_PARDISO(Mat F,Mat A,IS r,const MatFactorInfo *info)
1083: {

1087:   MatFactorSymbolic_AIJMKL_PARDISO_Private(F, A, info);
1088:   return(0);
1089: }

1093: PetscErrorCode MatView_MKL_PARDISO(Mat A, PetscViewer viewer)
1094: {
1095:   PetscErrorCode    ierr;
1096:   PetscBool         iascii;
1097:   PetscViewerFormat format;
1098:   Mat_MKL_PARDISO   *mat_mkl_pardiso=(Mat_MKL_PARDISO*)A->spptr;
1099:   PetscInt          i;

1102:   if (A->ops->solve != MatSolve_MKL_PARDISO) return(0);

1104:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1105:   if (iascii) {
1106:     PetscViewerGetFormat(viewer,&format);
1107:     if (format == PETSC_VIEWER_ASCII_INFO) {
1108:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO run parameters:\n");
1109:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO phase:             %d \n",mat_mkl_pardiso->phase);
1110:       for(i = 1; i <= 64; i++){
1111:         PetscViewerASCIIPrintf(viewer,"MKL_PARDISO iparm[%d]:     %d \n",i, mat_mkl_pardiso->iparm[i - 1]);
1112:       }
1113:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO maxfct:     %d \n", mat_mkl_pardiso->maxfct);
1114:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO mnum:     %d \n", mat_mkl_pardiso->mnum);
1115:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO mtype:     %d \n", mat_mkl_pardiso->mtype);
1116:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO n:     %d \n", mat_mkl_pardiso->n);
1117:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO nrhs:     %d \n", mat_mkl_pardiso->nrhs);
1118:       PetscViewerASCIIPrintf(viewer,"MKL_PARDISO msglvl:     %d \n", mat_mkl_pardiso->msglvl);
1119:     }
1120:   }
1121:   return(0);
1122: }


1127: PetscErrorCode MatGetInfo_MKL_PARDISO(Mat A, MatInfoType flag, MatInfo *info)
1128: {
1129:   Mat_MKL_PARDISO *mat_mkl_pardiso =(Mat_MKL_PARDISO*)A->spptr;

1132:   info->block_size        = 1.0;
1133:   info->nz_used           = mat_mkl_pardiso->nz;
1134:   info->nz_allocated      = mat_mkl_pardiso->nz;
1135:   info->nz_unneeded       = 0.0;
1136:   info->assemblies        = 0.0;
1137:   info->mallocs           = 0.0;
1138:   info->memory            = 0.0;
1139:   info->fill_ratio_given  = 0;
1140:   info->fill_ratio_needed = 0;
1141:   info->factor_mallocs    = 0;
1142:   return(0);
1143: }

1147: PetscErrorCode MatMkl_PardisoSetCntl_MKL_PARDISO(Mat F,PetscInt icntl,PetscInt ival)
1148: {
1149:   Mat_MKL_PARDISO *mat_mkl_pardiso =(Mat_MKL_PARDISO*)F->spptr;

1152:   if(icntl <= 64){
1153:     mat_mkl_pardiso->iparm[icntl - 1] = ival;
1154:   } else {
1155:     if(icntl == 65)
1156:       PetscSetMKL_PARDISOThreads(ival);
1157:     else if(icntl == 66)
1158:       mat_mkl_pardiso->maxfct = ival;
1159:     else if(icntl == 67)
1160:       mat_mkl_pardiso->mnum = ival;
1161:     else if(icntl == 68)
1162:       mat_mkl_pardiso->msglvl = ival;
1163:     else if(icntl == 69){
1164:       void *pt[IPARM_SIZE];
1165:       mat_mkl_pardiso->mtype = ival;
1166:       MKL_PARDISO_INIT(pt, &mat_mkl_pardiso->mtype, mat_mkl_pardiso->iparm);
1167: #if defined(PETSC_USE_REAL_SINGLE)
1168:       mat_mkl_pardiso->iparm[27] = 1;
1169: #else
1170:       mat_mkl_pardiso->iparm[27] = 0;
1171: #endif
1172:       mat_mkl_pardiso->iparm[34] = 1;
1173:     } else if(icntl==70) {
1174:       mat_mkl_pardiso->solve_interior = (PetscBool)!!ival;
1175:     }
1176:   }
1177:   return(0);
1178: }

1182: /*@
1183:   MatMkl_PardisoSetCntl - Set Mkl_Pardiso parameters

1185:    Logically Collective on Mat

1187:    Input Parameters:
1188: +  F - the factored matrix obtained by calling MatGetFactor()
1189: .  icntl - index of Mkl_Pardiso parameter
1190: -  ival - value of Mkl_Pardiso parameter

1192:   Options Database:
1193: .   -mat_mkl_pardiso_<icntl> <ival>

1195:    Level: beginner

1197:    References:
1198: .      Mkl_Pardiso Users' Guide

1200: .seealso: MatGetFactor()
1201: @*/
1202: PetscErrorCode MatMkl_PardisoSetCntl(Mat F,PetscInt icntl,PetscInt ival)
1203: {

1207:   PetscTryMethod(F,"MatMkl_PardisoSetCntl_C",(Mat,PetscInt,PetscInt),(F,icntl,ival));
1208:   return(0);
1209: }

1211: /*MC
1212:   MATSOLVERMKL_PARDISO -  A matrix type providing direct solvers (LU) for
1213:   sequential matrices via the external package MKL_PARDISO.

1215:   Works with MATSEQAIJ matrices

1217:   Use -pc_type lu -pc_factor_mat_solver_package mkl_pardiso to us this direct solver

1219:   Options Database Keys:
1220: + -mat_mkl_pardiso_65 - Number of threads to use within MKL_PARDISO
1221: . -mat_mkl_pardiso_66 - Maximum number of factors with identical sparsity structure that must be kept in memory at the same time
1222: . -mat_mkl_pardiso_67 - Indicates the actual matrix for the solution phase
1223: . -mat_mkl_pardiso_68 - Message level information
1224: . -mat_mkl_pardiso_69 - Defines the matrix type. IMPORTANT: When you set this flag, iparm parameters are going to be set to the default ones for the matrix type
1225: . -mat_mkl_pardiso_1  - Use default values
1226: . -mat_mkl_pardiso_2  - Fill-in reducing ordering for the input matrix
1227: . -mat_mkl_pardiso_4  - Preconditioned CGS/CG
1228: . -mat_mkl_pardiso_5  - User permutation
1229: . -mat_mkl_pardiso_6  - Write solution on x
1230: . -mat_mkl_pardiso_8  - Iterative refinement step
1231: . -mat_mkl_pardiso_10 - Pivoting perturbation
1232: . -mat_mkl_pardiso_11 - Scaling vectors
1233: . -mat_mkl_pardiso_12 - Solve with transposed or conjugate transposed matrix A
1234: . -mat_mkl_pardiso_13 - Improved accuracy using (non-) symmetric weighted matching
1235: . -mat_mkl_pardiso_18 - Numbers of non-zero elements
1236: . -mat_mkl_pardiso_19 - Report number of floating point operations
1237: . -mat_mkl_pardiso_21 - Pivoting for symmetric indefinite matrices
1238: . -mat_mkl_pardiso_24 - Parallel factorization control
1239: . -mat_mkl_pardiso_25 - Parallel forward/backward solve control
1240: . -mat_mkl_pardiso_27 - Matrix checker
1241: . -mat_mkl_pardiso_31 - Partial solve and computing selected components of the solution vectors
1242: . -mat_mkl_pardiso_34 - Optimal number of threads for conditional numerical reproducibility (CNR) mode
1243: - -mat_mkl_pardiso_60 - Intel MKL_PARDISO mode

1245:   Level: beginner

1247:   For more information please check  mkl_pardiso manual

1249: .seealso: PCFactorSetMatSolverPackage(), MatSolverPackage

1251: M*/
1254: static PetscErrorCode MatFactorGetSolverPackage_mkl_pardiso(Mat A, const MatSolverPackage *type)
1255: {
1257:   *type = MATSOLVERMKL_PARDISO;
1258:   return(0);
1259: }

1263: PETSC_EXTERN PetscErrorCode MatGetFactor_aij_mkl_pardiso(Mat A,MatFactorType ftype,Mat *F)
1264: {
1265:   Mat             B;
1266:   PetscErrorCode  ierr;
1267:   Mat_MKL_PARDISO *mat_mkl_pardiso;
1268:   PetscBool       isSeqAIJ,isSeqBAIJ,isSeqSBAIJ;

1271:   PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);
1272:   PetscObjectTypeCompare((PetscObject)A,MATSEQBAIJ,&isSeqBAIJ);
1273:   PetscObjectTypeCompare((PetscObject)A,MATSEQSBAIJ,&isSeqSBAIJ);
1274:   MatCreate(PetscObjectComm((PetscObject)A),&B);
1275:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1276:   MatSetType(B,((PetscObject)A)->type_name);
1277:   MatSeqAIJSetPreallocation(B,0,NULL);
1278:   MatSeqBAIJSetPreallocation(B,A->rmap->bs,0,NULL);
1279:   MatSeqSBAIJSetPreallocation(B,A->rmap->bs,0,NULL);

1281:   PetscNewLog(B,&mat_mkl_pardiso);
1282:   B->spptr = mat_mkl_pardiso;

1284:   MatFactorMKL_PARDISOInitialize_Private(A, ftype, mat_mkl_pardiso);
1285:   if (ftype == MAT_FACTOR_LU) {
1286:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMKL_PARDISO;
1287:     B->factortype            = MAT_FACTOR_LU;
1288:     mat_mkl_pardiso->needsym = PETSC_FALSE;
1289:     if (isSeqAIJ) {
1290:       mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqaij;
1291:     } else if (isSeqBAIJ) {
1292:       mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqbaij;
1293:     } else if (isSeqSBAIJ) {
1294:       SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"No support for PARDISO LU factor with SEQSBAIJ format! Use MAT_FACTOR_CHOLESKY instead");
1295:     } else {
1296:       SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"No support for PARDISO LU with %s format",((PetscObject)A)->type_name);
1297:     }
1298: #if defined(PETSC_USE_COMPLEX)
1299:     mat_mkl_pardiso->mtype = 13;
1300: #else
1301:     if (A->structurally_symmetric) {
1302:       mat_mkl_pardiso->mtype = 1;
1303:     } else {
1304:       mat_mkl_pardiso->mtype = 11;
1305:     }
1306: #endif
1307:     mat_mkl_pardiso->schur_solver_type = 0;
1308:   } else {
1309: #if defined(PETSC_USE_COMPLEX)
1310:     SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"No support for PARDISO CHOLESKY with complex scalars! Use MAT_FACTOR_LU instead",((PetscObject)A)->type_name);
1311: #endif
1312:     B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_AIJMKL_PARDISO;
1313:     B->factortype                  = MAT_FACTOR_CHOLESKY;
1314:     if (isSeqAIJ) {
1315:       mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqaij;
1316:     } else if (isSeqBAIJ) {
1317:       mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqbaij;
1318:     } else if (isSeqSBAIJ) {
1319:       mat_mkl_pardiso->Convert = MatMKLPardiso_Convert_seqsbaij;
1320:     } else {
1321:       SETERRQ1(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"No support for PARDISO CHOLESKY with %s format",((PetscObject)A)->type_name);
1322:     }
1323:     mat_mkl_pardiso->needsym = PETSC_TRUE;
1324:     if (A->spd_set && A->spd) {
1325:       mat_mkl_pardiso->schur_solver_type = 1;
1326:       mat_mkl_pardiso->mtype = 2;
1327:     } else {
1328:       mat_mkl_pardiso->schur_solver_type = 2;
1329:       mat_mkl_pardiso->mtype = -2;
1330:     }
1331:   }
1332:   mat_mkl_pardiso->Destroy = B->ops->destroy;
1333:   B->ops->destroy          = MatDestroy_MKL_PARDISO;
1334:   B->ops->view             = MatView_MKL_PARDISO;
1335:   B->factortype            = ftype;
1336:   B->ops->getinfo          = MatGetInfo_MKL_PARDISO;
1337:   B->assembled             = PETSC_TRUE;

1339:   PetscFree(B->solvertype);
1340:   PetscStrallocpy(MATSOLVERMKL_PARDISO,&B->solvertype);


1343:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mkl_pardiso);
1344:   PetscObjectComposeFunction((PetscObject)B,"MatFactorSetSchurIS_C",MatFactorSetSchurIS_MKL_PARDISO);
1345:   PetscObjectComposeFunction((PetscObject)B,"MatFactorCreateSchurComplement_C",MatFactorCreateSchurComplement_MKL_PARDISO);
1346:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSchurComplement_C",MatFactorGetSchurComplement_MKL_PARDISO);
1347:   PetscObjectComposeFunction((PetscObject)B,"MatFactorInvertSchurComplement_C",MatFactorInvertSchurComplement_MKL_PARDISO);
1348:   PetscObjectComposeFunction((PetscObject)B,"MatFactorSolveSchurComplement_C",MatFactorSolveSchurComplement_MKL_PARDISO);
1349:   PetscObjectComposeFunction((PetscObject)B,"MatFactorSolveSchurComplementTranspose_C",MatFactorSolveSchurComplementTranspose_MKL_PARDISO);
1350:   PetscObjectComposeFunction((PetscObject)B,"MatMkl_PardisoSetCntl_C",MatMkl_PardisoSetCntl_MKL_PARDISO);

1352:   *F = B;
1353:   return(0);
1354: }

1358: PETSC_EXTERN PetscErrorCode MatSolverPackageRegister_MKL_Pardiso(void)
1359: {

1363:   MatSolverPackageRegister(MATSOLVERMKL_PARDISO,MATSEQAIJ,MAT_FACTOR_LU,MatGetFactor_aij_mkl_pardiso);
1364:   MatSolverPackageRegister(MATSOLVERMKL_PARDISO,MATSEQAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_aij_mkl_pardiso);
1365:   MatSolverPackageRegister(MATSOLVERMKL_PARDISO,MATSEQSBAIJ,MAT_FACTOR_CHOLESKY,MatGetFactor_aij_mkl_pardiso);
1366:   return(0);
1367: }