Actual source code: ts.c
petsc-3.7.3 2016-08-01
2: #include <petsc/private/tsimpl.h> /*I "petscts.h" I*/
3: #include <petscdmshell.h>
4: #include <petscdmda.h>
5: #include <petscviewer.h>
6: #include <petscdraw.h>
8: /* Logging support */
9: PetscClassId TS_CLASSID, DMTS_CLASSID;
10: PetscLogEvent TS_AdjointStep, TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
12: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
14: struct _n_TSMonitorDrawCtx {
15: PetscViewer viewer;
16: Vec initialsolution;
17: PetscBool showinitial;
18: PetscInt howoften; /* when > 0 uses step % howoften, when negative only final solution plotted */
19: PetscBool showtimestepandtime;
20: };
24: /*@C
25: TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
27: Collective on TS
29: Input Parameters:
30: + ts - TS object you wish to monitor
31: . name - the monitor type one is seeking
32: . help - message indicating what monitoring is done
33: . manual - manual page for the monitor
34: . monitor - the monitor function
35: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
37: Level: developer
39: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
40: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
41: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
42: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
43: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
44: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
45: PetscOptionsFList(), PetscOptionsEList()
46: @*/
47: PetscErrorCode TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
48: {
49: PetscErrorCode ierr;
50: PetscViewer viewer;
51: PetscViewerFormat format;
52: PetscBool flg;
55: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
56: if (flg) {
57: PetscViewerAndFormat *vf;
58: PetscViewerAndFormatCreate(viewer,format,&vf);
59: PetscObjectDereference((PetscObject)viewer);
60: if (monitorsetup) {
61: (*monitorsetup)(ts,vf);
62: }
63: TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
64: }
65: return(0);
66: }
70: /*@C
71: TSAdjointMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user
73: Collective on TS
75: Input Parameters:
76: + ts - TS object you wish to monitor
77: . name - the monitor type one is seeking
78: . help - message indicating what monitoring is done
79: . manual - manual page for the monitor
80: . monitor - the monitor function
81: - monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects
83: Level: developer
85: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
86: PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
87: PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
88: PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
89: PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
90: PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
91: PetscOptionsFList(), PetscOptionsEList()
92: @*/
93: PetscErrorCode TSAdjointMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
94: {
95: PetscErrorCode ierr;
96: PetscViewer viewer;
97: PetscViewerFormat format;
98: PetscBool flg;
101: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
102: if (flg) {
103: PetscViewerAndFormat *vf;
104: PetscViewerAndFormatCreate(viewer,format,&vf);
105: PetscObjectDereference((PetscObject)viewer);
106: if (monitorsetup) {
107: (*monitorsetup)(ts,vf);
108: }
109: TSAdjointMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,PetscInt,Vec*,Vec*,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
110: }
111: return(0);
112: }
116: /*@
117: TSSetFromOptions - Sets various TS parameters from user options.
119: Collective on TS
121: Input Parameter:
122: . ts - the TS context obtained from TSCreate()
124: Options Database Keys:
125: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGL, TSSSP
126: . -ts_save_trajectory - checkpoint the solution at each time-step
127: . -ts_max_steps <maxsteps> - maximum number of time-steps to take
128: . -ts_final_time <time> - maximum time to compute to
129: . -ts_dt <dt> - initial time step
130: . -ts_exact_final_time <stepover,interpolate,matchstep> whether to stop at the exact given final time and how to compute the solution at that ti,e
131: . -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
132: . -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
133: . -ts_error_if_step_fails <true,false> - Error if no step succeeds
134: . -ts_rtol <rtol> - relative tolerance for local truncation error
135: . -ts_atol <atol> Absolute tolerance for local truncation error
136: . -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
137: . -ts_fd_color - Use finite differences with coloring to compute IJacobian
138: . -ts_monitor - print information at each timestep
139: . -ts_monitor_lg_solution - Monitor solution graphically
140: . -ts_monitor_lg_error - Monitor error graphically
141: . -ts_monitor_lg_timestep - Monitor timestep size graphically
142: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
143: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
144: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
145: . -ts_monitor_draw_solution - Monitor solution graphically
146: . -ts_monitor_draw_solution_phase <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
147: . -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
148: . -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
149: . -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts
150: . -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time
151: . -ts_adjoint_monitor - print information at each adjoint time step
152: - -ts_adjoint_monitor_draw_sensi - monitor the sensitivity of the first cost function wrt initial conditions (lambda[0]) graphically
154: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
156: Level: beginner
158: .keywords: TS, timestep, set, options, database
160: .seealso: TSGetType()
161: @*/
162: PetscErrorCode TSSetFromOptions(TS ts)
163: {
164: PetscBool opt,flg,tflg;
165: PetscErrorCode ierr;
166: char monfilename[PETSC_MAX_PATH_LEN];
167: PetscReal time_step;
168: TSExactFinalTimeOption eftopt;
169: char dir[16];
170: TSIFunction ifun;
171: const char *defaultType;
172: char typeName[256];
177: TSRegisterAll();
178: TSGetIFunction(ts,NULL,&ifun,NULL);
180: PetscObjectOptionsBegin((PetscObject)ts);
181: if (((PetscObject)ts)->type_name)
182: defaultType = ((PetscObject)ts)->type_name;
183: else
184: defaultType = ifun ? TSBEULER : TSEULER;
185: PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
186: if (opt) {
187: TSSetType(ts,typeName);
188: } else {
189: TSSetType(ts,defaultType);
190: }
192: /* Handle generic TS options */
193: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
194: PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
195: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
196: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
197: if (flg) {TSSetTimeStep(ts,time_step);}
198: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
199: if (flg) {TSSetExactFinalTime(ts,eftopt);}
200: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
201: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
202: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
203: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
204: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
206: #if defined(PETSC_HAVE_SAWS)
207: {
208: PetscBool set;
209: flg = PETSC_FALSE;
210: PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
211: if (set) {
212: PetscObjectSAWsSetBlock((PetscObject)ts,flg);
213: }
214: }
215: #endif
217: /* Monitor options */
218: TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
219: TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);
220: TSAdjointMonitorSetFromOptions(ts,"-ts_adjoint_monitor","Monitor adjoint timestep size","TSAdjointMonitorDefault",TSAdjointMonitorDefault,NULL);
222: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
223: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
225: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
226: if (opt) {
227: TSMonitorLGCtx ctx;
228: PetscInt howoften = 1;
230: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
231: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
232: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
233: }
235: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
236: if (opt) {
237: TSMonitorLGCtx ctx;
238: PetscInt howoften = 1;
240: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
241: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
242: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
243: }
245: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
246: if (opt) {
247: TSMonitorLGCtx ctx;
248: PetscInt howoften = 1;
250: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
251: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
252: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
253: }
254: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
255: if (opt) {
256: TSMonitorLGCtx ctx;
257: PetscInt howoften = 1;
259: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
260: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
261: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
262: }
263: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
264: if (opt) {
265: TSMonitorLGCtx ctx;
266: PetscInt howoften = 1;
268: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
269: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
270: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
271: }
272: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
273: if (opt) {
274: TSMonitorSPEigCtx ctx;
275: PetscInt howoften = 1;
277: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
278: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
279: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
280: }
281: opt = PETSC_FALSE;
282: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
283: if (opt) {
284: TSMonitorDrawCtx ctx;
285: PetscInt howoften = 1;
287: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
288: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
289: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
290: }
291: opt = PETSC_FALSE;
292: PetscOptionsName("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",&opt);
293: if (opt) {
294: TSMonitorDrawCtx ctx;
295: PetscInt howoften = 1;
297: PetscOptionsInt("-ts_adjoint_monitor_draw_sensi","Monitor adjoint sensitivities (lambda only) graphically","TSAdjointMonitorDrawSensi",howoften,&howoften,NULL);
298: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
299: TSAdjointMonitorSet(ts,TSAdjointMonitorDrawSensi,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
300: }
301: opt = PETSC_FALSE;
302: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
303: if (opt) {
304: TSMonitorDrawCtx ctx;
305: PetscReal bounds[4];
306: PetscInt n = 4;
307: PetscDraw draw;
308: PetscDrawAxis axis;
310: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
311: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
312: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
313: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
314: PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
315: PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
316: PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
317: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
318: }
319: opt = PETSC_FALSE;
320: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
321: if (opt) {
322: TSMonitorDrawCtx ctx;
323: PetscInt howoften = 1;
325: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
326: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
327: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
328: }
330: opt = PETSC_FALSE;
331: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
332: if (flg) {
333: const char *ptr,*ptr2;
334: char *filetemplate;
335: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
336: /* Do some cursory validation of the input. */
337: PetscStrstr(monfilename,"%",(char**)&ptr);
338: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
339: for (ptr++; ptr && *ptr; ptr++) {
340: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
341: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
342: if (ptr2) break;
343: }
344: PetscStrallocpy(monfilename,&filetemplate);
345: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
346: }
348: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
349: if (flg) {
350: TSMonitorDMDARayCtx *rayctx;
351: int ray = 0;
352: DMDADirection ddir;
353: DM da;
354: PetscMPIInt rank;
356: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
357: if (dir[0] == 'x') ddir = DMDA_X;
358: else if (dir[0] == 'y') ddir = DMDA_Y;
359: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
360: sscanf(dir+2,"%d",&ray);
362: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
363: PetscNew(&rayctx);
364: TSGetDM(ts,&da);
365: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
366: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
367: if (!rank) {
368: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
369: }
370: rayctx->lgctx = NULL;
371: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
372: }
373: PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,16,&flg);
374: if (flg) {
375: TSMonitorDMDARayCtx *rayctx;
376: int ray = 0;
377: DMDADirection ddir;
378: DM da;
379: PetscInt howoften = 1;
381: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
382: if (dir[0] == 'x') ddir = DMDA_X;
383: else if (dir[0] == 'y') ddir = DMDA_Y;
384: else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
385: sscanf(dir+2, "%d", &ray);
387: PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %D\n", dir[0], ray);
388: PetscNew(&rayctx);
389: TSGetDM(ts, &da);
390: DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
391: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
392: TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
393: }
395: PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
396: if (opt) {
397: TSMonitorEnvelopeCtx ctx;
399: TSMonitorEnvelopeCtxCreate(ts,&ctx);
400: TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
401: }
403: flg = PETSC_FALSE;
404: PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
405: if (flg) {
406: DM dm;
407: DMTS tdm;
409: TSGetDM(ts, &dm);
410: DMGetDMTS(dm, &tdm);
411: tdm->ijacobianctx = NULL;
412: TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, 0);
413: PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
414: }
416: if (ts->adapt) {
417: TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);
418: }
420: /* Handle specific TS options */
421: if (ts->ops->setfromoptions) {
422: (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
423: }
425: /* TS trajectory must be set after TS, since it may use some TS options above */
426: tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
427: PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
428: if (tflg) {
429: TSSetSaveTrajectory(ts);
430: }
431: tflg = ts->adjoint_solve ? PETSC_TRUE : PETSC_FALSE;
432: PetscOptionsBool("-ts_adjoint_solve","Solve the adjoint problem immediately after solving the forward problem","",tflg,&tflg,&flg);
433: if (flg) {
434: TSSetSaveTrajectory(ts);
435: ts->adjoint_solve = tflg;
436: }
438: /* process any options handlers added with PetscObjectAddOptionsHandler() */
439: PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
440: PetscOptionsEnd();
442: if (ts->trajectory) {
443: TSTrajectorySetFromOptions(ts->trajectory,ts);
444: }
446: TSGetSNES(ts,&ts->snes);
447: if (ts->problem_type == TS_LINEAR) {SNESSetType(ts->snes,SNESKSPONLY);}
448: SNESSetFromOptions(ts->snes);
449: return(0);
450: }
454: /*@
455: TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object
457: Collective on TS
459: Input Parameters:
460: . ts - the TS context obtained from TSCreate()
462: Note: This routine should be called after all TS options have been set
464: Level: intermediate
466: .seealso: TSGetTrajectory(), TSAdjointSolve()
468: .keywords: TS, set, checkpoint,
469: @*/
470: PetscErrorCode TSSetSaveTrajectory(TS ts)
471: {
476: if (!ts->trajectory) {
477: TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
478: TSTrajectorySetFromOptions(ts->trajectory,ts);
479: }
480: return(0);
481: }
485: /*@
486: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
487: set with TSSetRHSJacobian().
489: Collective on TS and Vec
491: Input Parameters:
492: + ts - the TS context
493: . t - current timestep
494: - U - input vector
496: Output Parameters:
497: + A - Jacobian matrix
498: . B - optional preconditioning matrix
499: - flag - flag indicating matrix structure
501: Notes:
502: Most users should not need to explicitly call this routine, as it
503: is used internally within the nonlinear solvers.
505: See KSPSetOperators() for important information about setting the
506: flag parameter.
508: Level: developer
510: .keywords: SNES, compute, Jacobian, matrix
512: .seealso: TSSetRHSJacobian(), KSPSetOperators()
513: @*/
514: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
515: {
517: PetscObjectState Ustate;
518: DM dm;
519: DMTS tsdm;
520: TSRHSJacobian rhsjacobianfunc;
521: void *ctx;
522: TSIJacobian ijacobianfunc;
523: TSRHSFunction rhsfunction;
529: TSGetDM(ts,&dm);
530: DMGetDMTS(dm,&tsdm);
531: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
532: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
533: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
534: PetscObjectStateGet((PetscObject)U,&Ustate);
535: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) {
536: return(0);
537: }
539: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
541: if (ts->rhsjacobian.reuse) {
542: MatShift(A,-ts->rhsjacobian.shift);
543: MatScale(A,1./ts->rhsjacobian.scale);
544: if (A != B) {
545: MatShift(B,-ts->rhsjacobian.shift);
546: MatScale(B,1./ts->rhsjacobian.scale);
547: }
548: ts->rhsjacobian.shift = 0;
549: ts->rhsjacobian.scale = 1.;
550: }
552: if (rhsjacobianfunc) {
553: PetscBool missing;
554: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
555: PetscStackPush("TS user Jacobian function");
556: (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
557: PetscStackPop;
558: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
559: if (A) {
560: MatMissingDiagonal(A,&missing,NULL);
561: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
562: }
563: if (B && B != A) {
564: MatMissingDiagonal(B,&missing,NULL);
565: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetRHSJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
566: }
567: } else {
568: MatZeroEntries(A);
569: if (A != B) {MatZeroEntries(B);}
570: }
571: ts->rhsjacobian.time = t;
572: ts->rhsjacobian.X = U;
573: PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
574: return(0);
575: }
579: /*@
580: TSComputeRHSFunction - Evaluates the right-hand-side function.
582: Collective on TS and Vec
584: Input Parameters:
585: + ts - the TS context
586: . t - current time
587: - U - state vector
589: Output Parameter:
590: . y - right hand side
592: Note:
593: Most users should not need to explicitly call this routine, as it
594: is used internally within the nonlinear solvers.
596: Level: developer
598: .keywords: TS, compute
600: .seealso: TSSetRHSFunction(), TSComputeIFunction()
601: @*/
602: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
603: {
605: TSRHSFunction rhsfunction;
606: TSIFunction ifunction;
607: void *ctx;
608: DM dm;
614: TSGetDM(ts,&dm);
615: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
616: DMTSGetIFunction(dm,&ifunction,NULL);
618: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
620: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
621: if (rhsfunction) {
622: PetscStackPush("TS user right-hand-side function");
623: (*rhsfunction)(ts,t,U,y,ctx);
624: PetscStackPop;
625: } else {
626: VecZeroEntries(y);
627: }
629: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
630: return(0);
631: }
635: /*@
636: TSComputeSolutionFunction - Evaluates the solution function.
638: Collective on TS and Vec
640: Input Parameters:
641: + ts - the TS context
642: - t - current time
644: Output Parameter:
645: . U - the solution
647: Note:
648: Most users should not need to explicitly call this routine, as it
649: is used internally within the nonlinear solvers.
651: Level: developer
653: .keywords: TS, compute
655: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
656: @*/
657: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
658: {
659: PetscErrorCode ierr;
660: TSSolutionFunction solutionfunction;
661: void *ctx;
662: DM dm;
667: TSGetDM(ts,&dm);
668: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
670: if (solutionfunction) {
671: PetscStackPush("TS user solution function");
672: (*solutionfunction)(ts,t,U,ctx);
673: PetscStackPop;
674: }
675: return(0);
676: }
679: /*@
680: TSComputeForcingFunction - Evaluates the forcing function.
682: Collective on TS and Vec
684: Input Parameters:
685: + ts - the TS context
686: - t - current time
688: Output Parameter:
689: . U - the function value
691: Note:
692: Most users should not need to explicitly call this routine, as it
693: is used internally within the nonlinear solvers.
695: Level: developer
697: .keywords: TS, compute
699: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
700: @*/
701: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
702: {
703: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
704: void *ctx;
705: DM dm;
710: TSGetDM(ts,&dm);
711: DMTSGetForcingFunction(dm,&forcing,&ctx);
713: if (forcing) {
714: PetscStackPush("TS user forcing function");
715: (*forcing)(ts,t,U,ctx);
716: PetscStackPop;
717: }
718: return(0);
719: }
723: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
724: {
725: Vec F;
729: *Frhs = NULL;
730: TSGetIFunction(ts,&F,NULL,NULL);
731: if (!ts->Frhs) {
732: VecDuplicate(F,&ts->Frhs);
733: }
734: *Frhs = ts->Frhs;
735: return(0);
736: }
740: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
741: {
742: Mat A,B;
746: if (Arhs) *Arhs = NULL;
747: if (Brhs) *Brhs = NULL;
748: TSGetIJacobian(ts,&A,&B,NULL,NULL);
749: if (Arhs) {
750: if (!ts->Arhs) {
751: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
752: }
753: *Arhs = ts->Arhs;
754: }
755: if (Brhs) {
756: if (!ts->Brhs) {
757: if (A != B) {
758: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
759: } else {
760: PetscObjectReference((PetscObject)ts->Arhs);
761: ts->Brhs = ts->Arhs;
762: }
763: }
764: *Brhs = ts->Brhs;
765: }
766: return(0);
767: }
771: /*@
772: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
774: Collective on TS and Vec
776: Input Parameters:
777: + ts - the TS context
778: . t - current time
779: . U - state vector
780: . Udot - time derivative of state vector
781: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
783: Output Parameter:
784: . Y - right hand side
786: Note:
787: Most users should not need to explicitly call this routine, as it
788: is used internally within the nonlinear solvers.
790: If the user did did not write their equations in implicit form, this
791: function recasts them in implicit form.
793: Level: developer
795: .keywords: TS, compute
797: .seealso: TSSetIFunction(), TSComputeRHSFunction()
798: @*/
799: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
800: {
802: TSIFunction ifunction;
803: TSRHSFunction rhsfunction;
804: void *ctx;
805: DM dm;
813: TSGetDM(ts,&dm);
814: DMTSGetIFunction(dm,&ifunction,&ctx);
815: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
817: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
819: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
820: if (ifunction) {
821: PetscStackPush("TS user implicit function");
822: (*ifunction)(ts,t,U,Udot,Y,ctx);
823: PetscStackPop;
824: }
825: if (imex) {
826: if (!ifunction) {
827: VecCopy(Udot,Y);
828: }
829: } else if (rhsfunction) {
830: if (ifunction) {
831: Vec Frhs;
832: TSGetRHSVec_Private(ts,&Frhs);
833: TSComputeRHSFunction(ts,t,U,Frhs);
834: VecAXPY(Y,-1,Frhs);
835: } else {
836: TSComputeRHSFunction(ts,t,U,Y);
837: VecAYPX(Y,-1,Udot);
838: }
839: }
840: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
841: return(0);
842: }
846: /*@
847: TSComputeIJacobian - Evaluates the Jacobian of the DAE
849: Collective on TS and Vec
851: Input
852: Input Parameters:
853: + ts - the TS context
854: . t - current timestep
855: . U - state vector
856: . Udot - time derivative of state vector
857: . shift - shift to apply, see note below
858: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
860: Output Parameters:
861: + A - Jacobian matrix
862: . B - optional preconditioning matrix
863: - flag - flag indicating matrix structure
865: Notes:
866: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
868: dF/dU + shift*dF/dUdot
870: Most users should not need to explicitly call this routine, as it
871: is used internally within the nonlinear solvers.
873: Level: developer
875: .keywords: TS, compute, Jacobian, matrix
877: .seealso: TSSetIJacobian()
878: @*/
879: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
880: {
882: TSIJacobian ijacobian;
883: TSRHSJacobian rhsjacobian;
884: DM dm;
885: void *ctx;
896: TSGetDM(ts,&dm);
897: DMTSGetIJacobian(dm,&ijacobian,&ctx);
898: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
900: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
902: PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
903: if (ijacobian) {
904: PetscBool missing;
905: PetscStackPush("TS user implicit Jacobian");
906: (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
907: PetscStackPop;
908: if (A) {
909: MatMissingDiagonal(A,&missing,NULL);
910: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Amat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
911: }
912: if (B && B != A) {
913: MatMissingDiagonal(B,&missing,NULL);
914: if (missing) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Bmat passed to TSSetIJacobian() must have all diagonal entries set, if they are zero you must still set them with a zero value");
915: }
916: }
917: if (imex) {
918: if (!ijacobian) { /* system was written as Udot = G(t,U) */
919: MatZeroEntries(A);
920: MatShift(A,shift);
921: if (A != B) {
922: MatZeroEntries(B);
923: MatShift(B,shift);
924: }
925: }
926: } else {
927: Mat Arhs = NULL,Brhs = NULL;
928: if (rhsjacobian) {
929: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
930: TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
931: }
932: if (Arhs == A) { /* No IJacobian, so we only have the RHS matrix */
933: ts->rhsjacobian.scale = -1;
934: ts->rhsjacobian.shift = shift;
935: MatScale(A,-1);
936: MatShift(A,shift);
937: if (A != B) {
938: MatScale(B,-1);
939: MatShift(B,shift);
940: }
941: } else if (Arhs) { /* Both IJacobian and RHSJacobian */
942: MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
943: if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
944: MatZeroEntries(A);
945: MatShift(A,shift);
946: if (A != B) {
947: MatZeroEntries(B);
948: MatShift(B,shift);
949: }
950: }
951: MatAXPY(A,-1,Arhs,axpy);
952: if (A != B) {
953: MatAXPY(B,-1,Brhs,axpy);
954: }
955: }
956: }
957: PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
958: return(0);
959: }
963: /*@C
964: TSSetRHSFunction - Sets the routine for evaluating the function,
965: where U_t = G(t,u).
967: Logically Collective on TS
969: Input Parameters:
970: + ts - the TS context obtained from TSCreate()
971: . r - vector to put the computed right hand side (or NULL to have it created)
972: . f - routine for evaluating the right-hand-side function
973: - ctx - [optional] user-defined context for private data for the
974: function evaluation routine (may be NULL)
976: Calling sequence of func:
977: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
979: + t - current timestep
980: . u - input vector
981: . F - function vector
982: - ctx - [optional] user-defined function context
984: Level: beginner
986: Notes: You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.
988: .keywords: TS, timestep, set, right-hand-side, function
990: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
991: @*/
992: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
993: {
995: SNES snes;
996: Vec ralloc = NULL;
997: DM dm;
1003: TSGetDM(ts,&dm);
1004: DMTSSetRHSFunction(dm,f,ctx);
1005: TSGetSNES(ts,&snes);
1006: if (!r && !ts->dm && ts->vec_sol) {
1007: VecDuplicate(ts->vec_sol,&ralloc);
1008: r = ralloc;
1009: }
1010: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1011: VecDestroy(&ralloc);
1012: return(0);
1013: }
1017: /*@C
1018: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
1020: Logically Collective on TS
1022: Input Parameters:
1023: + ts - the TS context obtained from TSCreate()
1024: . f - routine for evaluating the solution
1025: - ctx - [optional] user-defined context for private data for the
1026: function evaluation routine (may be NULL)
1028: Calling sequence of func:
1029: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1031: + t - current timestep
1032: . u - output vector
1033: - ctx - [optional] user-defined function context
1035: Notes:
1036: This routine is used for testing accuracy of time integration schemes when you already know the solution.
1037: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1038: create closed-form solutions with non-physical forcing terms.
1040: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1042: Level: beginner
1044: .keywords: TS, timestep, set, right-hand-side, function
1046: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
1047: @*/
1048: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1049: {
1051: DM dm;
1055: TSGetDM(ts,&dm);
1056: DMTSSetSolutionFunction(dm,f,ctx);
1057: return(0);
1058: }
1062: /*@C
1063: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
1065: Logically Collective on TS
1067: Input Parameters:
1068: + ts - the TS context obtained from TSCreate()
1069: . f - routine for evaluating the forcing function
1070: - ctx - [optional] user-defined context for private data for the
1071: function evaluation routine (may be NULL)
1073: Calling sequence of func:
1074: $ func (TS ts,PetscReal t,Vec u,void *ctx);
1076: + t - current timestep
1077: . u - output vector
1078: - ctx - [optional] user-defined function context
1080: Notes:
1081: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1082: create closed-form solutions with a non-physical forcing term.
1084: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
1086: Level: beginner
1088: .keywords: TS, timestep, set, right-hand-side, function
1090: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1091: @*/
1092: PetscErrorCode TSSetForcingFunction(TS ts,TSForcingFunction f,void *ctx)
1093: {
1095: DM dm;
1099: TSGetDM(ts,&dm);
1100: DMTSSetForcingFunction(dm,f,ctx);
1101: return(0);
1102: }
1106: /*@C
1107: TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1108: where U_t = G(U,t), as well as the location to store the matrix.
1110: Logically Collective on TS
1112: Input Parameters:
1113: + ts - the TS context obtained from TSCreate()
1114: . Amat - (approximate) Jacobian matrix
1115: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1116: . f - the Jacobian evaluation routine
1117: - ctx - [optional] user-defined context for private data for the
1118: Jacobian evaluation routine (may be NULL)
1120: Calling sequence of f:
1121: $ func (TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);
1123: + t - current timestep
1124: . u - input vector
1125: . Amat - (approximate) Jacobian matrix
1126: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1127: - ctx - [optional] user-defined context for matrix evaluation routine
1129: Notes:
1130: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1132: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1133: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1135: Level: beginner
1137: .keywords: TS, timestep, set, right-hand-side, Jacobian
1139: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()
1141: @*/
1142: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1143: {
1145: SNES snes;
1146: DM dm;
1147: TSIJacobian ijacobian;
1156: TSGetDM(ts,&dm);
1157: DMTSSetRHSJacobian(dm,f,ctx);
1158: if (f == TSComputeRHSJacobianConstant) {
1159: /* Handle this case automatically for the user; otherwise user should call themselves. */
1160: TSRHSJacobianSetReuse(ts,PETSC_TRUE);
1161: }
1162: DMTSGetIJacobian(dm,&ijacobian,NULL);
1163: TSGetSNES(ts,&snes);
1164: if (!ijacobian) {
1165: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1166: }
1167: if (Amat) {
1168: PetscObjectReference((PetscObject)Amat);
1169: MatDestroy(&ts->Arhs);
1170: ts->Arhs = Amat;
1171: }
1172: if (Pmat) {
1173: PetscObjectReference((PetscObject)Pmat);
1174: MatDestroy(&ts->Brhs);
1175: ts->Brhs = Pmat;
1176: }
1177: return(0);
1178: }
1183: /*@C
1184: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1186: Logically Collective on TS
1188: Input Parameters:
1189: + ts - the TS context obtained from TSCreate()
1190: . r - vector to hold the residual (or NULL to have it created internally)
1191: . f - the function evaluation routine
1192: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1194: Calling sequence of f:
1195: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1197: + t - time at step/stage being solved
1198: . u - state vector
1199: . u_t - time derivative of state vector
1200: . F - function vector
1201: - ctx - [optional] user-defined context for matrix evaluation routine
1203: Important:
1204: The user MUST call either this routine or TSSetRHSFunction() to define the ODE. When solving DAEs you must use this function.
1206: Level: beginner
1208: .keywords: TS, timestep, set, DAE, Jacobian
1210: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1211: @*/
1212: PetscErrorCode TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1213: {
1215: SNES snes;
1216: Vec ralloc = NULL;
1217: DM dm;
1223: TSGetDM(ts,&dm);
1224: DMTSSetIFunction(dm,f,ctx);
1226: TSGetSNES(ts,&snes);
1227: if (!r && !ts->dm && ts->vec_sol) {
1228: VecDuplicate(ts->vec_sol,&ralloc);
1229: r = ralloc;
1230: }
1231: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1232: VecDestroy(&ralloc);
1233: return(0);
1234: }
1238: /*@C
1239: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1241: Not Collective
1243: Input Parameter:
1244: . ts - the TS context
1246: Output Parameter:
1247: + r - vector to hold residual (or NULL)
1248: . func - the function to compute residual (or NULL)
1249: - ctx - the function context (or NULL)
1251: Level: advanced
1253: .keywords: TS, nonlinear, get, function
1255: .seealso: TSSetIFunction(), SNESGetFunction()
1256: @*/
1257: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1258: {
1260: SNES snes;
1261: DM dm;
1265: TSGetSNES(ts,&snes);
1266: SNESGetFunction(snes,r,NULL,NULL);
1267: TSGetDM(ts,&dm);
1268: DMTSGetIFunction(dm,func,ctx);
1269: return(0);
1270: }
1274: /*@C
1275: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1277: Not Collective
1279: Input Parameter:
1280: . ts - the TS context
1282: Output Parameter:
1283: + r - vector to hold computed right hand side (or NULL)
1284: . func - the function to compute right hand side (or NULL)
1285: - ctx - the function context (or NULL)
1287: Level: advanced
1289: .keywords: TS, nonlinear, get, function
1291: .seealso: TSSetRHSFunction(), SNESGetFunction()
1292: @*/
1293: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1294: {
1296: SNES snes;
1297: DM dm;
1301: TSGetSNES(ts,&snes);
1302: SNESGetFunction(snes,r,NULL,NULL);
1303: TSGetDM(ts,&dm);
1304: DMTSGetRHSFunction(dm,func,ctx);
1305: return(0);
1306: }
1310: /*@C
1311: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1312: provided with TSSetIFunction().
1314: Logically Collective on TS
1316: Input Parameters:
1317: + ts - the TS context obtained from TSCreate()
1318: . Amat - (approximate) Jacobian matrix
1319: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1320: . f - the Jacobian evaluation routine
1321: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1323: Calling sequence of f:
1324: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);
1326: + t - time at step/stage being solved
1327: . U - state vector
1328: . U_t - time derivative of state vector
1329: . a - shift
1330: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1331: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1332: - ctx - [optional] user-defined context for matrix evaluation routine
1334: Notes:
1335: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1337: If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1338: space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.
1340: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1341: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1342: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1343: a and vector W depend on the integration method, step size, and past states. For example with
1344: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1345: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1347: You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value
1349: The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1350: You should not assume the values are the same in the next call to f() as you set them in the previous call.
1352: Level: beginner
1354: .keywords: TS, timestep, DAE, Jacobian
1356: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()
1358: @*/
1359: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1360: {
1362: SNES snes;
1363: DM dm;
1372: TSGetDM(ts,&dm);
1373: DMTSSetIJacobian(dm,f,ctx);
1375: TSGetSNES(ts,&snes);
1376: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1377: return(0);
1378: }
1382: /*@
1383: TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating. Without this flag, TS will change the sign and
1384: shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1385: the entire Jacobian. The reuse flag must be set if the evaluation function will assume that the matrix entries have
1386: not been changed by the TS.
1388: Logically Collective
1390: Input Arguments:
1391: + ts - TS context obtained from TSCreate()
1392: - reuse - PETSC_TRUE if the RHS Jacobian
1394: Level: intermediate
1396: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1397: @*/
1398: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1399: {
1401: ts->rhsjacobian.reuse = reuse;
1402: return(0);
1403: }
1407: /*@C
1408: TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.
1410: Logically Collective on TS
1412: Input Parameters:
1413: + ts - the TS context obtained from TSCreate()
1414: . F - vector to hold the residual (or NULL to have it created internally)
1415: . fun - the function evaluation routine
1416: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1418: Calling sequence of fun:
1419: $ fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);
1421: + t - time at step/stage being solved
1422: . U - state vector
1423: . U_t - time derivative of state vector
1424: . U_tt - second time derivative of state vector
1425: . F - function vector
1426: - ctx - [optional] user-defined context for matrix evaluation routine (may be NULL)
1428: Level: beginner
1430: .keywords: TS, timestep, set, ODE, DAE, Function
1432: .seealso: TSSetI2Jacobian()
1433: @*/
1434: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1435: {
1436: DM dm;
1442: TSSetIFunction(ts,F,NULL,NULL);
1443: TSGetDM(ts,&dm);
1444: DMTSSetI2Function(dm,fun,ctx);
1445: return(0);
1446: }
1450: /*@C
1451: TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1453: Not Collective
1455: Input Parameter:
1456: . ts - the TS context
1458: Output Parameter:
1459: + r - vector to hold residual (or NULL)
1460: . fun - the function to compute residual (or NULL)
1461: - ctx - the function context (or NULL)
1463: Level: advanced
1465: .keywords: TS, nonlinear, get, function
1467: .seealso: TSSetI2Function(), SNESGetFunction()
1468: @*/
1469: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1470: {
1472: SNES snes;
1473: DM dm;
1477: TSGetSNES(ts,&snes);
1478: SNESGetFunction(snes,r,NULL,NULL);
1479: TSGetDM(ts,&dm);
1480: DMTSGetI2Function(dm,fun,ctx);
1481: return(0);
1482: }
1486: /*@C
1487: TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t + a*dF/dU_tt
1488: where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().
1490: Logically Collective on TS
1492: Input Parameters:
1493: + ts - the TS context obtained from TSCreate()
1494: . J - Jacobian matrix
1495: . P - preconditioning matrix for J (may be same as J)
1496: . jac - the Jacobian evaluation routine
1497: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1499: Calling sequence of jac:
1500: $ jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);
1502: + t - time at step/stage being solved
1503: . U - state vector
1504: . U_t - time derivative of state vector
1505: . U_tt - second time derivative of state vector
1506: . v - shift for U_t
1507: . a - shift for U_tt
1508: . J - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t + a*dF/dU_tt
1509: . P - preconditioning matrix for J, may be same as J
1510: - ctx - [optional] user-defined context for matrix evaluation routine
1512: Notes:
1513: The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.
1515: The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1516: the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1517: The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U where the positive "shift"
1518: parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.
1520: Level: beginner
1522: .keywords: TS, timestep, set, ODE, DAE, Jacobian
1524: .seealso: TSSetI2Function()
1525: @*/
1526: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1527: {
1528: DM dm;
1535: TSSetIJacobian(ts,J,P,NULL,NULL);
1536: TSGetDM(ts,&dm);
1537: DMTSSetI2Jacobian(dm,jac,ctx);
1538: return(0);
1539: }
1543: /*@C
1544: TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.
1546: Not Collective, but parallel objects are returned if TS is parallel
1548: Input Parameter:
1549: . ts - The TS context obtained from TSCreate()
1551: Output Parameters:
1552: + J - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1553: . P - The matrix from which the preconditioner is constructed, often the same as J
1554: . jac - The function to compute the Jacobian matrices
1555: - ctx - User-defined context for Jacobian evaluation routine
1557: Notes: You can pass in NULL for any return argument you do not need.
1559: Level: advanced
1561: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
1563: .keywords: TS, timestep, get, matrix, Jacobian
1564: @*/
1565: PetscErrorCode TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1566: {
1568: SNES snes;
1569: DM dm;
1572: TSGetSNES(ts,&snes);
1573: SNESSetUpMatrices(snes);
1574: SNESGetJacobian(snes,J,P,NULL,NULL);
1575: TSGetDM(ts,&dm);
1576: DMTSGetI2Jacobian(dm,jac,ctx);
1577: return(0);
1578: }
1582: /*@
1583: TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0
1585: Collective on TS and Vec
1587: Input Parameters:
1588: + ts - the TS context
1589: . t - current time
1590: . U - state vector
1591: . V - time derivative of state vector (U_t)
1592: - A - second time derivative of state vector (U_tt)
1594: Output Parameter:
1595: . F - the residual vector
1597: Note:
1598: Most users should not need to explicitly call this routine, as it
1599: is used internally within the nonlinear solvers.
1601: Level: developer
1603: .keywords: TS, compute, function, vector
1605: .seealso: TSSetI2Function()
1606: @*/
1607: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1608: {
1609: DM dm;
1610: TSI2Function I2Function;
1611: void *ctx;
1612: TSRHSFunction rhsfunction;
1622: TSGetDM(ts,&dm);
1623: DMTSGetI2Function(dm,&I2Function,&ctx);
1624: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1626: if (!I2Function) {
1627: TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1628: return(0);
1629: }
1631: PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);
1633: PetscStackPush("TS user implicit function");
1634: I2Function(ts,t,U,V,A,F,ctx);
1635: PetscStackPop;
1637: if (rhsfunction) {
1638: Vec Frhs;
1639: TSGetRHSVec_Private(ts,&Frhs);
1640: TSComputeRHSFunction(ts,t,U,Frhs);
1641: VecAXPY(F,-1,Frhs);
1642: }
1644: PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1645: return(0);
1646: }
1650: /*@
1651: TSComputeI2Jacobian - Evaluates the Jacobian of the DAE
1653: Collective on TS and Vec
1655: Input Parameters:
1656: + ts - the TS context
1657: . t - current timestep
1658: . U - state vector
1659: . V - time derivative of state vector
1660: . A - second time derivative of state vector
1661: . shiftV - shift to apply, see note below
1662: - shiftA - shift to apply, see note below
1664: Output Parameters:
1665: + J - Jacobian matrix
1666: - P - optional preconditioning matrix
1668: Notes:
1669: If F(t,U,V,A)=0 is the DAE, the required Jacobian is
1671: dF/dU + shiftV*dF/dV + shiftA*dF/dA
1673: Most users should not need to explicitly call this routine, as it
1674: is used internally within the nonlinear solvers.
1676: Level: developer
1678: .keywords: TS, compute, Jacobian, matrix
1680: .seealso: TSSetI2Jacobian()
1681: @*/
1682: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1683: {
1684: DM dm;
1685: TSI2Jacobian I2Jacobian;
1686: void *ctx;
1687: TSRHSJacobian rhsjacobian;
1698: TSGetDM(ts,&dm);
1699: DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1700: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
1702: if (!I2Jacobian) {
1703: TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1704: return(0);
1705: }
1707: PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);
1709: PetscStackPush("TS user implicit Jacobian");
1710: I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1711: PetscStackPop;
1713: if (rhsjacobian) {
1714: Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1715: TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1716: TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1717: MatAXPY(J,-1,Jrhs,axpy);
1718: if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1719: }
1721: PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1722: return(0);
1723: }
1727: /*@
1728: TS2SetSolution - Sets the initial solution and time derivative vectors
1729: for use by the TS routines handling second order equations.
1731: Logically Collective on TS and Vec
1733: Input Parameters:
1734: + ts - the TS context obtained from TSCreate()
1735: . u - the solution vector
1736: - v - the time derivative vector
1738: Level: beginner
1740: .keywords: TS, timestep, set, solution, initial conditions
1741: @*/
1742: PetscErrorCode TS2SetSolution(TS ts,Vec u,Vec v)
1743: {
1750: TSSetSolution(ts,u);
1751: PetscObjectReference((PetscObject)v);
1752: VecDestroy(&ts->vec_dot);
1753: ts->vec_dot = v;
1754: return(0);
1755: }
1759: /*@
1760: TS2GetSolution - Returns the solution and time derivative at the present timestep
1761: for second order equations. It is valid to call this routine inside the function
1762: that you are evaluating in order to move to the new timestep. This vector not
1763: changed until the solution at the next timestep has been calculated.
1765: Not Collective, but Vec returned is parallel if TS is parallel
1767: Input Parameter:
1768: . ts - the TS context obtained from TSCreate()
1770: Output Parameter:
1771: + u - the vector containing the solution
1772: - v - the vector containing the time derivative
1774: Level: intermediate
1776: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()
1778: .keywords: TS, timestep, get, solution
1779: @*/
1780: PetscErrorCode TS2GetSolution(TS ts,Vec *u,Vec *v)
1781: {
1786: if (u) *u = ts->vec_sol;
1787: if (v) *v = ts->vec_dot;
1788: return(0);
1789: }
1793: /*@C
1794: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1796: Collective on PetscViewer
1798: Input Parameters:
1799: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1800: some related function before a call to TSLoad().
1801: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1803: Level: intermediate
1805: Notes:
1806: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1808: Notes for advanced users:
1809: Most users should not need to know the details of the binary storage
1810: format, since TSLoad() and TSView() completely hide these details.
1811: But for anyone who's interested, the standard binary matrix storage
1812: format is
1813: .vb
1814: has not yet been determined
1815: .ve
1817: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1818: @*/
1819: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1820: {
1822: PetscBool isbinary;
1823: PetscInt classid;
1824: char type[256];
1825: DMTS sdm;
1826: DM dm;
1831: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1832: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1834: PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1835: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1836: PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1837: TSSetType(ts, type);
1838: if (ts->ops->load) {
1839: (*ts->ops->load)(ts,viewer);
1840: }
1841: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1842: DMLoad(dm,viewer);
1843: TSSetDM(ts,dm);
1844: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1845: VecLoad(ts->vec_sol,viewer);
1846: DMGetDMTS(ts->dm,&sdm);
1847: DMTSLoad(sdm,viewer);
1848: return(0);
1849: }
1851: #include <petscdraw.h>
1852: #if defined(PETSC_HAVE_SAWS)
1853: #include <petscviewersaws.h>
1854: #endif
1857: /*@C
1858: TSView - Prints the TS data structure.
1860: Collective on TS
1862: Input Parameters:
1863: + ts - the TS context obtained from TSCreate()
1864: - viewer - visualization context
1866: Options Database Key:
1867: . -ts_view - calls TSView() at end of TSStep()
1869: Notes:
1870: The available visualization contexts include
1871: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1872: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1873: output where only the first processor opens
1874: the file. All other processors send their
1875: data to the first processor to print.
1877: The user can open an alternative visualization context with
1878: PetscViewerASCIIOpen() - output to a specified file.
1880: Level: beginner
1882: .keywords: TS, timestep, view
1884: .seealso: PetscViewerASCIIOpen()
1885: @*/
1886: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1887: {
1889: TSType type;
1890: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1891: DMTS sdm;
1892: #if defined(PETSC_HAVE_SAWS)
1893: PetscBool issaws;
1894: #endif
1898: if (!viewer) {
1899: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1900: }
1904: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1905: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1906: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1907: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1908: #if defined(PETSC_HAVE_SAWS)
1909: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
1910: #endif
1911: if (iascii) {
1912: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
1913: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1914: PetscViewerASCIIPrintf(viewer," maximum time=%g\n",(double)ts->max_time);
1915: if (ts->problem_type == TS_NONLINEAR) {
1916: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1917: PetscViewerASCIIPrintf(viewer," total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1918: }
1919: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1920: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1921: DMGetDMTS(ts->dm,&sdm);
1922: DMTSView(sdm,viewer);
1923: if (ts->ops->view) {
1924: PetscViewerASCIIPushTab(viewer);
1925: (*ts->ops->view)(ts,viewer);
1926: PetscViewerASCIIPopTab(viewer);
1927: }
1928: } else if (isstring) {
1929: TSGetType(ts,&type);
1930: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1931: } else if (isbinary) {
1932: PetscInt classid = TS_FILE_CLASSID;
1933: MPI_Comm comm;
1934: PetscMPIInt rank;
1935: char type[256];
1937: PetscObjectGetComm((PetscObject)ts,&comm);
1938: MPI_Comm_rank(comm,&rank);
1939: if (!rank) {
1940: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1941: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1942: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1943: }
1944: if (ts->ops->view) {
1945: (*ts->ops->view)(ts,viewer);
1946: }
1947: DMView(ts->dm,viewer);
1948: VecView(ts->vec_sol,viewer);
1949: DMGetDMTS(ts->dm,&sdm);
1950: DMTSView(sdm,viewer);
1951: } else if (isdraw) {
1952: PetscDraw draw;
1953: char str[36];
1954: PetscReal x,y,bottom,h;
1956: PetscViewerDrawGetDraw(viewer,0,&draw);
1957: PetscDrawGetCurrentPoint(draw,&x,&y);
1958: PetscStrcpy(str,"TS: ");
1959: PetscStrcat(str,((PetscObject)ts)->type_name);
1960: PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1961: bottom = y - h;
1962: PetscDrawPushCurrentPoint(draw,x,bottom);
1963: if (ts->ops->view) {
1964: (*ts->ops->view)(ts,viewer);
1965: }
1966: PetscDrawPopCurrentPoint(draw);
1967: #if defined(PETSC_HAVE_SAWS)
1968: } else if (issaws) {
1969: PetscMPIInt rank;
1970: const char *name;
1972: PetscObjectGetName((PetscObject)ts,&name);
1973: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
1974: if (!((PetscObject)ts)->amsmem && !rank) {
1975: char dir[1024];
1977: PetscObjectViewSAWs((PetscObject)ts,viewer);
1978: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
1979: PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
1980: PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
1981: PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
1982: }
1983: if (ts->ops->view) {
1984: (*ts->ops->view)(ts,viewer);
1985: }
1986: #endif
1987: }
1989: PetscViewerASCIIPushTab(viewer);
1990: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1991: PetscViewerASCIIPopTab(viewer);
1992: return(0);
1993: }
1998: /*@
1999: TSSetApplicationContext - Sets an optional user-defined context for
2000: the timesteppers.
2002: Logically Collective on TS
2004: Input Parameters:
2005: + ts - the TS context obtained from TSCreate()
2006: - usrP - optional user context
2008: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2009: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2011: Level: intermediate
2013: .keywords: TS, timestep, set, application, context
2015: .seealso: TSGetApplicationContext()
2016: @*/
2017: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
2018: {
2021: ts->user = usrP;
2022: return(0);
2023: }
2027: /*@
2028: TSGetApplicationContext - Gets the user-defined context for the
2029: timestepper.
2031: Not Collective
2033: Input Parameter:
2034: . ts - the TS context obtained from TSCreate()
2036: Output Parameter:
2037: . usrP - user context
2039: Fortran Notes: To use this from Fortran you must write a Fortran interface definition for this
2040: function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.
2042: Level: intermediate
2044: .keywords: TS, timestep, get, application, context
2046: .seealso: TSSetApplicationContext()
2047: @*/
2048: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
2049: {
2052: *(void**)usrP = ts->user;
2053: return(0);
2054: }
2058: /*@
2059: TSGetTimeStepNumber - Gets the number of time steps completed.
2061: Not Collective
2063: Input Parameter:
2064: . ts - the TS context obtained from TSCreate()
2066: Output Parameter:
2067: . iter - number of steps completed so far
2069: Level: intermediate
2071: .keywords: TS, timestep, get, iteration, number
2072: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2073: @*/
2074: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *iter)
2075: {
2079: *iter = ts->steps;
2080: return(0);
2081: }
2085: /*@
2086: TSSetInitialTimeStep - Sets the initial timestep to be used,
2087: as well as the initial time.
2089: Logically Collective on TS
2091: Input Parameters:
2092: + ts - the TS context obtained from TSCreate()
2093: . initial_time - the initial time
2094: - time_step - the size of the timestep
2096: Level: intermediate
2098: .seealso: TSSetTimeStep(), TSGetTimeStep()
2100: .keywords: TS, set, initial, timestep
2101: @*/
2102: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
2103: {
2108: TSSetTimeStep(ts,time_step);
2109: TSSetTime(ts,initial_time);
2110: return(0);
2111: }
2115: /*@
2116: TSSetTimeStep - Allows one to reset the timestep at any time,
2117: useful for simple pseudo-timestepping codes.
2119: Logically Collective on TS
2121: Input Parameters:
2122: + ts - the TS context obtained from TSCreate()
2123: - time_step - the size of the timestep
2125: Level: intermediate
2127: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2129: .keywords: TS, set, timestep
2130: @*/
2131: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
2132: {
2136: ts->time_step = time_step;
2137: return(0);
2138: }
2142: /*@
2143: TSSetExactFinalTime - Determines whether to adapt the final time step to
2144: match the exact final time, interpolate solution to the exact final time,
2145: or just return at the final time TS computed.
2147: Logically Collective on TS
2149: Input Parameter:
2150: + ts - the time-step context
2151: - eftopt - exact final time option
2153: $ TS_EXACTFINALTIME_STEPOVER - Don't do anything if final time is exceeded
2154: $ TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2155: $ TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time
2157: Options Database:
2158: . -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime
2160: Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2161: then the final time you selected.
2163: Level: beginner
2165: .seealso: TSExactFinalTimeOption
2166: @*/
2167: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2168: {
2172: ts->exact_final_time = eftopt;
2173: return(0);
2174: }
2178: /*@
2179: TSGetTimeStep - Gets the current timestep size.
2181: Not Collective
2183: Input Parameter:
2184: . ts - the TS context obtained from TSCreate()
2186: Output Parameter:
2187: . dt - the current timestep size
2189: Level: intermediate
2191: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2193: .keywords: TS, get, timestep
2194: @*/
2195: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
2196: {
2200: *dt = ts->time_step;
2201: return(0);
2202: }
2206: /*@
2207: TSGetSolution - Returns the solution at the present timestep. It
2208: is valid to call this routine inside the function that you are evaluating
2209: in order to move to the new timestep. This vector not changed until
2210: the solution at the next timestep has been calculated.
2212: Not Collective, but Vec returned is parallel if TS is parallel
2214: Input Parameter:
2215: . ts - the TS context obtained from TSCreate()
2217: Output Parameter:
2218: . v - the vector containing the solution
2220: Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2221: final time. It returns the solution at the next timestep.
2223: Level: intermediate
2225: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime()
2227: .keywords: TS, timestep, get, solution
2228: @*/
2229: PetscErrorCode TSGetSolution(TS ts,Vec *v)
2230: {
2234: *v = ts->vec_sol;
2235: return(0);
2236: }
2240: /*@
2241: TSGetCostGradients - Returns the gradients from the TSAdjointSolve()
2243: Not Collective, but Vec returned is parallel if TS is parallel
2245: Input Parameter:
2246: . ts - the TS context obtained from TSCreate()
2248: Output Parameter:
2249: + lambda - vectors containing the gradients of the cost functions with respect to the ODE/DAE solution variables
2250: - mu - vectors containing the gradients of the cost functions with respect to the problem parameters
2252: Level: intermediate
2254: .seealso: TSGetTimeStep()
2256: .keywords: TS, timestep, get, sensitivity
2257: @*/
2258: PetscErrorCode TSGetCostGradients(TS ts,PetscInt *numcost,Vec **lambda,Vec **mu)
2259: {
2262: if (numcost) *numcost = ts->numcost;
2263: if (lambda) *lambda = ts->vecs_sensi;
2264: if (mu) *mu = ts->vecs_sensip;
2265: return(0);
2266: }
2268: /* ----- Routines to initialize and destroy a timestepper ---- */
2271: /*@
2272: TSSetProblemType - Sets the type of problem to be solved.
2274: Not collective
2276: Input Parameters:
2277: + ts - The TS
2278: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2279: .vb
2280: U_t - A U = 0 (linear)
2281: U_t - A(t) U = 0 (linear)
2282: F(t,U,U_t) = 0 (nonlinear)
2283: .ve
2285: Level: beginner
2287: .keywords: TS, problem type
2288: .seealso: TSSetUp(), TSProblemType, TS
2289: @*/
2290: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
2291: {
2296: ts->problem_type = type;
2297: if (type == TS_LINEAR) {
2298: SNES snes;
2299: TSGetSNES(ts,&snes);
2300: SNESSetType(snes,SNESKSPONLY);
2301: }
2302: return(0);
2303: }
2307: /*@C
2308: TSGetProblemType - Gets the type of problem to be solved.
2310: Not collective
2312: Input Parameter:
2313: . ts - The TS
2315: Output Parameter:
2316: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2317: .vb
2318: M U_t = A U
2319: M(t) U_t = A(t) U
2320: F(t,U,U_t)
2321: .ve
2323: Level: beginner
2325: .keywords: TS, problem type
2326: .seealso: TSSetUp(), TSProblemType, TS
2327: @*/
2328: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
2329: {
2333: *type = ts->problem_type;
2334: return(0);
2335: }
2339: /*@
2340: TSSetUp - Sets up the internal data structures for the later use
2341: of a timestepper.
2343: Collective on TS
2345: Input Parameter:
2346: . ts - the TS context obtained from TSCreate()
2348: Notes:
2349: For basic use of the TS solvers the user need not explicitly call
2350: TSSetUp(), since these actions will automatically occur during
2351: the call to TSStep(). However, if one wishes to control this
2352: phase separately, TSSetUp() should be called after TSCreate()
2353: and optional routines of the form TSSetXXX(), but before TSStep().
2355: Level: advanced
2357: .keywords: TS, timestep, setup
2359: .seealso: TSCreate(), TSStep(), TSDestroy()
2360: @*/
2361: PetscErrorCode TSSetUp(TS ts)
2362: {
2364: DM dm;
2365: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2366: PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2367: TSIFunction ifun;
2368: TSIJacobian ijac;
2369: TSI2Jacobian i2jac;
2370: TSRHSJacobian rhsjac;
2374: if (ts->setupcalled) return(0);
2376: ts->total_steps = 0;
2377: if (!((PetscObject)ts)->type_name) {
2378: TSGetIFunction(ts,NULL,&ifun,NULL);
2379: TSSetType(ts,ifun ? TSBEULER : TSEULER);
2380: }
2382: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2384: if (ts->rhsjacobian.reuse) {
2385: Mat Amat,Pmat;
2386: SNES snes;
2387: TSGetSNES(ts,&snes);
2388: SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2389: /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2390: * have displaced the RHS matrix */
2391: if (Amat == ts->Arhs) {
2392: MatDuplicate(ts->Arhs,MAT_DO_NOT_COPY_VALUES,&Amat);
2393: SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2394: MatDestroy(&Amat);
2395: }
2396: if (Pmat == ts->Brhs) {
2397: MatDuplicate(ts->Brhs,MAT_DO_NOT_COPY_VALUES,&Pmat);
2398: SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2399: MatDestroy(&Pmat);
2400: }
2401: }
2402: if (ts->ops->setup) {
2403: (*ts->ops->setup)(ts);
2404: }
2406: /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2407: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2408: */
2409: TSGetDM(ts,&dm);
2410: DMSNESGetFunction(dm,&func,NULL);
2411: if (!func) {
2412: DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2413: }
2414: /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2415: Otherwise, the SNES will use coloring internally to form the Jacobian.
2416: */
2417: DMSNESGetJacobian(dm,&jac,NULL);
2418: DMTSGetIJacobian(dm,&ijac,NULL);
2419: DMTSGetI2Jacobian(dm,&i2jac,NULL);
2420: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2421: if (!jac && (ijac || i2jac || rhsjac)) {
2422: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2423: }
2424: ts->setupcalled = PETSC_TRUE;
2425: return(0);
2426: }
2430: /*@
2431: TSAdjointSetUp - Sets up the internal data structures for the later use
2432: of an adjoint solver
2434: Collective on TS
2436: Input Parameter:
2437: . ts - the TS context obtained from TSCreate()
2439: Level: advanced
2441: .keywords: TS, timestep, setup
2443: .seealso: TSCreate(), TSAdjointStep(), TSSetCostGradients()
2444: @*/
2445: PetscErrorCode TSAdjointSetUp(TS ts)
2446: {
2451: if (ts->adjointsetupcalled) return(0);
2452: if (!ts->vecs_sensi) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetCostGradients() first");
2454: if (ts->vec_costintegral) { /* if there is integral in the cost function*/
2455: VecDuplicateVecs(ts->vecs_sensi[0],ts->numcost,&ts->vecs_drdy);
2456: if (ts->vecs_sensip){
2457: VecDuplicateVecs(ts->vecs_sensip[0],ts->numcost,&ts->vecs_drdp);
2458: }
2459: }
2461: if (ts->ops->adjointsetup) {
2462: (*ts->ops->adjointsetup)(ts);
2463: }
2464: ts->adjointsetupcalled = PETSC_TRUE;
2465: return(0);
2466: }
2470: /*@
2471: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
2473: Collective on TS
2475: Input Parameter:
2476: . ts - the TS context obtained from TSCreate()
2478: Level: beginner
2480: .keywords: TS, timestep, reset
2482: .seealso: TSCreate(), TSSetup(), TSDestroy()
2483: @*/
2484: PetscErrorCode TSReset(TS ts)
2485: {
2491: if (ts->ops->reset) {
2492: (*ts->ops->reset)(ts);
2493: }
2494: if (ts->snes) {SNESReset(ts->snes);}
2495: if (ts->adapt) {TSAdaptReset(ts->adapt);}
2497: MatDestroy(&ts->Arhs);
2498: MatDestroy(&ts->Brhs);
2499: VecDestroy(&ts->Frhs);
2500: VecDestroy(&ts->vec_sol);
2501: VecDestroy(&ts->vec_dot);
2502: VecDestroy(&ts->vatol);
2503: VecDestroy(&ts->vrtol);
2504: VecDestroyVecs(ts->nwork,&ts->work);
2506: if (ts->vec_costintegral) {
2507: VecDestroyVecs(ts->numcost,&ts->vecs_drdy);
2508: if (ts->vecs_drdp){
2509: VecDestroyVecs(ts->numcost,&ts->vecs_drdp);
2510: }
2511: }
2512: ts->vecs_sensi = NULL;
2513: ts->vecs_sensip = NULL;
2514: MatDestroy(&ts->Jacp);
2515: VecDestroy(&ts->vec_costintegral);
2516: VecDestroy(&ts->vec_costintegrand);
2517: ts->setupcalled = PETSC_FALSE;
2518: return(0);
2519: }
2523: /*@
2524: TSDestroy - Destroys the timestepper context that was created
2525: with TSCreate().
2527: Collective on TS
2529: Input Parameter:
2530: . ts - the TS context obtained from TSCreate()
2532: Level: beginner
2534: .keywords: TS, timestepper, destroy
2536: .seealso: TSCreate(), TSSetUp(), TSSolve()
2537: @*/
2538: PetscErrorCode TSDestroy(TS *ts)
2539: {
2543: if (!*ts) return(0);
2545: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
2547: TSReset((*ts));
2549: /* if memory was published with SAWs then destroy it */
2550: PetscObjectSAWsViewOff((PetscObject)*ts);
2551: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
2553: TSTrajectoryDestroy(&(*ts)->trajectory);
2555: TSAdaptDestroy(&(*ts)->adapt);
2556: TSEventDestroy(&(*ts)->event);
2558: SNESDestroy(&(*ts)->snes);
2559: DMDestroy(&(*ts)->dm);
2560: TSMonitorCancel((*ts));
2561: TSAdjointMonitorCancel((*ts));
2563: PetscHeaderDestroy(ts);
2564: return(0);
2565: }
2569: /*@
2570: TSGetSNES - Returns the SNES (nonlinear solver) associated with
2571: a TS (timestepper) context. Valid only for nonlinear problems.
2573: Not Collective, but SNES is parallel if TS is parallel
2575: Input Parameter:
2576: . ts - the TS context obtained from TSCreate()
2578: Output Parameter:
2579: . snes - the nonlinear solver context
2581: Notes:
2582: The user can then directly manipulate the SNES context to set various
2583: options, etc. Likewise, the user can then extract and manipulate the
2584: KSP, KSP, and PC contexts as well.
2586: TSGetSNES() does not work for integrators that do not use SNES; in
2587: this case TSGetSNES() returns NULL in snes.
2589: Level: beginner
2591: .keywords: timestep, get, SNES
2592: @*/
2593: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
2594: {
2600: if (!ts->snes) {
2601: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2602: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2603: PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2604: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2605: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2606: if (ts->problem_type == TS_LINEAR) {
2607: SNESSetType(ts->snes,SNESKSPONLY);
2608: }
2609: }
2610: *snes = ts->snes;
2611: return(0);
2612: }
2616: /*@
2617: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
2619: Collective
2621: Input Parameter:
2622: + ts - the TS context obtained from TSCreate()
2623: - snes - the nonlinear solver context
2625: Notes:
2626: Most users should have the TS created by calling TSGetSNES()
2628: Level: developer
2630: .keywords: timestep, set, SNES
2631: @*/
2632: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2633: {
2635: PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);
2640: PetscObjectReference((PetscObject)snes);
2641: SNESDestroy(&ts->snes);
2643: ts->snes = snes;
2645: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2646: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2647: if (func == SNESTSFormJacobian) {
2648: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2649: }
2650: return(0);
2651: }
2655: /*@
2656: TSGetKSP - Returns the KSP (linear solver) associated with
2657: a TS (timestepper) context.
2659: Not Collective, but KSP is parallel if TS is parallel
2661: Input Parameter:
2662: . ts - the TS context obtained from TSCreate()
2664: Output Parameter:
2665: . ksp - the nonlinear solver context
2667: Notes:
2668: The user can then directly manipulate the KSP context to set various
2669: options, etc. Likewise, the user can then extract and manipulate the
2670: KSP and PC contexts as well.
2672: TSGetKSP() does not work for integrators that do not use KSP;
2673: in this case TSGetKSP() returns NULL in ksp.
2675: Level: beginner
2677: .keywords: timestep, get, KSP
2678: @*/
2679: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
2680: {
2682: SNES snes;
2687: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2688: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2689: TSGetSNES(ts,&snes);
2690: SNESGetKSP(snes,ksp);
2691: return(0);
2692: }
2694: /* ----------- Routines to set solver parameters ---------- */
2698: /*@
2699: TSGetDuration - Gets the maximum number of timesteps to use and
2700: maximum time for iteration.
2702: Not Collective
2704: Input Parameters:
2705: + ts - the TS context obtained from TSCreate()
2706: . maxsteps - maximum number of iterations to use, or NULL
2707: - maxtime - final time to iterate to, or NULL
2709: Level: intermediate
2711: .keywords: TS, timestep, get, maximum, iterations, time
2712: @*/
2713: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
2714: {
2717: if (maxsteps) {
2719: *maxsteps = ts->max_steps;
2720: }
2721: if (maxtime) {
2723: *maxtime = ts->max_time;
2724: }
2725: return(0);
2726: }
2730: /*@
2731: TSSetDuration - Sets the maximum number of timesteps to use and
2732: maximum time for iteration.
2734: Logically Collective on TS
2736: Input Parameters:
2737: + ts - the TS context obtained from TSCreate()
2738: . maxsteps - maximum number of iterations to use
2739: - maxtime - final time to iterate to
2741: Options Database Keys:
2742: . -ts_max_steps <maxsteps> - Sets maxsteps
2743: . -ts_final_time <maxtime> - Sets maxtime
2745: Notes:
2746: The default maximum number of iterations is 5000. Default time is 5.0
2748: Level: intermediate
2750: .keywords: TS, timestep, set, maximum, iterations
2752: .seealso: TSSetExactFinalTime()
2753: @*/
2754: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2755: {
2760: if (maxsteps >= 0) ts->max_steps = maxsteps;
2761: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2762: return(0);
2763: }
2767: /*@
2768: TSSetSolution - Sets the initial solution vector
2769: for use by the TS routines.
2771: Logically Collective on TS and Vec
2773: Input Parameters:
2774: + ts - the TS context obtained from TSCreate()
2775: - u - the solution vector
2777: Level: beginner
2779: .keywords: TS, timestep, set, solution, initial conditions
2780: @*/
2781: PetscErrorCode TSSetSolution(TS ts,Vec u)
2782: {
2784: DM dm;
2789: PetscObjectReference((PetscObject)u);
2790: VecDestroy(&ts->vec_sol);
2791: ts->vec_sol = u;
2793: TSGetDM(ts,&dm);
2794: DMShellSetGlobalVector(dm,u);
2795: return(0);
2796: }
2800: /*@
2801: TSAdjointSetSteps - Sets the number of steps the adjoint solver should take backward in time
2803: Logically Collective on TS
2805: Input Parameters:
2806: + ts - the TS context obtained from TSCreate()
2807: . steps - number of steps to use
2809: Level: intermediate
2811: Notes: Normally one does not call this and TSAdjointSolve() integrates back to the original timestep. One can call this
2812: so as to integrate back to less than the original timestep
2814: .keywords: TS, timestep, set, maximum, iterations
2816: .seealso: TSSetExactFinalTime()
2817: @*/
2818: PetscErrorCode TSAdjointSetSteps(TS ts,PetscInt steps)
2819: {
2823: if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back a negative number of steps");
2824: if (steps > ts->total_steps) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Cannot step back more than the total number of forward steps");
2825: ts->adjoint_max_steps = steps;
2826: return(0);
2827: }
2831: /*@
2832: TSSetCostGradients - Sets the initial value of the gradients of the cost function w.r.t. initial conditions and w.r.t. the problem parameters
2833: for use by the TSAdjoint routines.
2835: Logically Collective on TS and Vec
2837: Input Parameters:
2838: + ts - the TS context obtained from TSCreate()
2839: . lambda - gradients with respect to the initial condition variables, the dimension and parallel layout of these vectors is the same as the ODE solution vector
2840: - mu - gradients with respect to the parameters, the number of entries in these vectors is the same as the number of parameters
2842: Level: beginner
2844: Notes: the entries in these vectors must be correctly initialized with the values lamda_i = df/dy|finaltime mu_i = df/dp|finaltime
2846: .keywords: TS, timestep, set, sensitivity, initial conditions
2847: @*/
2848: PetscErrorCode TSSetCostGradients(TS ts,PetscInt numcost,Vec *lambda,Vec *mu)
2849: {
2853: ts->vecs_sensi = lambda;
2854: ts->vecs_sensip = mu;
2855: if (ts->numcost && ts->numcost!=numcost) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"The number of cost functions (2rd parameter of TSSetCostIntegrand()) is inconsistent with the one set by TSSetCostIntegrand");
2856: ts->numcost = numcost;
2857: return(0);
2858: }
2862: /*@C
2863: TSAdjointSetRHSJacobian - Sets the function that computes the Jacobian of G w.r.t. the parameters p where y_t = G(y,p,t), as well as the location to store the matrix.
2865: Logically Collective on TS
2867: Input Parameters:
2868: + ts - The TS context obtained from TSCreate()
2869: - func - The function
2871: Calling sequence of func:
2872: $ func (TS ts,PetscReal t,Vec y,Mat A,void *ctx);
2873: + t - current timestep
2874: . y - input vector (current ODE solution)
2875: . A - output matrix
2876: - ctx - [optional] user-defined function context
2878: Level: intermediate
2880: Notes: Amat has the same number of rows and the same row parallel layout as u, Amat has the same number of columns and parallel layout as p
2882: .keywords: TS, sensitivity
2883: .seealso:
2884: @*/
2885: PetscErrorCode TSAdjointSetRHSJacobian(TS ts,Mat Amat,PetscErrorCode (*func)(TS,PetscReal,Vec,Mat,void*),void *ctx)
2886: {
2893: ts->rhsjacobianp = func;
2894: ts->rhsjacobianpctx = ctx;
2895: if(Amat) {
2896: PetscObjectReference((PetscObject)Amat);
2897: MatDestroy(&ts->Jacp);
2898: ts->Jacp = Amat;
2899: }
2900: return(0);
2901: }
2905: /*@C
2906: TSAdjointComputeRHSJacobian - Runs the user-defined Jacobian function.
2908: Collective on TS
2910: Input Parameters:
2911: . ts - The TS context obtained from TSCreate()
2913: Level: developer
2915: .keywords: TS, sensitivity
2916: .seealso: TSAdjointSetRHSJacobian()
2917: @*/
2918: PetscErrorCode TSAdjointComputeRHSJacobian(TS ts,PetscReal t,Vec X,Mat Amat)
2919: {
2927: PetscStackPush("TS user JacobianP function for sensitivity analysis");
2928: (*ts->rhsjacobianp)(ts,t,X,Amat,ts->rhsjacobianpctx);
2929: PetscStackPop;
2930: return(0);
2931: }
2935: /*@C
2936: TSSetCostIntegrand - Sets the routine for evaluating the integral term in one or more cost functions
2938: Logically Collective on TS
2940: Input Parameters:
2941: + ts - the TS context obtained from TSCreate()
2942: . numcost - number of gradients to be computed, this is the number of cost functions
2943: . rf - routine for evaluating the integrand function
2944: . drdyf - function that computes the gradients of the r's with respect to y,NULL if not a function y
2945: . drdpf - function that computes the gradients of the r's with respect to p, NULL if not a function of p
Binary file (standard input) matches