Actual source code: morethuente.c

petsc-3.7.3 2016-08-01
Report Typos and Errors
  1: #include <petsc/private/taolinesearchimpl.h>
  2: #include <../src/tao/linesearch/impls/morethuente/morethuente.h>

  4: /*
  5:    This algorithm is taken from More' and Thuente, "Line search algorithms
  6:    with guaranteed sufficient decrease", Argonne National Laboratory,
  7:    Technical Report MCS-P330-1092.
  8: */

 10: static PetscErrorCode Tao_mcstep(TaoLineSearch ls,PetscReal *stx,PetscReal *fx,PetscReal *dx,PetscReal *sty,PetscReal *fy,PetscReal *dy,PetscReal *stp,PetscReal *fp,PetscReal *dp);

 14: static PetscErrorCode TaoLineSearchDestroy_MT(TaoLineSearch ls)
 15: {
 16:   PetscErrorCode   ierr;
 17:   TaoLineSearch_MT *mt;

 21:   mt = (TaoLineSearch_MT*)(ls->data);
 22:   if (mt->x) {
 23:     PetscObjectDereference((PetscObject)mt->x);
 24:   }
 25:   VecDestroy(&mt->work);
 26:   PetscFree(ls->data);
 27:   return(0);
 28: }

 32: static PetscErrorCode TaoLineSearchSetFromOptions_MT(PetscOptionItems *PetscOptionsObject,TaoLineSearch ls)
 33: {
 36:   return(0);
 37: }


 42: /* @ TaoApply_LineSearch - This routine takes step length of 1.0.

 44:    Input Parameters:
 45: +  tao - Tao context
 46: .  X - current iterate (on output X contains new iterate, X + step*S)
 47: .  f - objective function evaluated at X
 48: .  G - gradient evaluated at X
 49: -  D - search direction


 52:    Info is set to 0.

 54: @ */

 56: static PetscErrorCode TaoLineSearchApply_MT(TaoLineSearch ls, Vec x, PetscReal *f, Vec g, Vec s)
 57: {
 58:   PetscErrorCode   ierr;
 59:   TaoLineSearch_MT *mt;

 61:   PetscReal        xtrapf = 4.0;
 62:   PetscReal        finit, width, width1, dginit, fm, fxm, fym, dgm, dgxm, dgym;
 63:   PetscReal        dgx, dgy, dg, dg2, fx, fy, stx, sty, dgtest;
 64:   PetscReal        ftest1=0.0, ftest2=0.0;
 65:   PetscInt         i, stage1,n1,n2,nn1,nn2;
 66:   PetscReal        bstepmin1, bstepmin2, bstepmax;
 67:   PetscBool        g_computed=PETSC_FALSE; /* to prevent extra gradient computation */


 76:   /* comm,type,size checks are done in interface TaoLineSearchApply */
 77:   mt = (TaoLineSearch_MT*)(ls->data);
 78:   ls->reason = TAOLINESEARCH_CONTINUE_ITERATING;

 80:   /* Check work vector */
 81:   if (!mt->work) {
 82:     VecDuplicate(x,&mt->work);
 83:     mt->x = x;
 84:     PetscObjectReference((PetscObject)mt->x);
 85:   } else if (x != mt->x) {
 86:     VecDestroy(&mt->work);
 87:     VecDuplicate(x,&mt->work);
 88:     PetscObjectDereference((PetscObject)mt->x);
 89:     mt->x = x;
 90:     PetscObjectReference((PetscObject)mt->x);
 91:   }

 93:   if (ls->bounded) {
 94:     /* Compute step length needed to make all variables equal a bound */
 95:     /* Compute the smallest steplength that will make one nonbinding variable
 96:      equal the bound */
 97:     VecGetLocalSize(ls->upper,&n1);
 98:     VecGetLocalSize(mt->x, &n2);
 99:     VecGetSize(ls->upper,&nn1);
100:     VecGetSize(mt->x,&nn2);
101:     if (n1 != n2 || nn1 != nn2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Variable vector not compatible with bounds vector");
102:     VecScale(s,-1.0);
103:     VecBoundGradientProjection(s,x,ls->lower,ls->upper,s);
104:     VecScale(s,-1.0);
105:     VecStepBoundInfo(x,s,ls->lower,ls->upper,&bstepmin1,&bstepmin2,&bstepmax);
106:     ls->stepmax = PetscMin(bstepmax,1.0e15);
107:   }

109:   VecDot(g,s,&dginit);
110:   if (PetscIsInfOrNanReal(dginit)) {
111:     PetscInfo1(ls,"Initial Line Search step * g is Inf or Nan (%g)\n",(double)dginit);
112:     ls->reason=TAOLINESEARCH_FAILED_INFORNAN;
113:     return(0);
114:   }
115:   if (dginit >= 0.0) {
116:     PetscInfo1(ls,"Initial Line Search step * g is not descent direction (%g)\n",(double)dginit);
117:     ls->reason = TAOLINESEARCH_FAILED_ASCENT;
118:     return(0);
119:   }


122:   /* Initialization */
123:   mt->bracket = 0;
124:   stage1 = 1;
125:   finit = *f;
126:   dgtest = ls->ftol * dginit;
127:   width = ls->stepmax - ls->stepmin;
128:   width1 = width * 2.0;
129:   VecCopy(x,mt->work);
130:   /* Variable dictionary:
131:    stx, fx, dgx - the step, function, and derivative at the best step
132:    sty, fy, dgy - the step, function, and derivative at the other endpoint
133:    of the interval of uncertainty
134:    step, f, dg - the step, function, and derivative at the current step */

136:   stx = 0.0;
137:   fx  = finit;
138:   dgx = dginit;
139:   sty = 0.0;
140:   fy  = finit;
141:   dgy = dginit;

143:   ls->step=ls->initstep;
144:   for (i=0; i< ls->max_funcs; i++) {
145:     /* Set min and max steps to correspond to the interval of uncertainty */
146:     if (mt->bracket) {
147:       ls->stepmin = PetscMin(stx,sty);
148:       ls->stepmax = PetscMax(stx,sty);
149:     } else {
150:       ls->stepmin = stx;
151:       ls->stepmax = ls->step + xtrapf * (ls->step - stx);
152:     }

154:     /* Force the step to be within the bounds */
155:     ls->step = PetscMax(ls->step,ls->stepmin);
156:     ls->step = PetscMin(ls->step,ls->stepmax);

158:     /* If an unusual termination is to occur, then let step be the lowest
159:      point obtained thus far */
160:     if ((stx!=0) && (((mt->bracket) && (ls->step <= ls->stepmin || ls->step >= ls->stepmax)) || ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol * ls->stepmax)) ||
161:                      ((ls->nfeval+ls->nfgeval) >= ls->max_funcs - 1) || (mt->infoc == 0))) {
162:       ls->step = stx;
163:     }

165:     VecCopy(x,mt->work);
166:     VecAXPY(mt->work,ls->step,s);   /* W = X + step*S */

168:     if (ls->bounded) {
169:       VecMedian(ls->lower, mt->work, ls->upper, mt->work);
170:     }
171:     if (ls->usegts) {
172:       TaoLineSearchComputeObjectiveAndGTS(ls,mt->work,f,&dg);
173:       g_computed=PETSC_FALSE;
174:     } else {
175:       TaoLineSearchComputeObjectiveAndGradient(ls,mt->work,f,g);
176:       g_computed=PETSC_TRUE;
177:       if (ls->bounded) {
178:         VecDot(g,x,&dg);
179:         VecDot(g,mt->work,&dg2);
180:         dg = (dg2 - dg)/ls->step;
181:       } else {
182:         VecDot(g,s,&dg);
183:       }
184:     }

186:     if (0 == i) {
187:       ls->f_fullstep=*f;
188:     }

190:     if (PetscIsInfOrNanReal(*f) || PetscIsInfOrNanReal(dg)) {
191:       /* User provided compute function generated Not-a-Number, assume
192:        domain violation and set function value and directional
193:        derivative to infinity. */
194:       *f = PETSC_INFINITY;
195:       dg = PETSC_INFINITY;
196:     }

198:     ftest1 = finit + ls->step * dgtest;
199:     if (ls->bounded) {
200:       ftest2 = finit + ls->step * dgtest * ls->ftol;
201:     }
202:     /* Convergence testing */
203:     if (((*f - ftest1 <= 1.0e-10 * PetscAbsReal(finit)) &&  (PetscAbsReal(dg) + ls->gtol*dginit <= 0.0))) {
204:       PetscInfo(ls, "Line search success: Sufficient decrease and directional deriv conditions hold\n");
205:       ls->reason = TAOLINESEARCH_SUCCESS;
206:       break;
207:     }

209:     /* Check Armijo if beyond the first breakpoint */
210:     if (ls->bounded && (*f <= ftest2) && (ls->step >= bstepmin2)) {
211:       PetscInfo(ls,"Line search success: Sufficient decrease.\n");
212:       ls->reason = TAOLINESEARCH_SUCCESS;
213:       break;
214:     }

216:     /* Checks for bad cases */
217:     if (((mt->bracket) && (ls->step <= ls->stepmin||ls->step >= ls->stepmax)) || (!mt->infoc)) {
218:       PetscInfo(ls,"Rounding errors may prevent further progress.  May not be a step satisfying\n");
219:       PetscInfo(ls,"sufficient decrease and curvature conditions. Tolerances may be too small.\n");
220:       ls->reason = TAOLINESEARCH_HALTED_OTHER;
221:       break;
222:     }
223:     if ((ls->step == ls->stepmax) && (*f <= ftest1) && (dg <= dgtest)) {
224:       PetscInfo1(ls,"Step is at the upper bound, stepmax (%g)\n",(double)ls->stepmax);
225:       ls->reason = TAOLINESEARCH_HALTED_UPPERBOUND;
226:       break;
227:     }
228:     if ((ls->step == ls->stepmin) && (*f >= ftest1) && (dg >= dgtest)) {
229:       PetscInfo1(ls,"Step is at the lower bound, stepmin (%g)\n",(double)ls->stepmin);
230:       ls->reason = TAOLINESEARCH_HALTED_LOWERBOUND;
231:       break;
232:     }
233:     if ((mt->bracket) && (ls->stepmax - ls->stepmin <= ls->rtol*ls->stepmax)){
234:       PetscInfo1(ls,"Relative width of interval of uncertainty is at most rtol (%g)\n",(double)ls->rtol);
235:       ls->reason = TAOLINESEARCH_HALTED_RTOL;
236:       break;
237:     }

239:     /* In the first stage, we seek a step for which the modified function
240:      has a nonpositive value and nonnegative derivative */
241:     if ((stage1) && (*f <= ftest1) && (dg >= dginit * PetscMin(ls->ftol, ls->gtol))) {
242:       stage1 = 0;
243:     }

245:     /* A modified function is used to predict the step only if we
246:      have not obtained a step for which the modified function has a
247:      nonpositive function value and nonnegative derivative, and if a
248:      lower function value has been obtained but the decrease is not
249:      sufficient */

251:     if ((stage1) && (*f <= fx) && (*f > ftest1)) {
252:       fm   = *f - ls->step * dgtest;    /* Define modified function */
253:       fxm  = fx - stx * dgtest;         /* and derivatives */
254:       fym  = fy - sty * dgtest;
255:       dgm  = dg - dgtest;
256:       dgxm = dgx - dgtest;
257:       dgym = dgy - dgtest;

259:       /* if (dgxm * (ls->step - stx) >= 0.0) */
260:       /* Update the interval of uncertainty and compute the new step */
261:       Tao_mcstep(ls,&stx,&fxm,&dgxm,&sty,&fym,&dgym,&ls->step,&fm,&dgm);

263:       fx  = fxm + stx * dgtest; /* Reset the function and */
264:       fy  = fym + sty * dgtest; /* gradient values */
265:       dgx = dgxm + dgtest;
266:       dgy = dgym + dgtest;
267:     } else {
268:       /* Update the interval of uncertainty and compute the new step */
269:       Tao_mcstep(ls,&stx,&fx,&dgx,&sty,&fy,&dgy,&ls->step,f,&dg);
270:     }

272:     /* Force a sufficient decrease in the interval of uncertainty */
273:     if (mt->bracket) {
274:       if (PetscAbsReal(sty - stx) >= 0.66 * width1) ls->step = stx + 0.5*(sty - stx);
275:       width1 = width;
276:       width = PetscAbsReal(sty - stx);
277:     }
278:   }
279:   if ((ls->nfeval+ls->nfgeval) > ls->max_funcs) {
280:     PetscInfo2(ls,"Number of line search function evals (%D) > maximum (%D)\n",(ls->nfeval+ls->nfgeval),ls->max_funcs);
281:     ls->reason = TAOLINESEARCH_HALTED_MAXFCN;
282:   }

284:   /* Finish computations */
285:   PetscInfo2(ls,"%D function evals in line search, step = %g\n",(ls->nfeval+ls->nfgeval),(double)ls->step);

287:   /* Set new solution vector and compute gradient if needed */
288:   VecCopy(mt->work,x);
289:   if (!g_computed) {
290:     TaoLineSearchComputeGradient(ls,mt->work,g);
291:   }
292:   return(0);
293: }

297: PETSC_EXTERN PetscErrorCode TaoLineSearchCreate_MT(TaoLineSearch ls)
298: {
299:   PetscErrorCode   ierr;
300:   TaoLineSearch_MT *ctx;

304:   PetscNewLog(ls,&ctx);
305:   ctx->bracket=0;
306:   ctx->infoc=1;
307:   ls->data = (void*)ctx;
308:   ls->initstep = 1.0;
309:   ls->ops->setup=0;
310:   ls->ops->reset=0;
311:   ls->ops->apply=TaoLineSearchApply_MT;
312:   ls->ops->destroy=TaoLineSearchDestroy_MT;
313:   ls->ops->setfromoptions=TaoLineSearchSetFromOptions_MT;
314:   return(0);
315: }

317: /*
318:      The subroutine mcstep is taken from the work of Jorge Nocedal.
319:      this is a variant of More' and Thuente's routine.

321:      subroutine mcstep

323:      the purpose of mcstep is to compute a safeguarded step for
324:      a linesearch and to update an interval of uncertainty for
325:      a minimizer of the function.

327:      the parameter stx contains the step with the least function
328:      value. the parameter stp contains the current step. it is
329:      assumed that the derivative at stx is negative in the
330:      direction of the step. if bracket is set true then a
331:      minimizer has been bracketed in an interval of uncertainty
332:      with endpoints stx and sty.

334:      the subroutine statement is

336:      subroutine mcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,bracket,
337:                        stpmin,stpmax,info)

339:      where

341:        stx, fx, and dx are variables which specify the step,
342:          the function, and the derivative at the best step obtained
343:          so far. The derivative must be negative in the direction
344:          of the step, that is, dx and stp-stx must have opposite
345:          signs. On output these parameters are updated appropriately.

347:        sty, fy, and dy are variables which specify the step,
348:          the function, and the derivative at the other endpoint of
349:          the interval of uncertainty. On output these parameters are
350:          updated appropriately.

352:        stp, fp, and dp are variables which specify the step,
353:          the function, and the derivative at the current step.
354:          If bracket is set true then on input stp must be
355:          between stx and sty. On output stp is set to the new step.

357:        bracket is a logical variable which specifies if a minimizer
358:          has been bracketed.  If the minimizer has not been bracketed
359:          then on input bracket must be set false.  If the minimizer
360:          is bracketed then on output bracket is set true.

362:        stpmin and stpmax are input variables which specify lower
363:          and upper bounds for the step.

365:        info is an integer output variable set as follows:
366:          if info = 1,2,3,4,5, then the step has been computed
367:          according to one of the five cases below. otherwise
368:          info = 0, and this indicates improper input parameters.

370:      subprograms called

372:        fortran-supplied ... abs,max,min,sqrt

374:      argonne national laboratory. minpack project. june 1983
375:      jorge j. more', david j. thuente

377: */

381: static PetscErrorCode Tao_mcstep(TaoLineSearch ls,PetscReal *stx,PetscReal *fx,PetscReal *dx,PetscReal *sty,PetscReal *fy,PetscReal *dy,PetscReal *stp,PetscReal *fp,PetscReal *dp)
382: {
383:   TaoLineSearch_MT *mtP = (TaoLineSearch_MT *) ls->data;
384:   PetscReal        gamma1, p, q, r, s, sgnd, stpc, stpf, stpq, theta;
385:   PetscInt         bound;

388:   /* Check the input parameters for errors */
389:   mtP->infoc = 0;
390:   if (mtP->bracket && (*stp <= PetscMin(*stx,*sty) || (*stp >= PetscMax(*stx,*sty)))) SETERRQ(PETSC_COMM_SELF,1,"bad stp in bracket");
391:   if (*dx * (*stp-*stx) >= 0.0) SETERRQ(PETSC_COMM_SELF,1,"dx * (stp-stx) >= 0.0");
392:   if (ls->stepmax < ls->stepmin) SETERRQ(PETSC_COMM_SELF,1,"stepmax > stepmin");

394:   /* Determine if the derivatives have opposite sign */
395:   sgnd = *dp * (*dx / PetscAbsReal(*dx));

397:   if (*fp > *fx) {
398:     /* Case 1: a higher function value.
399:      The minimum is bracketed. If the cubic step is closer
400:      to stx than the quadratic step, the cubic step is taken,
401:      else the average of the cubic and quadratic steps is taken. */

403:     mtP->infoc = 1;
404:     bound = 1;
405:     theta = 3 * (*fx - *fp) / (*stp - *stx) + *dx + *dp;
406:     s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dx));
407:     s = PetscMax(s,PetscAbsReal(*dp));
408:     gamma1 = s*PetscSqrtScalar(PetscPowScalar(theta/s,2.0) - (*dx/s)*(*dp/s));
409:     if (*stp < *stx) gamma1 = -gamma1;
410:     /* Can p be 0?  Check */
411:     p = (gamma1 - *dx) + theta;
412:     q = ((gamma1 - *dx) + gamma1) + *dp;
413:     r = p/q;
414:     stpc = *stx + r*(*stp - *stx);
415:     stpq = *stx + ((*dx/((*fx-*fp)/(*stp-*stx)+*dx))*0.5) * (*stp - *stx);

417:     if (PetscAbsReal(stpc-*stx) < PetscAbsReal(stpq-*stx)) {
418:       stpf = stpc;
419:     } else {
420:       stpf = stpc + 0.5*(stpq - stpc);
421:     }
422:     mtP->bracket = 1;
423:   } else if (sgnd < 0.0) {
424:     /* Case 2: A lower function value and derivatives of
425:      opposite sign. The minimum is bracketed. If the cubic
426:      step is closer to stx than the quadratic (secant) step,
427:      the cubic step is taken, else the quadratic step is taken. */

429:     mtP->infoc = 2;
430:     bound = 0;
431:     theta = 3*(*fx - *fp)/(*stp - *stx) + *dx + *dp;
432:     s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dx));
433:     s = PetscMax(s,PetscAbsReal(*dp));
434:     gamma1 = s*PetscSqrtScalar(PetscPowScalar(theta/s,2.0) - (*dx/s)*(*dp/s));
435:     if (*stp > *stx) gamma1 = -gamma1;
436:     p = (gamma1 - *dp) + theta;
437:     q = ((gamma1 - *dp) + gamma1) + *dx;
438:     r = p/q;
439:     stpc = *stp + r*(*stx - *stp);
440:     stpq = *stp + (*dp/(*dp-*dx))*(*stx - *stp);

442:     if (PetscAbsReal(stpc-*stp) > PetscAbsReal(stpq-*stp)) {
443:       stpf = stpc;
444:     } else {
445:       stpf = stpq;
446:     }
447:     mtP->bracket = 1;
448:   } else if (PetscAbsReal(*dp) < PetscAbsReal(*dx)) {
449:     /* Case 3: A lower function value, derivatives of the
450:      same sign, and the magnitude of the derivative decreases.
451:      The cubic step is only used if the cubic tends to infinity
452:      in the direction of the step or if the minimum of the cubic
453:      is beyond stp. Otherwise the cubic step is defined to be
454:      either stepmin or stepmax. The quadratic (secant) step is also
455:      computed and if the minimum is bracketed then the step
456:      closest to stx is taken, else the step farthest away is taken. */

458:     mtP->infoc = 3;
459:     bound = 1;
460:     theta = 3*(*fx - *fp)/(*stp - *stx) + *dx + *dp;
461:     s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dx));
462:     s = PetscMax(s,PetscAbsReal(*dp));

464:     /* The case gamma1 = 0 only arises if the cubic does not tend
465:        to infinity in the direction of the step. */
466:     gamma1 = s*PetscSqrtScalar(PetscMax(0.0,PetscPowScalar(theta/s,2.0) - (*dx/s)*(*dp/s)));
467:     if (*stp > *stx) gamma1 = -gamma1;
468:     p = (gamma1 - *dp) + theta;
469:     q = (gamma1 + (*dx - *dp)) + gamma1;
470:     r = p/q;
471:     if (r < 0.0 && gamma1 != 0.0) stpc = *stp + r*(*stx - *stp);
472:     else if (*stp > *stx)        stpc = ls->stepmax;
473:     else                         stpc = ls->stepmin;
474:     stpq = *stp + (*dp/(*dp-*dx)) * (*stx - *stp);

476:     if (mtP->bracket) {
477:       if (PetscAbsReal(*stp-stpc) < PetscAbsReal(*stp-stpq)) {
478:         stpf = stpc;
479:       } else {
480:         stpf = stpq;
481:       }
482:     } else {
483:       if (PetscAbsReal(*stp-stpc) > PetscAbsReal(*stp-stpq)) {
484:         stpf = stpc;
485:       } else {
486:         stpf = stpq;
487:       }
488:     }
489:   } else {
490:     /* Case 4: A lower function value, derivatives of the
491:        same sign, and the magnitude of the derivative does
492:        not decrease. If the minimum is not bracketed, the step
493:        is either stpmin or stpmax, else the cubic step is taken. */

495:     mtP->infoc = 4;
496:     bound = 0;
497:     if (mtP->bracket) {
498:       theta = 3*(*fp - *fy)/(*sty - *stp) + *dy + *dp;
499:       s = PetscMax(PetscAbsReal(theta),PetscAbsReal(*dy));
500:       s = PetscMax(s,PetscAbsReal(*dp));
501:       gamma1 = s*PetscSqrtScalar(PetscPowScalar(theta/s,2.0) - (*dy/s)*(*dp/s));
502:       if (*stp > *sty) gamma1 = -gamma1;
503:       p = (gamma1 - *dp) + theta;
504:       q = ((gamma1 - *dp) + gamma1) + *dy;
505:       r = p/q;
506:       stpc = *stp + r*(*sty - *stp);
507:       stpf = stpc;
508:     } else if (*stp > *stx) {
509:       stpf = ls->stepmax;
510:     } else {
511:       stpf = ls->stepmin;
512:     }
513:   }

515:   /* Update the interval of uncertainty.  This update does not
516:      depend on the new step or the case analysis above. */

518:   if (*fp > *fx) {
519:     *sty = *stp;
520:     *fy = *fp;
521:     *dy = *dp;
522:   } else {
523:     if (sgnd < 0.0) {
524:       *sty = *stx;
525:       *fy = *fx;
526:       *dy = *dx;
527:     }
528:     *stx = *stp;
529:     *fx = *fp;
530:     *dx = *dp;
531:   }

533:   /* Compute the new step and safeguard it. */
534:   stpf = PetscMin(ls->stepmax,stpf);
535:   stpf = PetscMax(ls->stepmin,stpf);
536:   *stp = stpf;
537:   if (mtP->bracket && bound) {
538:     if (*sty > *stx) {
539:       *stp = PetscMin(*stx+0.66*(*sty-*stx),*stp);
540:     } else {
541:       *stp = PetscMax(*stx+0.66*(*sty-*stx),*stp);
542:     }
543:   }
544:   return(0);
545: }