Actual source code: dgefa6.c
petsc-3.7.3 2016-08-01
2: /*
3: Inverts 6 by 6 matrix using gaussian elimination with partial pivoting.
5: Used by the sparse factorization routines in
6: src/mat/impls/baij/seq
8: This is a combination of the Linpack routines
9: dgefa() and dgedi() specialized for a size of 6.
11: */
12: #include <petscsys.h>
16: PETSC_EXTERN PetscErrorCode PetscKernel_A_gets_inverse_A_6(MatScalar *a,PetscReal shift,PetscBool allowzeropivot,PetscBool *zeropivotdetected)
17: {
18: PetscInt i__2,i__3,kp1,j,k,l,ll,i,ipvt[6],kb,k3;
19: PetscInt k4,j3;
20: MatScalar *aa,*ax,*ay,work[36],stmp;
21: MatReal tmp,max;
24: if (zeropivotdetected) *zeropivotdetected = PETSC_FALSE;
25: shift = .25*shift*(1.e-12 + PetscAbsScalar(a[0]) + PetscAbsScalar(a[7]) + PetscAbsScalar(a[14]) + PetscAbsScalar(a[21]) + PetscAbsScalar(a[28]) + PetscAbsScalar(a[35]));
27: /* Parameter adjustments */
28: a -= 7;
30: for (k = 1; k <= 5; ++k) {
31: kp1 = k + 1;
32: k3 = 6*k;
33: k4 = k3 + k;
35: /* find l = pivot index */
36: i__2 = 7 - k;
37: aa = &a[k4];
38: max = PetscAbsScalar(aa[0]);
39: l = 1;
40: for (ll=1; ll<i__2; ll++) {
41: tmp = PetscAbsScalar(aa[ll]);
42: if (tmp > max) { max = tmp; l = ll+1;}
43: }
44: l += k - 1;
45: ipvt[k-1] = l;
47: if (a[l + k3] == 0.0) {
48: if (shift == 0.0) {
49: if (allowzeropivot) {
51: PetscInfo1(NULL,"Zero pivot, row %D\n",k-1);
52: if (zeropivotdetected) *zeropivotdetected = PETSC_TRUE;
53: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot, row %D",k-1);
54: } else {
55: /* SHIFT is applied to SINGLE diagonal entry; does this make any sense? */
56: a[l + k3] = shift;
57: }
58: }
60: /* interchange if necessary */
61: if (l != k) {
62: stmp = a[l + k3];
63: a[l + k3] = a[k4];
64: a[k4] = stmp;
65: }
67: /* compute multipliers */
68: stmp = -1. / a[k4];
69: i__2 = 6 - k;
70: aa = &a[1 + k4];
71: for (ll=0; ll<i__2; ll++) aa[ll] *= stmp;
73: /* row elimination with column indexing */
74: ax = &a[k4+1];
75: for (j = kp1; j <= 6; ++j) {
76: j3 = 6*j;
77: stmp = a[l + j3];
78: if (l != k) {
79: a[l + j3] = a[k + j3];
80: a[k + j3] = stmp;
81: }
83: i__3 = 6 - k;
84: ay = &a[1+k+j3];
85: for (ll=0; ll<i__3; ll++) ay[ll] += stmp*ax[ll];
86: }
87: }
88: ipvt[5] = 6;
89: if (a[42] == 0.0) {
90: if (allowzeropivot) {
92: PetscInfo1(NULL,"Zero pivot, row %D\n",5);
93: if (zeropivotdetected) *zeropivotdetected = PETSC_TRUE;
94: } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot, row %D",5);
95: }
97: /* Now form the inverse */
98: /* compute inverse(u) */
99: for (k = 1; k <= 6; ++k) {
100: k3 = 6*k;
101: k4 = k3 + k;
102: a[k4] = 1.0 / a[k4];
103: stmp = -a[k4];
104: i__2 = k - 1;
105: aa = &a[k3 + 1];
106: for (ll=0; ll<i__2; ll++) aa[ll] *= stmp;
107: kp1 = k + 1;
108: if (6 < kp1) continue;
109: ax = aa;
110: for (j = kp1; j <= 6; ++j) {
111: j3 = 6*j;
112: stmp = a[k + j3];
113: a[k + j3] = 0.0;
114: ay = &a[j3 + 1];
115: for (ll=0; ll<k; ll++) ay[ll] += stmp*ax[ll];
116: }
117: }
119: /* form inverse(u)*inverse(l) */
120: for (kb = 1; kb <= 5; ++kb) {
121: k = 6 - kb;
122: k3 = 6*k;
123: kp1 = k + 1;
124: aa = a + k3;
125: for (i = kp1; i <= 6; ++i) {
126: work[i-1] = aa[i];
127: aa[i] = 0.0;
128: }
129: for (j = kp1; j <= 6; ++j) {
130: stmp = work[j-1];
131: ax = &a[6*j + 1];
132: ay = &a[k3 + 1];
133: ay[0] += stmp*ax[0];
134: ay[1] += stmp*ax[1];
135: ay[2] += stmp*ax[2];
136: ay[3] += stmp*ax[3];
137: ay[4] += stmp*ax[4];
138: ay[5] += stmp*ax[5];
139: }
140: l = ipvt[k-1];
141: if (l != k) {
142: ax = &a[k3 + 1];
143: ay = &a[6*l + 1];
144: stmp = ax[0]; ax[0] = ay[0]; ay[0] = stmp;
145: stmp = ax[1]; ax[1] = ay[1]; ay[1] = stmp;
146: stmp = ax[2]; ax[2] = ay[2]; ay[2] = stmp;
147: stmp = ax[3]; ax[3] = ay[3]; ay[3] = stmp;
148: stmp = ax[4]; ax[4] = ay[4]; ay[4] = stmp;
149: stmp = ax[5]; ax[5] = ay[5]; ay[5] = stmp;
150: }
151: }
152: return(0);
153: }