Actual source code: ex5.c
petsc-3.7.3 2016-08-01
1: static char help[] = "Nonlinear, time-dependent. Developed from radiative_surface_balance.c \n";
2: /*
3: Contributed by Steve Froehlich, Illinois Institute of Technology
5: Usage:
6: mpiexec -n <np> ./ex5 [options]
7: ./ex5 -help [view petsc options]
8: ./ex5 -ts_type sundials -ts_view
9: ./ex5 -da_grid_x 20 -da_grid_y 20 -log_summary
10: ./ex5 -da_grid_x 20 -da_grid_y 20 -ts_type rosw -ts_atol 1.e-6 -ts_rtol 1.e-6
11: ./ex5 -drawcontours -draw_pause 0.1 -draw_fields 0,1,2,3,4
12: */
14: /*
15: -----------------------------------------------------------------------
17: Governing equations:
19: R = s*(Ea*Ta^4 - Es*Ts^4)
20: SH = p*Cp*Ch*wind*(Ta - Ts)
21: LH = p*L*Ch*wind*B(q(Ta) - q(Ts))
22: G = k*(Tgnd - Ts)/dz
24: Fnet = R + SH + LH + G
26: du/dt = -u*(du/dx) - v*(du/dy) - 2*omeg*sin(lat)*v - (1/p)*(dP/dx)
27: dv/dt = -u*(dv/dx) - v*(dv/dy) + 2*omeg*sin(lat)*u - (1/p)*(dP/dy)
28: dTs/dt = Fnet/(Cp*dz) - Div([u*Ts, v*Ts]) + D*Lap(Ts)
29: = Fnet/(Cs*dz) - u*(dTs/dx) - v*(dTs/dy) + D*(Ts_xx + Ts_yy)
30: dp/dt = -Div([u*p,v*p])
31: = - u*dp/dx - v*dp/dy
32: dTa/dt = Fnet/Cp
34: Equation of State:
36: P = p*R*Ts
38: -----------------------------------------------------------------------
40: Program considers the evolution of a two dimensional atmosphere from
41: sunset to sunrise. There are two components:
42: 1. Surface energy balance model to compute diabatic dT (Fnet)
43: 2. Dynamical model using simplified primitive equations
45: Program is to be initiated at sunset and run to sunrise.
47: Inputs are:
48: Surface temperature
49: Dew point temperature
50: Air temperature
51: Temperature at cloud base (if clouds are present)
52: Fraction of sky covered by clouds
53: Wind speed
54: Precipitable water in centimeters
55: Wind direction
57: Inputs are are read in from the text file ex5_control.txt. To change an
58: input value use ex5_control.txt.
60: Solvers:
61: Backward Euler = default solver
62: Sundials = fastest and most accurate, requires Sundials libraries
64: This model is under development and should be used only as an example
65: and not as a predictive weather model.
66: */
68: #include <petscts.h>
69: #include <petscdm.h>
70: #include <petscdmda.h>
72: /* stefan-boltzmann constant */
73: #define SIG 0.000000056703
74: /* absorption-emission constant for surface */
75: #define EMMSFC 1
76: /* amount of time (seconds) that passes before new flux is calculated */
77: #define TIMESTEP 1
79: /* variables of interest to be solved at each grid point */
80: typedef struct {
81: PetscScalar Ts,Ta; /* surface and air temperature */
82: PetscScalar u,v; /* wind speed */
83: PetscScalar p; /* density */
84: } Field;
86: /* User defined variables. Used in solving for variables of interest */
87: typedef struct {
88: DM da; /* grid */
89: PetscScalar csoil; /* heat constant for layer */
90: PetscScalar dzlay; /* thickness of top soil layer */
91: PetscScalar emma; /* emission parameter */
92: PetscScalar wind; /* wind speed */
93: PetscScalar dewtemp; /* dew point temperature (moisture in air) */
94: PetscScalar pressure1; /* sea level pressure */
95: PetscScalar airtemp; /* temperature of air near boundary layer inversion */
96: PetscScalar Ts; /* temperature at the surface */
97: PetscScalar fract; /* fraction of sky covered by clouds */
98: PetscScalar Tc; /* temperature at base of lowest cloud layer */
99: PetscScalar lat; /* Latitude in degrees */
100: PetscScalar init; /* initialization scenario */
101: PetscScalar deep_grnd_temp; /* temperature of ground under top soil surface layer */
102: } AppCtx;
104: /* Struct for visualization */
105: typedef struct {
106: PetscBool drawcontours; /* flag - 1 indicates drawing contours */
107: PetscViewer drawviewer;
108: PetscInt interval;
109: } MonitorCtx;
112: /* Inputs read in from text file */
113: struct in {
114: PetscScalar Ts; /* surface temperature */
115: PetscScalar Td; /* dewpoint temperature */
116: PetscScalar Tc; /* temperature of cloud base */
117: PetscScalar fr; /* fraction of sky covered by clouds */
118: PetscScalar wnd; /* wind speed */
119: PetscScalar Ta; /* air temperature */
120: PetscScalar pwt; /* precipitable water */
121: PetscScalar wndDir; /* wind direction */
122: PetscScalar lat; /* latitude */
123: PetscReal time; /* time in hours */
124: PetscScalar init;
125: };
127: /* functions */
128: extern PetscScalar emission(PetscScalar); /* sets emission/absorption constant depending on water vapor content */
129: extern PetscScalar calc_q(PetscScalar); /* calculates specific humidity */
130: extern PetscScalar mph2mpers(PetscScalar); /* converts miles per hour to meters per second */
131: extern PetscScalar Lconst(PetscScalar); /* calculates latent heat constant taken from Satellite estimates of wind speed and latent heat flux over the global oceans., Bentamy et al. */
132: extern PetscScalar fahr_to_cel(PetscScalar); /* converts Fahrenheit to Celsius */
133: extern PetscScalar cel_to_fahr(PetscScalar); /* converts Celsius to Fahrenheit */
134: extern PetscScalar calcmixingr(PetscScalar, PetscScalar); /* calculates mixing ratio */
135: extern PetscScalar cloud(PetscScalar); /* cloud radiative parameterization */
136: extern PetscErrorCode FormInitialSolution(DM,Vec,void*); /* Specifies initial conditions for the system of equations (PETSc defined function) */
137: extern PetscErrorCode RhsFunc(TS,PetscReal,Vec,Vec,void*); /* Specifies the user defined functions (PETSc defined function) */
138: extern PetscErrorCode Monitor(TS,PetscInt,PetscReal,Vec,void*); /* Specifies output and visualization tools (PETSc defined function) */
139: extern void readinput(struct in *put); /* reads input from text file */
140: extern PetscErrorCode calcfluxs(PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates upward IR from surface */
141: extern PetscErrorCode calcfluxa(PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates downward IR from atmosphere */
142: extern PetscErrorCode sensibleflux(PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates sensible heat flux */
143: extern PetscErrorCode potential_temperature(PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates potential temperature */
144: extern PetscErrorCode latentflux(PetscScalar, PetscScalar, PetscScalar, PetscScalar, PetscScalar*); /* calculates latent heat flux */
145: extern PetscErrorCode calc_gflux(PetscScalar, PetscScalar, PetscScalar*); /* calculates flux between top soil layer and underlying earth */
149: int main(int argc,char **argv)
150: {
152: int time; /* amount of loops */
153: struct in put;
154: PetscScalar rh; /* relative humidity */
155: PetscScalar x; /* memory varialbe for relative humidity calculation */
156: PetscScalar deep_grnd_temp; /* temperature of ground under top soil surface layer */
157: PetscScalar emma; /* absorption-emission constant for air */
158: PetscScalar pressure1 = 101300; /* surface pressure */
159: PetscScalar mixratio; /* mixing ratio */
160: PetscScalar airtemp; /* temperature of air near boundary layer inversion */
161: PetscScalar dewtemp; /* dew point temperature */
162: PetscScalar sfctemp; /* temperature at surface */
163: PetscScalar pwat; /* total column precipitable water */
164: PetscScalar cloudTemp; /* temperature at base of cloud */
165: AppCtx user; /* user-defined work context */
166: MonitorCtx usermonitor; /* user-defined monitor context */
167: PetscMPIInt rank,size;
168: TS ts;
169: SNES snes;
170: DM da;
171: Vec T,rhs; /* solution vector */
172: Mat J; /* Jacobian matrix */
173: PetscReal ftime,dt;
174: PetscInt steps,dof = 5;
175: PetscBool use_coloring = PETSC_TRUE;
176: MatFDColoring matfdcoloring = 0;
177: PetscBool monitor_off = PETSC_FALSE;
179: PetscInitialize(&argc,&argv,(char*)0,help);
180: MPI_Comm_size(PETSC_COMM_WORLD,&size);
181: MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
183: /* Inputs */
184: readinput(&put);
186: sfctemp = put.Ts;
187: dewtemp = put.Td;
188: cloudTemp = put.Tc;
189: airtemp = put.Ta;
190: pwat = put.pwt;
192: if (!rank) PetscPrintf(PETSC_COMM_SELF,"Initial Temperature = %g\n",(double)sfctemp); /* input surface temperature */
194: deep_grnd_temp = sfctemp - 10; /* set underlying ground layer temperature */
195: emma = emission(pwat); /* accounts for radiative effects of water vapor */
197: /* Converts from Fahrenheit to Celsuis */
198: sfctemp = fahr_to_cel(sfctemp);
199: airtemp = fahr_to_cel(airtemp);
200: dewtemp = fahr_to_cel(dewtemp);
201: cloudTemp = fahr_to_cel(cloudTemp);
202: deep_grnd_temp = fahr_to_cel(deep_grnd_temp);
204: /* Converts from Celsius to Kelvin */
205: sfctemp += 273;
206: airtemp += 273;
207: dewtemp += 273;
208: cloudTemp += 273;
209: deep_grnd_temp += 273;
211: /* Calculates initial relative humidity */
212: x = calcmixingr(dewtemp,pressure1);
213: mixratio = calcmixingr(sfctemp,pressure1);
214: rh = (x/mixratio)*100;
216: if (!rank) printf("Initial RH = %.1f percent\n\n",(double)rh); /* prints initial relative humidity */
218: time = 3600*put.time; /* sets amount of timesteps to run model */
220: /* Configure PETSc TS solver */
221: /*------------------------------------------*/
223: /* Create grid */
224: DMDACreate2d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC,DM_BOUNDARY_PERIODIC,DMDA_STENCIL_STAR,-20,-20,
225: PETSC_DECIDE,PETSC_DECIDE,dof,1,NULL,NULL,&da);
226: DMDASetUniformCoordinates(da, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
228: /* Define output window for each variable of interest */
229: DMDASetFieldName(da,0,"Ts");
230: DMDASetFieldName(da,1,"Ta");
231: DMDASetFieldName(da,2,"u");
232: DMDASetFieldName(da,3,"v");
233: DMDASetFieldName(da,4,"p");
235: /* set values for appctx */
236: user.da = da;
237: user.Ts = sfctemp;
238: user.fract = put.fr; /* fraction of sky covered by clouds */
239: user.dewtemp = dewtemp; /* dew point temperature (mositure in air) */
240: user.csoil = 2000000; /* heat constant for layer */
241: user.dzlay = 0.08; /* thickness of top soil layer */
242: user.emma = emma; /* emission parameter */
243: user.wind = put.wnd; /* wind spped */
244: user.pressure1 = pressure1; /* sea level pressure */
245: user.airtemp = airtemp; /* temperature of air near boundar layer inversion */
246: user.Tc = cloudTemp; /* temperature at base of lowest cloud layer */
247: user.init = put.init; /* user chosen initiation scenario */
248: user.lat = 70*0.0174532; /* converts latitude degrees to latitude in radians */
249: user.deep_grnd_temp = deep_grnd_temp; /* temp in lowest ground layer */
251: /* set values for MonitorCtx */
252: usermonitor.drawcontours = PETSC_FALSE;
253: PetscOptionsHasName(NULL,NULL,"-drawcontours",&usermonitor.drawcontours);
254: if (usermonitor.drawcontours) {
255: PetscReal bounds[] = {1000.0,-1000., -1000.,-1000., 1000.,-1000., 1000.,-1000., 1000,-1000, 100700,100800};
256: PetscViewerDrawOpen(PETSC_COMM_WORLD,0,0,0,0,300,300,&usermonitor.drawviewer);
257: PetscViewerDrawSetBounds(usermonitor.drawviewer,dof,bounds);
258: }
259: usermonitor.interval = 1;
260: PetscOptionsGetInt(NULL,NULL,"-monitor_interval",&usermonitor.interval,NULL);
262: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
263: Extract global vectors from DA;
264: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
265: DMCreateGlobalVector(da,&T);
266: VecDuplicate(T,&rhs); /* r: vector to put the computed right hand side */
268: TSCreate(PETSC_COMM_WORLD,&ts);
269: TSSetProblemType(ts,TS_NONLINEAR);
270: TSSetType(ts,TSBEULER);
271: TSSetRHSFunction(ts,rhs,RhsFunc,&user);
273: /* Set Jacobian evaluation routine - use coloring to compute finite difference Jacobian efficiently */
274: DMSetMatType(da,MATAIJ);
275: DMCreateMatrix(da,&J);
276: TSGetSNES(ts,&snes);
277: if (use_coloring) {
278: ISColoring iscoloring;
279: DMCreateColoring(da,IS_COLORING_GLOBAL,&iscoloring);
280: MatFDColoringCreate(J,iscoloring,&matfdcoloring);
281: MatFDColoringSetFromOptions(matfdcoloring);
282: MatFDColoringSetUp(J,iscoloring,matfdcoloring);
283: ISColoringDestroy(&iscoloring);
284: MatFDColoringSetFunction(matfdcoloring,(PetscErrorCode (*)(void))SNESTSFormFunction,ts);
285: SNESSetJacobian(snes,J,J,SNESComputeJacobianDefaultColor,matfdcoloring);
286: } else {
287: SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,NULL);
288: }
290: /* Define what to print for ts_monitor option */
291: PetscOptionsHasName(NULL,NULL,"-monitor_off",&monitor_off);
292: if (!monitor_off) {
293: TSMonitorSet(ts,Monitor,&usermonitor,NULL);
294: }
295: FormInitialSolution(da,T,&user);
296: dt = TIMESTEP; /* initial time step */
297: ftime = TIMESTEP*time;
298: if (!rank) printf("time %d, ftime %g hour, TIMESTEP %g\n",time,(double)(ftime/3600),(double)dt);
300: TSSetInitialTimeStep(ts,0.0,dt);
301: TSSetDuration(ts,time,ftime);
302: TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
303: TSSetSolution(ts,T);
304: TSSetDM(ts,da);
306: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
307: Set runtime options
308: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
309: TSSetFromOptions(ts);
311: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
312: Solve nonlinear system
313: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
314: TSSolve(ts,T);
315: TSGetSolveTime(ts,&ftime);
316: TSGetTimeStepNumber(ts,&steps);
317: if (!rank) PetscPrintf(PETSC_COMM_WORLD,"Solution T after %g hours %d steps\n",(double)(ftime/3600),steps);
320: if (matfdcoloring) {MatFDColoringDestroy(&matfdcoloring);}
321: if (usermonitor.drawcontours) {
322: PetscViewerDestroy(&usermonitor.drawviewer);
323: }
324: MatDestroy(&J);
325: VecDestroy(&T);
326: VecDestroy(&rhs);
327: TSDestroy(&ts);
328: DMDestroy(&da);
330: PetscFinalize();
331: return 0;
332: }
333: /*****************************end main program********************************/
334: /*****************************************************************************/
335: /*****************************************************************************/
336: /*****************************************************************************/
339: PetscErrorCode calcfluxs(PetscScalar sfctemp, PetscScalar airtemp, PetscScalar emma, PetscScalar fract, PetscScalar cloudTemp, PetscScalar *flux)
340: {
342: *flux = SIG*((EMMSFC*emma*PetscPowScalarInt(airtemp,4)) + (EMMSFC*fract*(1 - emma)*PetscPowScalarInt(cloudTemp,4)) - (EMMSFC*PetscPowScalarInt(sfctemp,4))); /* calculates flux using Stefan-Boltzmann relation */
343: return(0);
344: }
348: PetscErrorCode calcfluxa(PetscScalar sfctemp, PetscScalar airtemp, PetscScalar emma, PetscScalar *flux) /* this function is not currently called upon */
349: {
350: PetscScalar emm = 0.001;
353: *flux = SIG*(-emm*(PetscPowScalarInt(airtemp,4))); /* calculates flux usinge Stefan-Boltzmann relation */
354: return(0);
355: }
358: PetscErrorCode sensibleflux(PetscScalar sfctemp, PetscScalar airtemp, PetscScalar wind, PetscScalar *sheat)
359: {
360: PetscScalar density = 1; /* air density */
361: PetscScalar Cp = 1005; /* heat capicity for dry air */
362: PetscScalar wndmix; /* temperature change from wind mixing: wind*Ch */
365: wndmix = 0.0025 + 0.0042*wind; /* regression equation valid for neutral and stable BL */
366: *sheat = density*Cp*wndmix*(airtemp - sfctemp); /* calculates sensible heat flux */
367: return(0);
368: }
372: PetscErrorCode latentflux(PetscScalar sfctemp, PetscScalar dewtemp, PetscScalar wind, PetscScalar pressure1, PetscScalar *latentheat)
373: {
374: PetscScalar density = 1; /* density of dry air */
375: PetscScalar q; /* actual specific humitity */
376: PetscScalar qs; /* saturation specific humidity */
377: PetscScalar wndmix; /* temperature change from wind mixing: wind*Ch */
378: PetscScalar beta = .4; /* moisture availability */
379: PetscScalar mr; /* mixing ratio */
380: PetscScalar lhcnst; /* latent heat of vaporization constant = 2501000 J/kg at 0c */
381: /* latent heat of saturation const = 2834000 J/kg */
382: /* latent heat of fusion const = 333700 J/kg */
385: wind = mph2mpers(wind); /* converts wind from mph to meters per second */
386: wndmix = 0.0025 + 0.0042*wind; /* regression equation valid for neutral BL */
387: lhcnst = Lconst(sfctemp); /* calculates latent heat of evaporation */
388: mr = calcmixingr(sfctemp,pressure1); /* calculates saturation mixing ratio */
389: qs = calc_q(mr); /* calculates saturation specific humidty */
390: mr = calcmixingr(dewtemp,pressure1); /* calculates mixing ratio */
391: q = calc_q(mr); /* calculates specific humidty */
393: *latentheat = density*wndmix*beta*lhcnst*(q - qs); /* calculates latent heat flux */
394: return(0);
395: }
399: PetscErrorCode potential_temperature(PetscScalar temp, PetscScalar pressure1, PetscScalar pressure2, PetscScalar sfctemp, PetscScalar *pottemp)
400: {
401: PetscScalar kdry; /* poisson constant for dry atmosphere */
402: PetscScalar pavg; /* average atmospheric pressure */
403: /* PetscScalar mixratio; mixing ratio */
404: /* PetscScalar kmoist; poisson constant for moist atmosphere */
407: /* mixratio = calcmixingr(sfctemp,pressure1); */
409: /* initialize poisson constant */
410: kdry = 0.2854;
411: /* kmoist = 0.2854*(1 - 0.24*mixratio); */
413: pavg = ((0.7*pressure1)+pressure2)/2; /* calculates simple average press */
414: *pottemp = temp*(PetscPowScalar((pressure1/pavg),kdry)); /* calculates potential temperature */
415: return(0);
416: }
417: extern PetscScalar calcmixingr(PetscScalar dtemp, PetscScalar pressure1)
418: {
419: PetscScalar e; /* vapor pressure */
420: PetscScalar mixratio; /* mixing ratio */
422: dtemp = dtemp - 273; /* converts from Kelvin to Celsuis */
423: e = 6.11*(PetscPowScalar(10,((7.5*dtemp)/(237.7+dtemp)))); /* converts from dew point temp to vapor pressure */
424: e = e*100; /* converts from hPa to Pa */
425: mixratio = (0.622*e)/(pressure1 - e); /* computes mixing ratio */
426: mixratio = mixratio*1; /* convert to g/Kg */
428: return mixratio;
429: }
430: extern PetscScalar calc_q(PetscScalar rv)
431: {
432: PetscScalar specific_humidity; /* define specific humidity variable */
433: specific_humidity = rv/(1 + rv); /* calculates specific humidity */
434: return specific_humidity;
435: }
439: PetscErrorCode calc_gflux(PetscScalar sfctemp, PetscScalar deep_grnd_temp, PetscScalar* Gflux)
440: {
441: PetscScalar k; /* thermal conductivity parameter */
442: PetscScalar n = 0.38; /* value of soil porosity */
443: PetscScalar dz = 1; /* depth of layer between soil surface and deep soil layer */
444: PetscScalar unit_soil_weight = 2700; /* unit soil weight in kg/m^3 */
447: k = ((0.135*(1-n)*unit_soil_weight) + 64.7)/(unit_soil_weight - (0.947*(1-n)*unit_soil_weight)); /* dry soil conductivity */
448: *Gflux = (k*(deep_grnd_temp - sfctemp)/dz); /* calculates flux from deep ground layer */
449: return(0);
450: }
453: extern PetscScalar emission(PetscScalar pwat)
454: {
455: PetscScalar emma;
457: emma = 0.725 + 0.17*log10(pwat);
459: return emma;
460: }
461: extern PetscScalar cloud(PetscScalar fract)
462: {
463: PetscScalar emma = 0;
465: /* modifies radiative balance depending on cloud cover */
466: if (fract >= 0.9) emma = 1;
467: else if (0.9 > fract && fract >= 0.8) emma = 0.9;
468: else if (0.8 > fract && fract >= 0.7) emma = 0.85;
469: else if (0.7 > fract && fract >= 0.6) emma = 0.75;
470: else if (0.6 > fract && fract >= 0.5) emma = 0.65;
471: else if (0.4 > fract && fract >= 0.3) emma = emma*1.086956;
472: return emma;
473: }
474: extern PetscScalar Lconst(PetscScalar sfctemp)
475: {
476: PetscScalar Lheat;
477: sfctemp -=273; /* converts from kelvin to celsius */
478: Lheat = 4186.8*(597.31 - 0.5625*sfctemp); /* calculates latent heat constant */
479: return Lheat;
480: }
481: extern PetscScalar mph2mpers(PetscScalar wind)
482: {
483: wind = ((wind*1.6*1000)/3600); /* converts wind from mph to meters per second */
484: return wind;
485: }
486: extern PetscScalar fahr_to_cel(PetscScalar temp)
487: {
488: temp = (5*(temp-32))/9; /* converts from farhrenheit to celsuis */
489: return temp;
490: }
491: extern PetscScalar cel_to_fahr(PetscScalar temp)
492: {
493: temp = ((temp*9)/5) + 32; /* converts from celsuis to farhrenheit */
494: return temp;
495: }
496: void readinput(struct in *put)
497: {
498: int i;
499: char x;
500: FILE *ifp;
501: double tmp;
503: ifp = fopen("ex5_control.txt", "r");
505: for (i=0; i<110; i++) fscanf(ifp, "%c", &x);
506: fscanf(ifp, "%lf", &tmp);
507: put->Ts = tmp;
509: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
510: fscanf(ifp, "%lf", &tmp);
511: put->Td = tmp;
513: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
514: fscanf(ifp, "%lf", &tmp);
515: put->Ta = tmp;
517: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
518: fscanf(ifp, "%lf", &tmp);
519: put->Tc = tmp;
521: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
522: fscanf(ifp, "%lf", &tmp);
523: put->fr = tmp;
525: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
526: fscanf(ifp, "%lf", &tmp);
527: put->wnd = tmp;
529: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
530: fscanf(ifp, "%lf", &tmp);
531: put->pwt = tmp;
533: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
534: fscanf(ifp, "%lf", &tmp);
535: put->wndDir = tmp;
537: for (i=0; i<43; i++) fscanf(ifp, "%c", &x);
538: fscanf(ifp, "%lf", &tmp);
539: put->time = tmp;
541: for (i=0; i<63; i++) fscanf(ifp, "%c", &x);
542: fscanf(ifp, "%lf", &tmp);
543: put->init = tmp;
545: }
547: /* ------------------------------------------------------------------- */
550: PetscErrorCode FormInitialSolution(DM da,Vec Xglobal,void *ctx)
551: {
553: AppCtx *user = (AppCtx*)ctx; /* user-defined application context */
554: PetscInt i,j,xs,ys,xm,ym,Mx,My;
555: Field **X;
558: DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,
559: PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);
561: /* Get pointers to vector data */
562: DMDAVecGetArray(da,Xglobal,&X);
564: /* Get local grid boundaries */
565: DMDAGetCorners(da,&xs,&ys,NULL,&xm,&ym,NULL);
567: /* Compute function over the locally owned part of the grid */
569: if (user->init == 1) {
570: for (j=ys; j<ys+ym; j++) {
571: for (i=xs; i<xs+xm; i++) {
572: X[j][i].Ts = user->Ts - i*0.0001;
573: X[j][i].Ta = X[j][i].Ts - 5;
574: X[j][i].u = 0;
575: X[j][i].v = 0;
576: X[j][i].p = 1.25;
577: if ((j == 5 || j == 6) && (i == 4 || i == 5)) X[j][i].p += 0.00001;
578: if ((j == 5 || j == 6) && (i == 12 || i == 13)) X[j][i].p += 0.00001;
579: }
580: }
581: } else {
582: for (j=ys; j<ys+ym; j++) {
583: for (i=xs; i<xs+xm; i++) {
584: X[j][i].Ts = user->Ts;
585: X[j][i].Ta = X[j][i].Ts - 5;
586: X[j][i].u = 0;
587: X[j][i].v = 0;
588: X[j][i].p = 1.25;
589: }
590: }
591: }
593: /* Restore vectors */
594: DMDAVecRestoreArray(da,Xglobal,&X);
595: return(0);
596: }
600: /*
601: RhsFunc - Evaluates nonlinear function F(u).
603: Input Parameters:
604: . ts - the TS context
605: . t - current time
606: . Xglobal - input vector
607: . F - output vector
608: . ptr - optional user-defined context, as set by SNESSetFunction()
610: Output Parameter:
611: . F - rhs function vector
612: */
613: PetscErrorCode RhsFunc(TS ts,PetscReal t,Vec Xglobal,Vec F,void *ctx)
614: {
615: AppCtx *user = (AppCtx*)ctx; /* user-defined application context */
616: DM da = user->da;
618: PetscInt i,j,Mx,My,xs,ys,xm,ym;
619: PetscReal dhx,dhy;
620: Vec localT;
621: Field **X,**Frhs; /* structures that contain variables of interest and left hand side of governing equations respectively */
622: PetscScalar csoil = user->csoil; /* heat constant for layer */
623: PetscScalar dzlay = user->dzlay; /* thickness of top soil layer */
624: PetscScalar emma = user->emma; /* emission parameter */
625: PetscScalar wind = user->wind; /* wind speed */
626: PetscScalar dewtemp = user->dewtemp; /* dew point temperature (moisture in air) */
627: PetscScalar pressure1 = user->pressure1; /* sea level pressure */
628: PetscScalar airtemp = user->airtemp; /* temperature of air near boundary layer inversion */
629: PetscScalar fract = user->fract; /* fraction of the sky covered by clouds */
630: PetscScalar Tc = user->Tc; /* temperature at base of lowest cloud layer */
631: PetscScalar lat = user->lat; /* latitude */
632: PetscScalar Cp = 1005.7; /* specific heat of air at constant pressure */
633: PetscScalar Rd = 287.058; /* gas constant for dry air */
634: PetscScalar diffconst = 1000; /* diffusion coefficient */
635: PetscScalar f = 2*0.0000727*PetscSinScalar(lat); /* coriolis force */
636: PetscScalar deep_grnd_temp = user->deep_grnd_temp; /* temp in lowest ground layer */
637: PetscScalar Ts,u,v,p;
638: PetscScalar u_abs,u_plus,u_minus,v_abs,v_plus,v_minus;
640: PetscScalar sfctemp1,fsfc1,Ra;
641: PetscScalar sheat; /* sensible heat flux */
642: PetscScalar latentheat; /* latent heat flux */
643: PetscScalar groundflux; /* flux from conduction of deep ground layer in contact with top soil */
644: PetscInt xend,yend;
647: DMGetLocalVector(da,&localT);
648: DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,
649: PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);
651: dhx = (PetscReal)(Mx-1)/(5000*(Mx-1)); /* dhx = 1/dx; assume 2D space domain: [0.0, 1.e5] x [0.0, 1.e5] */
652: dhy = (PetscReal)(My-1)/(5000*(Mx-1)); /* dhy = 1/dy; */
655: /*
656: Scatter ghost points to local vector,using the 2-step process
657: DAGlobalToLocalBegin(),DAGlobalToLocalEnd().
658: By placing code between these two statements, computations can be
659: done while messages are in transition.
660: */
661: DMGlobalToLocalBegin(da,Xglobal,INSERT_VALUES,localT);
662: DMGlobalToLocalEnd(da,Xglobal,INSERT_VALUES,localT);
664: /* Get pointers to vector data */
665: DMDAVecGetArrayRead(da,localT,&X);
666: DMDAVecGetArray(da,F,&Frhs);
668: /* Get local grid boundaries */
669: DMDAGetCorners(da,&xs,&ys,NULL,&xm,&ym,NULL);
671: /* Compute function over the locally owned part of the grid */
672: /* the interior points */
673: xend=xs+xm; yend=ys+ym;
674: for (j=ys; j<yend; j++) {
675: for (i=xs; i<xend; i++) {
676: Ts = X[j][i].Ts; u = X[j][i].u; v = X[j][i].v; p = X[j][i].p; /*P = X[j][i].P; */
678: sfctemp1 = (double)Ts;
679: sfctemp1 = (double)X[j][i].Ts;
680: calcfluxs(sfctemp1,airtemp,emma,fract,Tc,&fsfc1); /* calculates surface net radiative flux */
681: sensibleflux(sfctemp1,airtemp,wind,&sheat); /* calculate sensible heat flux */
682: latentflux(sfctemp1,dewtemp,wind,pressure1,&latentheat); /* calculates latent heat flux */
683: calc_gflux(sfctemp1,deep_grnd_temp,&groundflux); /* calculates flux from earth below surface soil layer by conduction */
684: calcfluxa(sfctemp1,airtemp,emma,&Ra); /* Calculates the change in downward radiative flux */
685: fsfc1 = fsfc1 + latentheat + sheat + groundflux; /* adds radiative, sensible heat, latent heat, and ground heat flux yielding net flux */
687: /* convective coefficients for upwinding */
688: u_abs = PetscAbsScalar(u);
689: u_plus = .5*(u + u_abs); /* u if u>0; 0 if u<0 */
690: u_minus = .5*(u - u_abs); /* u if u <0; 0 if u>0 */
692: v_abs = PetscAbsScalar(v);
693: v_plus = .5*(v + v_abs); /* v if v>0; 0 if v<0 */
694: v_minus = .5*(v - v_abs); /* v if v <0; 0 if v>0 */
696: /* Solve governing equations */
697: /* P = p*Rd*Ts; */
699: /* du/dt -> time change of east-west component of the wind */
700: Frhs[j][i].u = - u_plus*(u - X[j][i-1].u)*dhx - u_minus*(X[j][i+1].u - u)*dhx /* - u(du/dx) */
701: - v_plus*(u - X[j-1][i].u)*dhy - v_minus*(X[j+1][i].u - u)*dhy /* - v(du/dy) */
702: -(Rd/p)*(Ts*(X[j][i+1].p - X[j][i-1].p)*0.5*dhx + p*0*(X[j][i+1].Ts - X[j][i-1].Ts)*0.5*dhx) /* -(R/p)[Ts(dp/dx)+ p(dTs/dx)] */
703: /* -(1/p)*(X[j][i+1].P - X[j][i-1].P)*dhx */
704: + f*v;
706: /* dv/dt -> time change of north-south component of the wind */
707: Frhs[j][i].v = - u_plus*(v - X[j][i-1].v)*dhx - u_minus*(X[j][i+1].v - v)*dhx /* - u(dv/dx) */
708: - v_plus*(v - X[j-1][i].v)*dhy - v_minus*(X[j+1][i].v - v)*dhy /* - v(dv/dy) */
709: -(Rd/p)*(Ts*(X[j+1][i].p - X[j-1][i].p)*0.5*dhy + p*0*(X[j+1][i].Ts - X[j-1][i].Ts)*0.5*dhy) /* -(R/p)[Ts(dp/dy)+ p(dTs/dy)] */
710: /* -(1/p)*(X[j+1][i].P - X[j-1][i].P)*dhy */
711: -f*u;
713: /* dT/dt -> time change of temperature */
714: Frhs[j][i].Ts = (fsfc1/(csoil*dzlay)) /* Fnet/(Cp*dz) diabatic change in T */
715: -u_plus*(Ts - X[j][i-1].Ts)*dhx - u_minus*(X[j][i+1].Ts - Ts)*dhx /* - u*(dTs/dx) advection x */
716: -v_plus*(Ts - X[j-1][i].Ts)*dhy - v_minus*(X[j+1][i].Ts - Ts)*dhy /* - v*(dTs/dy) advection y */
717: + diffconst*((X[j][i+1].Ts - 2*Ts + X[j][i-1].Ts)*dhx*dhx /* + D(Ts_xx + Ts_yy) diffusion */
718: + (X[j+1][i].Ts - 2*Ts + X[j-1][i].Ts)*dhy*dhy);
720: /* dp/dt -> time change of */
721: Frhs[j][i].p = -u_plus*(p - X[j][i-1].p)*dhx - u_minus*(X[j][i+1].p - p)*dhx /* - u*(dp/dx) */
722: -v_plus*(p - X[j-1][i].p)*dhy - v_minus*(X[j+1][i].p - p)*dhy; /* - v*(dp/dy) */
724: Frhs[j][i].Ta = Ra/Cp; /* dTa/dt time change of air temperature */
725: }
726: }
728: /* Restore vectors */
729: DMDAVecRestoreArrayRead(da,localT,&X);
730: DMDAVecRestoreArray(da,F,&Frhs);
731: DMRestoreLocalVector(da,&localT);
732: return(0);
733: }
737: PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal time,Vec T,void *ctx)
738: {
739: PetscErrorCode ierr;
740: const PetscScalar *array;
741: MonitorCtx *user = (MonitorCtx*)ctx;
742: PetscViewer viewer = user->drawviewer;
743: PetscMPIInt rank;
744: PetscReal norm;
747: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
748: VecNorm(T,NORM_INFINITY,&norm);
750: if (step%user->interval == 0) {
751: VecGetArrayRead(T,&array);
752: if (!rank) printf("step %4d, time %8.1f, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f, %6.4f\n",(int)step,(double)time,(double)(((array[0]-273)*9)/5 + 32),(double)(((array[1]-273)*9)/5 + 32),(double)array[2],(double)array[3],(double)array[4],(double)array[5]);
753: VecRestoreArrayRead(T,&array);
754: }
756: if (user->drawcontours) {
757: VecView(T,viewer);
758: }
759: return(0);
760: }