Actual source code: owarmijo.c

petsc-3.7.3 2016-08-01
Report Typos and Errors
  2: #include <petsc/private/taolinesearchimpl.h>
  3: #include <../src/tao/linesearch/impls/owarmijo/owarmijo.h>

  5: #define REPLACE_FIFO 1
  6: #define REPLACE_MRU  2

  8: #define REFERENCE_MAX  1
  9: #define REFERENCE_AVE  2
 10: #define REFERENCE_MEAN 3

 12: static PetscErrorCode ProjWork_OWLQN(Vec w,Vec x,Vec gv,PetscReal *gdx)
 13: {
 14:   const PetscReal *xptr,*gptr;
 15:   PetscReal       *wptr;
 16:   PetscErrorCode  ierr;
 17:   PetscInt        low,high,low1,high1,low2,high2,i;

 20:   ierr=VecGetOwnershipRange(w,&low,&high);
 21:   ierr=VecGetOwnershipRange(x,&low1,&high1);
 22:   ierr=VecGetOwnershipRange(gv,&low2,&high2);

 24:   *gdx=0.0;
 25:   VecGetArray(w,&wptr);
 26:   VecGetArrayRead(x,&xptr);
 27:   VecGetArrayRead(gv,&gptr);

 29:   for (i=0;i<high-low;i++) {
 30:     if (xptr[i]*wptr[i]<0.0) wptr[i]=0.0;
 31:     *gdx = *gdx + gptr[i]*(wptr[i]-xptr[i]);
 32:   }
 33:   VecRestoreArray(w,&wptr);
 34:   VecRestoreArrayRead(x,&xptr);
 35:   VecRestoreArrayRead(gv,&gptr);
 36:   return(0);
 37: }

 41: static PetscErrorCode TaoLineSearchDestroy_OWArmijo(TaoLineSearch ls)
 42: {
 43:   TaoLineSearch_OWARMIJO *armP = (TaoLineSearch_OWARMIJO *)ls->data;
 44:   PetscErrorCode         ierr;

 47:   PetscFree(armP->memory);
 48:   if (armP->x) {
 49:     PetscObjectDereference((PetscObject)armP->x);
 50:   }
 51:   VecDestroy(&armP->work);
 52:   PetscFree(ls->data);
 53:   return(0);
 54: }

 58: static PetscErrorCode TaoLineSearchSetFromOptions_OWArmijo(PetscOptionItems *PetscOptionsObject,TaoLineSearch ls)
 59: {
 60:   TaoLineSearch_OWARMIJO *armP = (TaoLineSearch_OWARMIJO *)ls->data;
 61:   PetscErrorCode         ierr;

 64:   PetscOptionsHead(PetscOptionsObject,"OWArmijo linesearch options");
 65:   PetscOptionsReal("-tao_ls_OWArmijo_alpha", "initial reference constant", "", armP->alpha, &armP->alpha,NULL);
 66:   PetscOptionsReal("-tao_ls_OWArmijo_beta_inf", "decrease constant one", "", armP->beta_inf, &armP->beta_inf,NULL);
 67:   PetscOptionsReal("-tao_ls_OWArmijo_beta", "decrease constant", "", armP->beta, &armP->beta,NULL);
 68:   PetscOptionsReal("-tao_ls_OWArmijo_sigma", "acceptance constant", "", armP->sigma, &armP->sigma,NULL);
 69:   PetscOptionsInt("-tao_ls_OWArmijo_memory_size", "number of historical elements", "", armP->memorySize, &armP->memorySize,NULL);
 70:   PetscOptionsInt("-tao_ls_OWArmijo_reference_policy", "policy for updating reference value", "", armP->referencePolicy, &armP->referencePolicy,NULL);
 71:   PetscOptionsInt("-tao_ls_OWArmijo_replacement_policy", "policy for updating memory", "", armP->replacementPolicy, &armP->replacementPolicy,NULL);
 72:   PetscOptionsBool("-tao_ls_OWArmijo_nondescending","Use nondescending OWArmijo algorithm","",armP->nondescending,&armP->nondescending,NULL);
 73:   PetscOptionsTail();
 74:   return(0);
 75: }

 79: static PetscErrorCode TaoLineSearchView_OWArmijo(TaoLineSearch ls, PetscViewer pv)
 80: {
 81:   TaoLineSearch_OWARMIJO *armP = (TaoLineSearch_OWARMIJO *)ls->data;
 82:   PetscBool              isascii;
 83:   PetscErrorCode         ierr;

 86:   PetscObjectTypeCompare((PetscObject)pv, PETSCVIEWERASCII, &isascii);
 87:   if (isascii) {
 88:     ierr=PetscViewerASCIIPrintf(pv,"  OWArmijo linesearch",armP->alpha);
 89:     if (armP->nondescending) {
 90:       PetscViewerASCIIPrintf(pv, " (nondescending)");
 91:     }
 92:     ierr=PetscViewerASCIIPrintf(pv,": alpha=%g beta=%g ",(double)armP->alpha,(double)armP->beta);
 93:     ierr=PetscViewerASCIIPrintf(pv,"sigma=%g ",(double)armP->sigma);
 94:     ierr=PetscViewerASCIIPrintf(pv,"memsize=%D\n",armP->memorySize);
 95:   }
 96:   return(0);
 97: }

101: /* @ TaoApply_OWArmijo - This routine performs a linesearch. It
102:    backtracks until the (nonmonotone) OWArmijo conditions are satisfied.

104:    Input Parameters:
105: +  tao - TAO_SOLVER context
106: .  X - current iterate (on output X contains new iterate, X + step*S)
107: .  S - search direction
108: .  f - merit function evaluated at X
109: .  G - gradient of merit function evaluated at X
110: .  W - work vector
111: -  step - initial estimate of step length

113:    Output parameters:
114: +  f - merit function evaluated at new iterate, X + step*S
115: .  G - gradient of merit function evaluated at new iterate, X + step*S
116: .  X - new iterate
117: -  step - final step length

119:    Info is set to one of:
120: .   0 - the line search succeeds; the sufficient decrease
121:    condition and the directional derivative condition hold

123:    negative number if an input parameter is invalid
124: -   -1 -  step < 0

126:    positive number > 1 if the line search otherwise terminates
127: +    1 -  Step is at the lower bound, stepmin.
128: @ */
129: static PetscErrorCode TaoLineSearchApply_OWArmijo(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s)
130: {
131:   TaoLineSearch_OWARMIJO *armP = (TaoLineSearch_OWARMIJO *)ls->data;
132:   PetscErrorCode         ierr;
133:   PetscInt               i;
134:   PetscReal              fact, ref, gdx;
135:   PetscInt               idx;
136:   PetscBool              g_computed=PETSC_FALSE; /* to prevent extra gradient computation */
137:   Vec                    g_old;
138:   PetscReal              owlqn_minstep=0.005;
139:   PetscReal              partgdx;
140:   MPI_Comm               comm;

143:   PetscObjectGetComm((PetscObject)ls,&comm);
144:   fact = 0.0;
145:   ls->nfeval=0;
146:   ls->reason = TAOLINESEARCH_CONTINUE_ITERATING;
147:   if (!armP->work) {
148:     VecDuplicate(x,&armP->work);
149:     armP->x = x;
150:     PetscObjectReference((PetscObject)armP->x);
151:   } else if (x != armP->x) {
152:     VecDestroy(&armP->work);
153:     VecDuplicate(x,&armP->work);
154:     PetscObjectDereference((PetscObject)armP->x);
155:     armP->x = x;
156:     PetscObjectReference((PetscObject)armP->x);
157:   }

159:   /* Check linesearch parameters */
160:   if (armP->alpha < 1) {
161:     PetscInfo1(ls,"OWArmijo line search error: alpha (%g) < 1\n", (double)armP->alpha);
162:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
163:   } else if ((armP->beta <= 0) || (armP->beta >= 1)) {
164:     PetscInfo1(ls,"OWArmijo line search error: beta (%g) invalid\n", (double)armP->beta);
165:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
166:   } else if ((armP->beta_inf <= 0) || (armP->beta_inf >= 1)) {
167:     PetscInfo1(ls,"OWArmijo line search error: beta_inf (%g) invalid\n", (double)armP->beta_inf);
168:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
169:   } else if ((armP->sigma <= 0) || (armP->sigma >= 0.5)) {
170:     PetscInfo1(ls,"OWArmijo line search error: sigma (%g) invalid\n", (double)armP->sigma);
171:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
172:   } else if (armP->memorySize < 1) {
173:     PetscInfo1(ls,"OWArmijo line search error: memory_size (%D) < 1\n", armP->memorySize);
174:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
175:   }  else if ((armP->referencePolicy != REFERENCE_MAX) && (armP->referencePolicy != REFERENCE_AVE) && (armP->referencePolicy != REFERENCE_MEAN)) {
176:     PetscInfo(ls,"OWArmijo line search error: reference_policy invalid\n");
177:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
178:   } else if ((armP->replacementPolicy != REPLACE_FIFO) && (armP->replacementPolicy != REPLACE_MRU)) {
179:     PetscInfo(ls,"OWArmijo line search error: replacement_policy invalid\n");
180:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
181:   } else if (PetscIsInfOrNanReal(*f)) {
182:     PetscInfo(ls,"OWArmijo line search error: initial function inf or nan\n");
183:     ls->reason=TAOLINESEARCH_FAILED_BADPARAMETER;
184:   }

186:   if (ls->reason != TAOLINESEARCH_CONTINUE_ITERATING) return(0);

188:   /* Check to see of the memory has been allocated.  If not, allocate
189:      the historical array and populate it with the initial function
190:      values. */
191:   if (!armP->memory) {
192:     PetscMalloc1(armP->memorySize, &armP->memory );
193:   }

195:   if (!armP->memorySetup) {
196:     for (i = 0; i < armP->memorySize; i++) {
197:       armP->memory[i] = armP->alpha*(*f);
198:     }
199:     armP->current = 0;
200:     armP->lastReference = armP->memory[0];
201:     armP->memorySetup=PETSC_TRUE;
202:   }

204:   /* Calculate reference value (MAX) */
205:   ref = armP->memory[0];
206:   idx = 0;

208:   for (i = 1; i < armP->memorySize; i++) {
209:     if (armP->memory[i] > ref) {
210:       ref = armP->memory[i];
211:       idx = i;
212:     }
213:   }

215:   if (armP->referencePolicy == REFERENCE_AVE) {
216:     ref = 0;
217:     for (i = 0; i < armP->memorySize; i++) {
218:       ref += armP->memory[i];
219:     }
220:     ref = ref / armP->memorySize;
221:     ref = PetscMax(ref, armP->memory[armP->current]);
222:   } else if (armP->referencePolicy == REFERENCE_MEAN) {
223:     ref = PetscMin(ref, 0.5*(armP->lastReference + armP->memory[armP->current]));
224:   }

226:   if (armP->nondescending) {
227:     fact = armP->sigma;
228:   }

230:   VecDuplicate(g,&g_old);
231:   VecCopy(g,g_old);

233:   ls->step = ls->initstep;
234:   while (ls->step >= owlqn_minstep && ls->nfeval < ls->max_funcs) {
235:     /* Calculate iterate */
236:     VecCopy(x,armP->work);
237:     VecAXPY(armP->work,ls->step,s);

239:     partgdx=0.0;
240:     ProjWork_OWLQN(armP->work,x,g_old,&partgdx);
241:     MPIU_Allreduce(&partgdx,&gdx,1,MPIU_REAL,MPIU_SUM,comm);

243:     /* Check the condition of gdx */
244:     if (PetscIsInfOrNanReal(gdx)) {
245:       PetscInfo1(ls,"Initial Line Search step * g is Inf or Nan (%g)\n",(double)gdx);
246:       ls->reason=TAOLINESEARCH_FAILED_INFORNAN;
247:       return(0);
248:     }
249:     if (gdx >= 0.0) {
250:       PetscInfo1(ls,"Initial Line Search step is not descent direction (g's=%g)\n",(double)gdx);
251:       ls->reason = TAOLINESEARCH_FAILED_ASCENT;
252:       return(0);
253:     }

255:     /* Calculate function at new iterate */
256:     TaoLineSearchComputeObjectiveAndGradient(ls,armP->work,f,g);
257:     g_computed=PETSC_TRUE;

259:     if (ls->step == ls->initstep) {
260:       ls->f_fullstep = *f;
261:     }

263:     if (PetscIsInfOrNanReal(*f)) {
264:       ls->step *= armP->beta_inf;
265:     } else {
266:       /* Check descent condition */
267:       if (armP->nondescending && *f <= ref - ls->step*fact*ref) break;
268:       if (!armP->nondescending && *f <= ref + armP->sigma * gdx) break;
269:       ls->step *= armP->beta;
270:     }
271:   }
272:   VecDestroy(&g_old);

274:   /* Check termination */
275:   if (PetscIsInfOrNanReal(*f)) {
276:     PetscInfo(ls, "Function is inf or nan.\n");
277:     ls->reason = TAOLINESEARCH_FAILED_BADPARAMETER;
278:   } else if (ls->step < owlqn_minstep) {
279:     PetscInfo(ls, "Step length is below tolerance.\n");
280:     ls->reason = TAOLINESEARCH_HALTED_RTOL;
281:   } else if (ls->nfeval >= ls->max_funcs) {
282:     PetscInfo2(ls, "Number of line search function evals (%D) > maximum allowed (%D)\n",ls->nfeval, ls->max_funcs);
283:     ls->reason = TAOLINESEARCH_HALTED_MAXFCN;
284:   }
285:   if (ls->reason) return(0);

287:   /* Successful termination, update memory */
288:   ls->reason = TAOLINESEARCH_SUCCESS;
289:   armP->lastReference = ref;
290:   if (armP->replacementPolicy == REPLACE_FIFO) {
291:     armP->memory[armP->current++] = *f;
292:     if (armP->current >= armP->memorySize) {
293:       armP->current = 0;
294:     }
295:   } else {
296:     armP->current = idx;
297:     armP->memory[idx] = *f;
298:   }

300:   /* Update iterate and compute gradient */
301:   VecCopy(armP->work,x);
302:   if (!g_computed) {
303:     TaoLineSearchComputeGradient(ls, x, g);
304:   }
305:   PetscInfo2(ls, "%D function evals in line search, step = %10.4f\n",ls->nfeval, (double)ls->step);
306:   return(0);
307: }

311: PETSC_EXTERN PetscErrorCode TaoLineSearchCreate_OWArmijo(TaoLineSearch ls)
312: {
313:   TaoLineSearch_OWARMIJO *armP;
314:   PetscErrorCode         ierr;

318:   PetscNewLog(ls,&armP);

320:   armP->memory = NULL;
321:   armP->alpha = 1.0;
322:   armP->beta = 0.25;
323:   armP->beta_inf = 0.25;
324:   armP->sigma = 1e-4;
325:   armP->memorySize = 1;
326:   armP->referencePolicy = REFERENCE_MAX;
327:   armP->replacementPolicy = REPLACE_MRU;
328:   armP->nondescending=PETSC_FALSE;
329:   ls->data = (void*)armP;
330:   ls->initstep=0.1;
331:   ls->ops->setup=0;
332:   ls->ops->reset=0;
333:   ls->ops->apply=TaoLineSearchApply_OWArmijo;
334:   ls->ops->view = TaoLineSearchView_OWArmijo;
335:   ls->ops->destroy = TaoLineSearchDestroy_OWArmijo;
336:   ls->ops->setfromoptions = TaoLineSearchSetFromOptions_OWArmijo;
337:   return(0);
338: }