Actual source code: baij2.c

petsc-3.7.3 2016-08-01
Report Typos and Errors
  2: #include <../src/mat/impls/baij/seq/baij.h>
  3: #include <petsc/private/kernels/blockinvert.h>
  4: #include <petscbt.h>
  5: #include <petscblaslapack.h>

  9: PetscErrorCode MatIncreaseOverlap_SeqBAIJ(Mat A,PetscInt is_max,IS is[],PetscInt ov)
 10: {
 11:   Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)A->data;
 13:   PetscInt       row,i,j,k,l,m,n,*nidx,isz,val,ival;
 14:   const PetscInt *idx;
 15:   PetscInt       start,end,*ai,*aj,bs,*nidx2;
 16:   PetscBT        table;

 19:   m  = a->mbs;
 20:   ai = a->i;
 21:   aj = a->j;
 22:   bs = A->rmap->bs;

 24:   if (ov < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Negative overlap specified");

 26:   PetscBTCreate(m,&table);
 27:   PetscMalloc1(m+1,&nidx);
 28:   PetscMalloc1(A->rmap->N+1,&nidx2);

 30:   for (i=0; i<is_max; i++) {
 31:     /* Initialise the two local arrays */
 32:     isz  = 0;
 33:     PetscBTMemzero(m,table);

 35:     /* Extract the indices, assume there can be duplicate entries */
 36:     ISGetIndices(is[i],&idx);
 37:     ISGetLocalSize(is[i],&n);

 39:     /* Enter these into the temp arrays i.e mark table[row], enter row into new index */
 40:     for (j=0; j<n; ++j) {
 41:       ival = idx[j]/bs; /* convert the indices into block indices */
 42:       if (ival>=m) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"index greater than mat-dim");
 43:       if (!PetscBTLookupSet(table,ival)) nidx[isz++] = ival;
 44:     }
 45:     ISRestoreIndices(is[i],&idx);
 46:     ISDestroy(&is[i]);

 48:     k = 0;
 49:     for (j=0; j<ov; j++) { /* for each overlap*/
 50:       n = isz;
 51:       for (; k<n; k++) {  /* do only those rows in nidx[k], which are not done yet */
 52:         row   = nidx[k];
 53:         start = ai[row];
 54:         end   = ai[row+1];
 55:         for (l = start; l<end; l++) {
 56:           val = aj[l];
 57:           if (!PetscBTLookupSet(table,val)) nidx[isz++] = val;
 58:         }
 59:       }
 60:     }
 61:     /* expand the Index Set */
 62:     for (j=0; j<isz; j++) {
 63:       for (k=0; k<bs; k++) nidx2[j*bs+k] = nidx[j]*bs+k;
 64:     }
 65:     ISCreateGeneral(PETSC_COMM_SELF,isz*bs,nidx2,PETSC_COPY_VALUES,is+i);
 66:   }
 67:   PetscBTDestroy(&table);
 68:   PetscFree(nidx);
 69:   PetscFree(nidx2);
 70:   return(0);
 71: }

 75: PetscErrorCode MatGetSubMatrix_SeqBAIJ_Private(Mat A,IS isrow,IS iscol,MatReuse scall,Mat *B)
 76: {
 77:   Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)A->data,*c;
 79:   PetscInt       *smap,i,k,kstart,kend,oldcols = a->nbs,*lens;
 80:   PetscInt       row,mat_i,*mat_j,tcol,*mat_ilen;
 81:   const PetscInt *irow,*icol;
 82:   PetscInt       nrows,ncols,*ssmap,bs=A->rmap->bs,bs2=a->bs2;
 83:   PetscInt       *aj = a->j,*ai = a->i;
 84:   MatScalar      *mat_a;
 85:   Mat            C;
 86:   PetscBool      flag;

 89:   ISGetIndices(isrow,&irow);
 90:   ISGetIndices(iscol,&icol);
 91:   ISGetLocalSize(isrow,&nrows);
 92:   ISGetLocalSize(iscol,&ncols);

 94:   PetscCalloc1(1+oldcols,&smap);
 95:   ssmap = smap;
 96:   PetscMalloc1(1+nrows,&lens);
 97:   for (i=0; i<ncols; i++) smap[icol[i]] = i+1;
 98:   /* determine lens of each row */
 99:   for (i=0; i<nrows; i++) {
100:     kstart  = ai[irow[i]];
101:     kend    = kstart + a->ilen[irow[i]];
102:     lens[i] = 0;
103:     for (k=kstart; k<kend; k++) {
104:       if (ssmap[aj[k]]) lens[i]++;
105:     }
106:   }
107:   /* Create and fill new matrix */
108:   if (scall == MAT_REUSE_MATRIX) {
109:     c = (Mat_SeqBAIJ*)((*B)->data);

111:     if (c->mbs!=nrows || c->nbs!=ncols || (*B)->rmap->bs!=bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Submatrix wrong size");
112:     PetscMemcmp(c->ilen,lens,c->mbs *sizeof(PetscInt),&flag);
113:     if (!flag) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Cannot reuse matrix. wrong no of nonzeros");
114:     PetscMemzero(c->ilen,c->mbs*sizeof(PetscInt));
115:     C    = *B;
116:   } else {
117:     MatCreate(PetscObjectComm((PetscObject)A),&C);
118:     MatSetSizes(C,nrows*bs,ncols*bs,PETSC_DETERMINE,PETSC_DETERMINE);
119:     MatSetType(C,((PetscObject)A)->type_name);
120:     MatSeqBAIJSetPreallocation_SeqBAIJ(C,bs,0,lens);
121:   }
122:   c = (Mat_SeqBAIJ*)(C->data);
123:   for (i=0; i<nrows; i++) {
124:     row      = irow[i];
125:     kstart   = ai[row];
126:     kend     = kstart + a->ilen[row];
127:     mat_i    = c->i[i];
128:     mat_j    = c->j + mat_i;
129:     mat_a    = c->a + mat_i*bs2;
130:     mat_ilen = c->ilen + i;
131:     for (k=kstart; k<kend; k++) {
132:       if ((tcol=ssmap[a->j[k]])) {
133:         *mat_j++ = tcol - 1;
134:         PetscMemcpy(mat_a,a->a+k*bs2,bs2*sizeof(MatScalar));
135:         mat_a   += bs2;
136:         (*mat_ilen)++;
137:       }
138:     }
139:   }
140:   /* sort */
141:   {
142:     MatScalar *work;
143:     PetscMalloc1(bs2,&work);
144:     for (i=0; i<nrows; i++) {
145:       PetscInt ilen;
146:       mat_i = c->i[i];
147:       mat_j = c->j + mat_i;
148:       mat_a = c->a + mat_i*bs2;
149:       ilen  = c->ilen[i];
150:       PetscSortIntWithDataArray(ilen,mat_j,mat_a,bs2*sizeof(MatScalar),work);
151:     }
152:     PetscFree(work);
153:   }

155:   /* Free work space */
156:   ISRestoreIndices(iscol,&icol);
157:   PetscFree(smap);
158:   PetscFree(lens);
159:   MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
160:   MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);

162:   ISRestoreIndices(isrow,&irow);
163:   *B   = C;
164:   return(0);
165: }

169: PetscErrorCode MatGetSubMatrix_SeqBAIJ(Mat A,IS isrow,IS iscol,MatReuse scall,Mat *B)
170: {
171:   Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)A->data;
172:   IS             is1,is2;
174:   PetscInt       *vary,*iary,nrows,ncols,i,bs=A->rmap->bs,count,maxmnbs,j;
175:   const PetscInt *irow,*icol;

178:   ISGetIndices(isrow,&irow);
179:   ISGetIndices(iscol,&icol);
180:   ISGetLocalSize(isrow,&nrows);
181:   ISGetLocalSize(iscol,&ncols);

183:   /* Verify if the indices corespond to each element in a block
184:    and form the IS with compressed IS */
185:   maxmnbs = PetscMax(a->mbs,a->nbs);
186:   PetscMalloc2(maxmnbs,&vary,maxmnbs,&iary);
187:   PetscMemzero(vary,a->mbs*sizeof(PetscInt));
188:   for (i=0; i<nrows; i++) vary[irow[i]/bs]++;
189:   for (i=0; i<a->mbs; i++) {
190:     if (vary[i]!=0 && vary[i]!=bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Index set does not match blocks");
191:   }
192:   count = 0;
193:   for (i=0; i<nrows; i++) {
194:     j = irow[i] / bs;
195:     if ((vary[j]--)==bs) iary[count++] = j;
196:   }
197:   ISCreateGeneral(PETSC_COMM_SELF,count,iary,PETSC_COPY_VALUES,&is1);

199:   PetscMemzero(vary,(a->nbs)*sizeof(PetscInt));
200:   for (i=0; i<ncols; i++) vary[icol[i]/bs]++;
201:   for (i=0; i<a->nbs; i++) {
202:     if (vary[i]!=0 && vary[i]!=bs) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"Internal error in PETSc");
203:   }
204:   count = 0;
205:   for (i=0; i<ncols; i++) {
206:     j = icol[i] / bs;
207:     if ((vary[j]--)==bs) iary[count++] = j;
208:   }
209:   ISCreateGeneral(PETSC_COMM_SELF,count,iary,PETSC_COPY_VALUES,&is2);
210:   ISRestoreIndices(isrow,&irow);
211:   ISRestoreIndices(iscol,&icol);
212:   PetscFree2(vary,iary);

214:   MatGetSubMatrix_SeqBAIJ_Private(A,is1,is2,scall,B);
215:   ISDestroy(&is1);
216:   ISDestroy(&is2);
217:   return(0);
218: }

222: PetscErrorCode MatGetSubMatrices_SeqBAIJ(Mat A,PetscInt n,const IS irow[],const IS icol[],MatReuse scall,Mat *B[])
223: {
225:   PetscInt       i;

228:   if (scall == MAT_INITIAL_MATRIX) {
229:     PetscMalloc1(n+1,B);
230:   }

232:   for (i=0; i<n; i++) {
233:     MatGetSubMatrix_SeqBAIJ(A,irow[i],icol[i],scall,&(*B)[i]);
234:   }
235:   return(0);
236: }


239: /* -------------------------------------------------------*/
240: /* Should check that shapes of vectors and matrices match */
241: /* -------------------------------------------------------*/

245: PetscErrorCode MatMult_SeqBAIJ_1(Mat A,Vec xx,Vec zz)
246: {
247:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
248:   PetscScalar       *z,sum;
249:   const PetscScalar *x;
250:   const MatScalar   *v;
251:   PetscErrorCode    ierr;
252:   PetscInt          mbs,i,n;
253:   const PetscInt    *idx,*ii,*ridx=NULL;
254:   PetscBool         usecprow=a->compressedrow.use;

257:   VecGetArrayRead(xx,&x);
258:   VecGetArray(zz,&z);

260:   if (usecprow) {
261:     mbs  = a->compressedrow.nrows;
262:     ii   = a->compressedrow.i;
263:     ridx = a->compressedrow.rindex;
264:     PetscMemzero(z,mbs*sizeof(PetscScalar));
265:   } else {
266:     mbs = a->mbs;
267:     ii  = a->i;
268:   }

270:   for (i=0; i<mbs; i++) {
271:     n   = ii[1] - ii[0];
272:     v   = a->a + ii[0];
273:     idx = a->j + ii[0];
274:     ii++;
275:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);   /* Indices for the next row (assumes same size as this one) */
276:     PetscPrefetchBlock(v+1*n,1*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
277:     sum = 0.0;
278:     PetscSparseDensePlusDot(sum,x,v,idx,n);
279:     if (usecprow) {
280:       z[ridx[i]] = sum;
281:     } else {
282:       z[i]        = sum;
283:     }
284:   }
285:   VecRestoreArrayRead(xx,&x);
286:   VecRestoreArray(zz,&z);
287:   PetscLogFlops(2.0*a->nz - a->nonzerorowcnt);
288:   return(0);
289: }

293: PetscErrorCode MatMult_SeqBAIJ_2(Mat A,Vec xx,Vec zz)
294: {
295:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
296:   PetscScalar       *z = 0,sum1,sum2,*zarray;
297:   const PetscScalar *x,*xb;
298:   PetscScalar       x1,x2;
299:   const MatScalar   *v;
300:   PetscErrorCode    ierr;
301:   PetscInt          mbs,i,*idx,*ii,j,n,*ridx=NULL;
302:   PetscBool         usecprow=a->compressedrow.use;

305:   VecGetArrayRead(xx,&x);
306:   VecGetArray(zz,&zarray);

308:   idx = a->j;
309:   v   = a->a;
310:   if (usecprow) {
311:     mbs  = a->compressedrow.nrows;
312:     ii   = a->compressedrow.i;
313:     ridx = a->compressedrow.rindex;
314:   } else {
315:     mbs = a->mbs;
316:     ii  = a->i;
317:     z   = zarray;
318:   }

320:   for (i=0; i<mbs; i++) {
321:     n           = ii[1] - ii[0]; ii++;
322:     sum1        = 0.0; sum2 = 0.0;
323:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);   /* Indices for the next row (assumes same size as this one) */
324:     PetscPrefetchBlock(v+4*n,4*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
325:     for (j=0; j<n; j++) {
326:       xb    = x + 2*(*idx++); x1 = xb[0]; x2 = xb[1];
327:       sum1 += v[0]*x1 + v[2]*x2;
328:       sum2 += v[1]*x1 + v[3]*x2;
329:       v    += 4;
330:     }
331:     if (usecprow) z = zarray + 2*ridx[i];
332:     z[0] = sum1; z[1] = sum2;
333:     if (!usecprow) z += 2;
334:   }
335:   VecRestoreArrayRead(xx,&x);
336:   VecRestoreArray(zz,&zarray);
337:   PetscLogFlops(8.0*a->nz - 2.0*a->nonzerorowcnt);
338:   return(0);
339: }

343: PetscErrorCode MatMult_SeqBAIJ_3(Mat A,Vec xx,Vec zz)
344: {
345:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
346:   PetscScalar       *z = 0,sum1,sum2,sum3,x1,x2,x3,*zarray;
347:   const PetscScalar *x,*xb;
348:   const MatScalar   *v;
349:   PetscErrorCode    ierr;
350:   PetscInt          mbs,i,*idx,*ii,j,n,*ridx=NULL;
351:   PetscBool         usecprow=a->compressedrow.use;

353: #if defined(PETSC_HAVE_PRAGMA_DISJOINT)
354: #pragma disjoint(*v,*z,*xb)
355: #endif

358:   VecGetArrayRead(xx,&x);
359:   VecGetArray(zz,&zarray);

361:   idx = a->j;
362:   v   = a->a;
363:   if (usecprow) {
364:     mbs  = a->compressedrow.nrows;
365:     ii   = a->compressedrow.i;
366:     ridx = a->compressedrow.rindex;
367:   } else {
368:     mbs = a->mbs;
369:     ii  = a->i;
370:     z   = zarray;
371:   }

373:   for (i=0; i<mbs; i++) {
374:     n           = ii[1] - ii[0]; ii++;
375:     sum1        = 0.0; sum2 = 0.0; sum3 = 0.0;
376:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);   /* Indices for the next row (assumes same size as this one) */
377:     PetscPrefetchBlock(v+9*n,9*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
378:     for (j=0; j<n; j++) {
379:       xb = x + 3*(*idx++);
380:       x1 = xb[0];
381:       x2 = xb[1];
382:       x3 = xb[2];

384:       sum1 += v[0]*x1 + v[3]*x2 + v[6]*x3;
385:       sum2 += v[1]*x1 + v[4]*x2 + v[7]*x3;
386:       sum3 += v[2]*x1 + v[5]*x2 + v[8]*x3;
387:       v    += 9;
388:     }
389:     if (usecprow) z = zarray + 3*ridx[i];
390:     z[0] = sum1; z[1] = sum2; z[2] = sum3;
391:     if (!usecprow) z += 3;
392:   }
393:   VecRestoreArrayRead(xx,&x);
394:   VecRestoreArray(zz,&zarray);
395:   PetscLogFlops(18.0*a->nz - 3.0*a->nonzerorowcnt);
396:   return(0);
397: }

401: PetscErrorCode MatMult_SeqBAIJ_4(Mat A,Vec xx,Vec zz)
402: {
403:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
404:   PetscScalar       *z = 0,sum1,sum2,sum3,sum4,x1,x2,x3,x4,*zarray;
405:   const PetscScalar *x,*xb;
406:   const MatScalar   *v;
407:   PetscErrorCode    ierr;
408:   PetscInt          mbs,i,*idx,*ii,j,n,*ridx=NULL;
409:   PetscBool         usecprow=a->compressedrow.use;

412:   VecGetArrayRead(xx,&x);
413:   VecGetArray(zz,&zarray);

415:   idx = a->j;
416:   v   = a->a;
417:   if (usecprow) {
418:     mbs  = a->compressedrow.nrows;
419:     ii   = a->compressedrow.i;
420:     ridx = a->compressedrow.rindex;
421:   } else {
422:     mbs = a->mbs;
423:     ii  = a->i;
424:     z   = zarray;
425:   }

427:   for (i=0; i<mbs; i++) {
428:     n = ii[1] - ii[0];
429:     ii++;
430:     sum1 = 0.0;
431:     sum2 = 0.0;
432:     sum3 = 0.0;
433:     sum4 = 0.0;

435:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
436:     PetscPrefetchBlock(v+16*n,16*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
437:     for (j=0; j<n; j++) {
438:       xb    = x + 4*(*idx++);
439:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];
440:       sum1 += v[0]*x1 + v[4]*x2 + v[8]*x3   + v[12]*x4;
441:       sum2 += v[1]*x1 + v[5]*x2 + v[9]*x3   + v[13]*x4;
442:       sum3 += v[2]*x1 + v[6]*x2 + v[10]*x3  + v[14]*x4;
443:       sum4 += v[3]*x1 + v[7]*x2 + v[11]*x3  + v[15]*x4;
444:       v    += 16;
445:     }
446:     if (usecprow) z = zarray + 4*ridx[i];
447:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4;
448:     if (!usecprow) z += 4;
449:   }
450:   VecRestoreArrayRead(xx,&x);
451:   VecRestoreArray(zz,&zarray);
452:   PetscLogFlops(32.0*a->nz - 4.0*a->nonzerorowcnt);
453:   return(0);
454: }

458: PetscErrorCode MatMult_SeqBAIJ_5(Mat A,Vec xx,Vec zz)
459: {
460:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
461:   PetscScalar       sum1,sum2,sum3,sum4,sum5,x1,x2,x3,x4,x5,*z = 0,*zarray;
462:   const PetscScalar *xb,*x;
463:   const MatScalar   *v;
464:   PetscErrorCode    ierr;
465:   const PetscInt    *idx,*ii,*ridx=NULL;
466:   PetscInt          mbs,i,j,n;
467:   PetscBool         usecprow=a->compressedrow.use;

470:   VecGetArrayRead(xx,&x);
471:   VecGetArray(zz,&zarray);

473:   idx = a->j;
474:   v   = a->a;
475:   if (usecprow) {
476:     mbs  = a->compressedrow.nrows;
477:     ii   = a->compressedrow.i;
478:     ridx = a->compressedrow.rindex;
479:   } else {
480:     mbs = a->mbs;
481:     ii  = a->i;
482:     z   = zarray;
483:   }

485:   for (i=0; i<mbs; i++) {
486:     n           = ii[1] - ii[0]; ii++;
487:     sum1        = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0;
488:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
489:     PetscPrefetchBlock(v+25*n,25*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
490:     for (j=0; j<n; j++) {
491:       xb    = x + 5*(*idx++);
492:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4];
493:       sum1 += v[0]*x1 + v[5]*x2 + v[10]*x3  + v[15]*x4 + v[20]*x5;
494:       sum2 += v[1]*x1 + v[6]*x2 + v[11]*x3  + v[16]*x4 + v[21]*x5;
495:       sum3 += v[2]*x1 + v[7]*x2 + v[12]*x3  + v[17]*x4 + v[22]*x5;
496:       sum4 += v[3]*x1 + v[8]*x2 + v[13]*x3  + v[18]*x4 + v[23]*x5;
497:       sum5 += v[4]*x1 + v[9]*x2 + v[14]*x3  + v[19]*x4 + v[24]*x5;
498:       v    += 25;
499:     }
500:     if (usecprow) z = zarray + 5*ridx[i];
501:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5;
502:     if (!usecprow) z += 5;
503:   }
504:   VecRestoreArrayRead(xx,&x);
505:   VecRestoreArray(zz,&zarray);
506:   PetscLogFlops(50.0*a->nz - 5.0*a->nonzerorowcnt);
507:   return(0);
508: }



514: PetscErrorCode MatMult_SeqBAIJ_6(Mat A,Vec xx,Vec zz)
515: {
516:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
517:   PetscScalar       *z = 0,sum1,sum2,sum3,sum4,sum5,sum6;
518:   const PetscScalar *x,*xb;
519:   PetscScalar       x1,x2,x3,x4,x5,x6,*zarray;
520:   const MatScalar   *v;
521:   PetscErrorCode    ierr;
522:   PetscInt          mbs,i,*idx,*ii,j,n,*ridx=NULL;
523:   PetscBool         usecprow=a->compressedrow.use;

526:   VecGetArrayRead(xx,&x);
527:   VecGetArray(zz,&zarray);

529:   idx = a->j;
530:   v   = a->a;
531:   if (usecprow) {
532:     mbs  = a->compressedrow.nrows;
533:     ii   = a->compressedrow.i;
534:     ridx = a->compressedrow.rindex;
535:   } else {
536:     mbs = a->mbs;
537:     ii  = a->i;
538:     z   = zarray;
539:   }

541:   for (i=0; i<mbs; i++) {
542:     n  = ii[1] - ii[0];
543:     ii++;
544:     sum1 = 0.0;
545:     sum2 = 0.0;
546:     sum3 = 0.0;
547:     sum4 = 0.0;
548:     sum5 = 0.0;
549:     sum6 = 0.0;

551:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
552:     PetscPrefetchBlock(v+36*n,36*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
553:     for (j=0; j<n; j++) {
554:       xb    = x + 6*(*idx++);
555:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4]; x6 = xb[5];
556:       sum1 += v[0]*x1 + v[6]*x2  + v[12]*x3  + v[18]*x4 + v[24]*x5 + v[30]*x6;
557:       sum2 += v[1]*x1 + v[7]*x2  + v[13]*x3  + v[19]*x4 + v[25]*x5 + v[31]*x6;
558:       sum3 += v[2]*x1 + v[8]*x2  + v[14]*x3  + v[20]*x4 + v[26]*x5 + v[32]*x6;
559:       sum4 += v[3]*x1 + v[9]*x2  + v[15]*x3  + v[21]*x4 + v[27]*x5 + v[33]*x6;
560:       sum5 += v[4]*x1 + v[10]*x2 + v[16]*x3  + v[22]*x4 + v[28]*x5 + v[34]*x6;
561:       sum6 += v[5]*x1 + v[11]*x2 + v[17]*x3  + v[23]*x4 + v[29]*x5 + v[35]*x6;
562:       v    += 36;
563:     }
564:     if (usecprow) z = zarray + 6*ridx[i];
565:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6;
566:     if (!usecprow) z += 6;
567:   }

569:   VecRestoreArrayRead(xx,&x);
570:   VecRestoreArray(zz,&zarray);
571:   PetscLogFlops(72.0*a->nz - 6.0*a->nonzerorowcnt);
572:   return(0);
573: }

577: PetscErrorCode MatMult_SeqBAIJ_7(Mat A,Vec xx,Vec zz)
578: {
579:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
580:   PetscScalar       *z = 0,sum1,sum2,sum3,sum4,sum5,sum6,sum7;
581:   const PetscScalar *x,*xb;
582:   PetscScalar       x1,x2,x3,x4,x5,x6,x7,*zarray;
583:   const MatScalar   *v;
584:   PetscErrorCode    ierr;
585:   PetscInt          mbs,i,*idx,*ii,j,n,*ridx=NULL;
586:   PetscBool         usecprow=a->compressedrow.use;

589:   VecGetArrayRead(xx,&x);
590:   VecGetArray(zz,&zarray);

592:   idx = a->j;
593:   v   = a->a;
594:   if (usecprow) {
595:     mbs  = a->compressedrow.nrows;
596:     ii   = a->compressedrow.i;
597:     ridx = a->compressedrow.rindex;
598:   } else {
599:     mbs = a->mbs;
600:     ii  = a->i;
601:     z   = zarray;
602:   }

604:   for (i=0; i<mbs; i++) {
605:     n  = ii[1] - ii[0];
606:     ii++;
607:     sum1 = 0.0;
608:     sum2 = 0.0;
609:     sum3 = 0.0;
610:     sum4 = 0.0;
611:     sum5 = 0.0;
612:     sum6 = 0.0;
613:     sum7 = 0.0;

615:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
616:     PetscPrefetchBlock(v+49*n,49*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
617:     for (j=0; j<n; j++) {
618:       xb    = x + 7*(*idx++);
619:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4]; x6 = xb[5]; x7 = xb[6];
620:       sum1 += v[0]*x1 + v[7]*x2  + v[14]*x3  + v[21]*x4 + v[28]*x5 + v[35]*x6 + v[42]*x7;
621:       sum2 += v[1]*x1 + v[8]*x2  + v[15]*x3  + v[22]*x4 + v[29]*x5 + v[36]*x6 + v[43]*x7;
622:       sum3 += v[2]*x1 + v[9]*x2  + v[16]*x3  + v[23]*x4 + v[30]*x5 + v[37]*x6 + v[44]*x7;
623:       sum4 += v[3]*x1 + v[10]*x2 + v[17]*x3  + v[24]*x4 + v[31]*x5 + v[38]*x6 + v[45]*x7;
624:       sum5 += v[4]*x1 + v[11]*x2 + v[18]*x3  + v[25]*x4 + v[32]*x5 + v[39]*x6 + v[46]*x7;
625:       sum6 += v[5]*x1 + v[12]*x2 + v[19]*x3  + v[26]*x4 + v[33]*x5 + v[40]*x6 + v[47]*x7;
626:       sum7 += v[6]*x1 + v[13]*x2 + v[20]*x3  + v[27]*x4 + v[34]*x5 + v[41]*x6 + v[48]*x7;
627:       v    += 49;
628:     }
629:     if (usecprow) z = zarray + 7*ridx[i];
630:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6; z[6] = sum7;
631:     if (!usecprow) z += 7;
632:   }

634:   VecRestoreArrayRead(xx,&x);
635:   VecRestoreArray(zz,&zarray);
636:   PetscLogFlops(98.0*a->nz - 7.0*a->nonzerorowcnt);
637:   return(0);
638: }

640: /* MatMult_SeqBAIJ_15 version 1: Columns in the block are accessed one at a time */
641: /* Default MatMult for block size 15 */

645: PetscErrorCode MatMult_SeqBAIJ_15_ver1(Mat A,Vec xx,Vec zz)
646: {
647:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
648:   PetscScalar       *z = 0,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12,sum13,sum14,sum15;
649:   const PetscScalar *x,*xb;
650:   PetscScalar       *zarray,xv;
651:   const MatScalar   *v;
652:   PetscErrorCode    ierr;
653:   const PetscInt    *ii,*ij=a->j,*idx;
654:   PetscInt          mbs,i,j,k,n,*ridx=NULL;
655:   PetscBool         usecprow=a->compressedrow.use;

658:   VecGetArrayRead(xx,&x);
659:   VecGetArray(zz,&zarray);

661:   v = a->a;
662:   if (usecprow) {
663:     mbs  = a->compressedrow.nrows;
664:     ii   = a->compressedrow.i;
665:     ridx = a->compressedrow.rindex;
666:   } else {
667:     mbs = a->mbs;
668:     ii  = a->i;
669:     z   = zarray;
670:   }

672:   for (i=0; i<mbs; i++) {
673:     n    = ii[i+1] - ii[i];
674:     idx  = ij + ii[i];
675:     sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0;
676:     sum8 = 0.0; sum9 = 0.0; sum10 = 0.0; sum11 = 0.0; sum12 = 0.0; sum13 = 0.0; sum14 = 0.0;sum15 = 0.0;

678:     for (j=0; j<n; j++) {
679:       xb = x + 15*(idx[j]);

681:       for (k=0; k<15; k++) {
682:         xv     =  xb[k];
683:         sum1  += v[0]*xv;
684:         sum2  += v[1]*xv;
685:         sum3  += v[2]*xv;
686:         sum4  += v[3]*xv;
687:         sum5  += v[4]*xv;
688:         sum6  += v[5]*xv;
689:         sum7  += v[6]*xv;
690:         sum8  += v[7]*xv;
691:         sum9  += v[8]*xv;
692:         sum10 += v[9]*xv;
693:         sum11 += v[10]*xv;
694:         sum12 += v[11]*xv;
695:         sum13 += v[12]*xv;
696:         sum14 += v[13]*xv;
697:         sum15 += v[14]*xv;
698:         v     += 15;
699:       }
700:     }
701:     if (usecprow) z = zarray + 15*ridx[i];
702:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6; z[6] = sum7;
703:     z[7] = sum8; z[8] = sum9; z[9] = sum10; z[10] = sum11; z[11] = sum12; z[12] = sum13; z[13] = sum14;z[14] = sum15;

705:     if (!usecprow) z += 15;
706:   }

708:   VecRestoreArrayRead(xx,&x);
709:   VecRestoreArray(zz,&zarray);
710:   PetscLogFlops(450.0*a->nz - 15.0*a->nonzerorowcnt);
711:   return(0);
712: }

714: /* MatMult_SeqBAIJ_15_ver2 : Columns in the block are accessed in sets of 4,4,4,3 */
717: PetscErrorCode MatMult_SeqBAIJ_15_ver2(Mat A,Vec xx,Vec zz)
718: {
719:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
720:   PetscScalar       *z = 0,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12,sum13,sum14,sum15;
721:   const PetscScalar *x,*xb;
722:   PetscScalar       x1,x2,x3,x4,*zarray;
723:   const MatScalar   *v;
724:   PetscErrorCode    ierr;
725:   const PetscInt    *ii,*ij=a->j,*idx;
726:   PetscInt          mbs,i,j,n,*ridx=NULL;
727:   PetscBool         usecprow=a->compressedrow.use;

730:   VecGetArrayRead(xx,&x);
731:   VecGetArray(zz,&zarray);

733:   v = a->a;
734:   if (usecprow) {
735:     mbs  = a->compressedrow.nrows;
736:     ii   = a->compressedrow.i;
737:     ridx = a->compressedrow.rindex;
738:   } else {
739:     mbs = a->mbs;
740:     ii  = a->i;
741:     z   = zarray;
742:   }

744:   for (i=0; i<mbs; i++) {
745:     n    = ii[i+1] - ii[i];
746:     idx  = ij + ii[i];
747:     sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0;
748:     sum8 = 0.0; sum9 = 0.0; sum10 = 0.0; sum11 = 0.0; sum12 = 0.0; sum13 = 0.0; sum14 = 0.0;sum15 = 0.0;

750:     for (j=0; j<n; j++) {
751:       xb = x + 15*(idx[j]);
752:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];

754:       sum1  += v[0]*x1 + v[15]*x2 + v[30]*x3   + v[45]*x4;
755:       sum2  += v[1]*x1 + v[16]*x2 + v[31]*x3   + v[46]*x4;
756:       sum3  += v[2]*x1 + v[17]*x2 + v[32]*x3  + v[47]*x4;
757:       sum4  += v[3]*x1 + v[18]*x2 + v[33]*x3  + v[48]*x4;
758:       sum5  += v[4]*x1 + v[19]*x2 + v[34]*x3   + v[49]*x4;
759:       sum6  += v[5]*x1 + v[20]*x2 + v[35]*x3   + v[50]*x4;
760:       sum7  += v[6]*x1 + v[21]*x2 + v[36]*x3  + v[51]*x4;
761:       sum8  += v[7]*x1 + v[22]*x2 + v[37]*x3  + v[52]*x4;
762:       sum9  += v[8]*x1 + v[23]*x2 + v[38]*x3   + v[53]*x4;
763:       sum10 += v[9]*x1 + v[24]*x2 + v[39]*x3   + v[54]*x4;
764:       sum11 += v[10]*x1 + v[25]*x2 + v[40]*x3  + v[55]*x4;
765:       sum12 += v[11]*x1 + v[26]*x2 + v[41]*x3  + v[56]*x4;
766:       sum13 += v[12]*x1 + v[27]*x2 + v[42]*x3   + v[57]*x4;
767:       sum14 += v[13]*x1 + v[28]*x2 + v[43]*x3   + v[58]*x4;
768:       sum15 += v[14]*x1 + v[29]*x2 + v[44]*x3  + v[59]*x4;

770:       v += 60;

772:       x1 = xb[4]; x2 = xb[5]; x3 = xb[6]; x4 = xb[7];

774:       sum1  += v[0]*x1 + v[15]*x2 + v[30]*x3   + v[45]*x4;
775:       sum2  += v[1]*x1 + v[16]*x2 + v[31]*x3   + v[46]*x4;
776:       sum3  += v[2]*x1 + v[17]*x2 + v[32]*x3  + v[47]*x4;
777:       sum4  += v[3]*x1 + v[18]*x2 + v[33]*x3  + v[48]*x4;
778:       sum5  += v[4]*x1 + v[19]*x2 + v[34]*x3   + v[49]*x4;
779:       sum6  += v[5]*x1 + v[20]*x2 + v[35]*x3   + v[50]*x4;
780:       sum7  += v[6]*x1 + v[21]*x2 + v[36]*x3  + v[51]*x4;
781:       sum8  += v[7]*x1 + v[22]*x2 + v[37]*x3  + v[52]*x4;
782:       sum9  += v[8]*x1 + v[23]*x2 + v[38]*x3   + v[53]*x4;
783:       sum10 += v[9]*x1 + v[24]*x2 + v[39]*x3   + v[54]*x4;
784:       sum11 += v[10]*x1 + v[25]*x2 + v[40]*x3  + v[55]*x4;
785:       sum12 += v[11]*x1 + v[26]*x2 + v[41]*x3  + v[56]*x4;
786:       sum13 += v[12]*x1 + v[27]*x2 + v[42]*x3   + v[57]*x4;
787:       sum14 += v[13]*x1 + v[28]*x2 + v[43]*x3   + v[58]*x4;
788:       sum15 += v[14]*x1 + v[29]*x2 + v[44]*x3  + v[59]*x4;
789:       v     += 60;

791:       x1     = xb[8]; x2 = xb[9]; x3 = xb[10]; x4 = xb[11];
792:       sum1  += v[0]*x1 + v[15]*x2 + v[30]*x3   + v[45]*x4;
793:       sum2  += v[1]*x1 + v[16]*x2 + v[31]*x3   + v[46]*x4;
794:       sum3  += v[2]*x1 + v[17]*x2 + v[32]*x3  + v[47]*x4;
795:       sum4  += v[3]*x1 + v[18]*x2 + v[33]*x3  + v[48]*x4;
796:       sum5  += v[4]*x1 + v[19]*x2 + v[34]*x3   + v[49]*x4;
797:       sum6  += v[5]*x1 + v[20]*x2 + v[35]*x3   + v[50]*x4;
798:       sum7  += v[6]*x1 + v[21]*x2 + v[36]*x3  + v[51]*x4;
799:       sum8  += v[7]*x1 + v[22]*x2 + v[37]*x3  + v[52]*x4;
800:       sum9  += v[8]*x1 + v[23]*x2 + v[38]*x3   + v[53]*x4;
801:       sum10 += v[9]*x1 + v[24]*x2 + v[39]*x3   + v[54]*x4;
802:       sum11 += v[10]*x1 + v[25]*x2 + v[40]*x3  + v[55]*x4;
803:       sum12 += v[11]*x1 + v[26]*x2 + v[41]*x3  + v[56]*x4;
804:       sum13 += v[12]*x1 + v[27]*x2 + v[42]*x3   + v[57]*x4;
805:       sum14 += v[13]*x1 + v[28]*x2 + v[43]*x3   + v[58]*x4;
806:       sum15 += v[14]*x1 + v[29]*x2 + v[44]*x3  + v[59]*x4;
807:       v     += 60;

809:       x1     = xb[12]; x2 = xb[13]; x3 = xb[14];
810:       sum1  += v[0]*x1 + v[15]*x2 + v[30]*x3;
811:       sum2  += v[1]*x1 + v[16]*x2 + v[31]*x3;
812:       sum3  += v[2]*x1 + v[17]*x2 + v[32]*x3;
813:       sum4  += v[3]*x1 + v[18]*x2 + v[33]*x3;
814:       sum5  += v[4]*x1 + v[19]*x2 + v[34]*x3;
815:       sum6  += v[5]*x1 + v[20]*x2 + v[35]*x3;
816:       sum7  += v[6]*x1 + v[21]*x2 + v[36]*x3;
817:       sum8  += v[7]*x1 + v[22]*x2 + v[37]*x3;
818:       sum9  += v[8]*x1 + v[23]*x2 + v[38]*x3;
819:       sum10 += v[9]*x1 + v[24]*x2 + v[39]*x3;
820:       sum11 += v[10]*x1 + v[25]*x2 + v[40]*x3;
821:       sum12 += v[11]*x1 + v[26]*x2 + v[41]*x3;
822:       sum13 += v[12]*x1 + v[27]*x2 + v[42]*x3;
823:       sum14 += v[13]*x1 + v[28]*x2 + v[43]*x3;
824:       sum15 += v[14]*x1 + v[29]*x2 + v[44]*x3;
825:       v     += 45;
826:     }
827:     if (usecprow) z = zarray + 15*ridx[i];
828:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6; z[6] = sum7;
829:     z[7] = sum8; z[8] = sum9; z[9] = sum10; z[10] = sum11; z[11] = sum12; z[12] = sum13; z[13] = sum14;z[14] = sum15;

831:     if (!usecprow) z += 15;
832:   }

834:   VecRestoreArrayRead(xx,&x);
835:   VecRestoreArray(zz,&zarray);
836:   PetscLogFlops(450.0*a->nz - 15.0*a->nonzerorowcnt);
837:   return(0);
838: }

840: /* MatMult_SeqBAIJ_15_ver3 : Columns in the block are accessed in sets of 8,7 */
843: PetscErrorCode MatMult_SeqBAIJ_15_ver3(Mat A,Vec xx,Vec zz)
844: {
845:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
846:   PetscScalar       *z = 0,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12,sum13,sum14,sum15;
847:   const PetscScalar *x,*xb;
848:   PetscScalar       x1,x2,x3,x4,x5,x6,x7,x8,*zarray;
849:   const MatScalar   *v;
850:   PetscErrorCode    ierr;
851:   const PetscInt    *ii,*ij=a->j,*idx;
852:   PetscInt          mbs,i,j,n,*ridx=NULL;
853:   PetscBool         usecprow=a->compressedrow.use;

856:   VecGetArrayRead(xx,&x);
857:   VecGetArray(zz,&zarray);

859:   v = a->a;
860:   if (usecprow) {
861:     mbs  = a->compressedrow.nrows;
862:     ii   = a->compressedrow.i;
863:     ridx = a->compressedrow.rindex;
864:   } else {
865:     mbs = a->mbs;
866:     ii  = a->i;
867:     z   = zarray;
868:   }

870:   for (i=0; i<mbs; i++) {
871:     n    = ii[i+1] - ii[i];
872:     idx  = ij + ii[i];
873:     sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0;
874:     sum8 = 0.0; sum9 = 0.0; sum10 = 0.0; sum11 = 0.0; sum12 = 0.0; sum13 = 0.0; sum14 = 0.0;sum15 = 0.0;

876:     for (j=0; j<n; j++) {
877:       xb = x + 15*(idx[j]);
878:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4]; x6 = xb[5]; x7 = xb[6];
879:       x8 = xb[7];

881:       sum1  += v[0]*x1 + v[15]*x2  + v[30]*x3  + v[45]*x4 + v[60]*x5 + v[75]*x6 + v[90]*x7 + v[105]*x8;
882:       sum2  += v[1]*x1 + v[16]*x2  + v[31]*x3  + v[46]*x4 + v[61]*x5 + v[76]*x6 + v[91]*x7 + v[106]*x8;
883:       sum3  += v[2]*x1 + v[17]*x2  + v[32]*x3  + v[47]*x4 + v[62]*x5 + v[77]*x6 + v[92]*x7 + v[107]*x8;
884:       sum4  += v[3]*x1 + v[18]*x2 + v[33]*x3  + v[48]*x4 + v[63]*x5 + v[78]*x6 + v[93]*x7 + v[108]*x8;
885:       sum5  += v[4]*x1 + v[19]*x2 + v[34]*x3  + v[49]*x4 + v[64]*x5 + v[79]*x6 + v[94]*x7 + v[109]*x8;
886:       sum6  += v[5]*x1 + v[20]*x2 + v[35]*x3  + v[50]*x4 + v[65]*x5 + v[80]*x6 + v[95]*x7 + v[110]*x8;
887:       sum7  += v[6]*x1 + v[21]*x2 + v[36]*x3  + v[51]*x4 + v[66]*x5 + v[81]*x6 + v[96]*x7 + v[111]*x8;
888:       sum8  += v[7]*x1 + v[22]*x2  + v[37]*x3  + v[52]*x4 + v[67]*x5 + v[82]*x6 + v[97]*x7 + v[112]*x8;
889:       sum9  += v[8]*x1 + v[23]*x2  + v[38]*x3  + v[53]*x4 + v[68]*x5 + v[83]*x6 + v[98]*x7 + v[113]*x8;
890:       sum10 += v[9]*x1 + v[24]*x2  + v[39]*x3  + v[54]*x4 + v[69]*x5 + v[84]*x6 + v[99]*x7 + v[114]*x8;
891:       sum11 += v[10]*x1 + v[25]*x2 + v[40]*x3  + v[55]*x4 + v[70]*x5 + v[85]*x6 + v[100]*x7 + v[115]*x8;
892:       sum12 += v[11]*x1 + v[26]*x2 + v[41]*x3  + v[56]*x4 + v[71]*x5 + v[86]*x6 + v[101]*x7 + v[116]*x8;
893:       sum13 += v[12]*x1 + v[27]*x2 + v[42]*x3  + v[57]*x4 + v[72]*x5 + v[87]*x6 + v[102]*x7 + v[117]*x8;
894:       sum14 += v[13]*x1 + v[28]*x2 + v[43]*x3  + v[58]*x4 + v[73]*x5 + v[88]*x6 + v[103]*x7 + v[118]*x8;
895:       sum15 += v[14]*x1 + v[29]*x2 + v[44]*x3  + v[59]*x4 + v[74]*x5 + v[89]*x6 + v[104]*x7 + v[119]*x8;
896:       v     += 120;

898:       x1 = xb[8]; x2 = xb[9]; x3 = xb[10]; x4 = xb[11]; x5 = xb[12]; x6 = xb[13]; x7 = xb[14];

900:       sum1  += v[0]*x1 + v[15]*x2  + v[30]*x3  + v[45]*x4 + v[60]*x5 + v[75]*x6 + v[90]*x7;
901:       sum2  += v[1]*x1 + v[16]*x2  + v[31]*x3  + v[46]*x4 + v[61]*x5 + v[76]*x6 + v[91]*x7;
902:       sum3  += v[2]*x1 + v[17]*x2  + v[32]*x3  + v[47]*x4 + v[62]*x5 + v[77]*x6 + v[92]*x7;
903:       sum4  += v[3]*x1 + v[18]*x2 + v[33]*x3  + v[48]*x4 + v[63]*x5 + v[78]*x6 + v[93]*x7;
904:       sum5  += v[4]*x1 + v[19]*x2 + v[34]*x3  + v[49]*x4 + v[64]*x5 + v[79]*x6 + v[94]*x7;
905:       sum6  += v[5]*x1 + v[20]*x2 + v[35]*x3  + v[50]*x4 + v[65]*x5 + v[80]*x6 + v[95]*x7;
906:       sum7  += v[6]*x1 + v[21]*x2 + v[36]*x3  + v[51]*x4 + v[66]*x5 + v[81]*x6 + v[96]*x7;
907:       sum8  += v[7]*x1 + v[22]*x2  + v[37]*x3  + v[52]*x4 + v[67]*x5 + v[82]*x6 + v[97]*x7;
908:       sum9  += v[8]*x1 + v[23]*x2  + v[38]*x3  + v[53]*x4 + v[68]*x5 + v[83]*x6 + v[98]*x7;
909:       sum10 += v[9]*x1 + v[24]*x2  + v[39]*x3  + v[54]*x4 + v[69]*x5 + v[84]*x6 + v[99]*x7;
910:       sum11 += v[10]*x1 + v[25]*x2 + v[40]*x3  + v[55]*x4 + v[70]*x5 + v[85]*x6 + v[100]*x7;
911:       sum12 += v[11]*x1 + v[26]*x2 + v[41]*x3  + v[56]*x4 + v[71]*x5 + v[86]*x6 + v[101]*x7;
912:       sum13 += v[12]*x1 + v[27]*x2 + v[42]*x3  + v[57]*x4 + v[72]*x5 + v[87]*x6 + v[102]*x7;
913:       sum14 += v[13]*x1 + v[28]*x2 + v[43]*x3  + v[58]*x4 + v[73]*x5 + v[88]*x6 + v[103]*x7;
914:       sum15 += v[14]*x1 + v[29]*x2 + v[44]*x3  + v[59]*x4 + v[74]*x5 + v[89]*x6 + v[104]*x7;
915:       v     += 105;
916:     }
917:     if (usecprow) z = zarray + 15*ridx[i];
918:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6; z[6] = sum7;
919:     z[7] = sum8; z[8] = sum9; z[9] = sum10; z[10] = sum11; z[11] = sum12; z[12] = sum13; z[13] = sum14;z[14] = sum15;

921:     if (!usecprow) z += 15;
922:   }

924:   VecRestoreArrayRead(xx,&x);
925:   VecRestoreArray(zz,&zarray);
926:   PetscLogFlops(450.0*a->nz - 15.0*a->nonzerorowcnt);
927:   return(0);
928: }

930: /* MatMult_SeqBAIJ_15_ver4 : All columns in the block are accessed at once */

934: PetscErrorCode MatMult_SeqBAIJ_15_ver4(Mat A,Vec xx,Vec zz)
935: {
936:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
937:   PetscScalar       *z = 0,sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,sum10,sum11,sum12,sum13,sum14,sum15;
938:   const PetscScalar *x,*xb;
939:   PetscScalar       x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,*zarray;
940:   const MatScalar   *v;
941:   PetscErrorCode    ierr;
942:   const PetscInt    *ii,*ij=a->j,*idx;
943:   PetscInt          mbs,i,j,n,*ridx=NULL;
944:   PetscBool         usecprow=a->compressedrow.use;

947:   VecGetArrayRead(xx,&x);
948:   VecGetArray(zz,&zarray);

950:   v = a->a;
951:   if (usecprow) {
952:     mbs  = a->compressedrow.nrows;
953:     ii   = a->compressedrow.i;
954:     ridx = a->compressedrow.rindex;
955:   } else {
956:     mbs = a->mbs;
957:     ii  = a->i;
958:     z   = zarray;
959:   }

961:   for (i=0; i<mbs; i++) {
962:     n    = ii[i+1] - ii[i];
963:     idx  = ij + ii[i];
964:     sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0;
965:     sum8 = 0.0; sum9 = 0.0; sum10 = 0.0; sum11 = 0.0; sum12 = 0.0; sum13 = 0.0; sum14 = 0.0;sum15 = 0.0;

967:     for (j=0; j<n; j++) {
968:       xb = x + 15*(idx[j]);
969:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4]; x6 = xb[5]; x7 = xb[6];
970:       x8 = xb[7]; x9 = xb[8]; x10 = xb[9]; x11 = xb[10]; x12 = xb[11]; x13 = xb[12]; x14 = xb[13];x15 = xb[14];

972:       sum1  +=  v[0]*x1  + v[15]*x2 + v[30]*x3 + v[45]*x4 + v[60]*x5 + v[75]*x6 + v[90]*x7  + v[105]*x8 + v[120]*x9 + v[135]*x10 + v[150]*x11 + v[165]*x12 + v[180]*x13 + v[195]*x14 + v[210]*x15;
973:       sum2  +=  v[1]*x1  + v[16]*x2 + v[31]*x3 + v[46]*x4 + v[61]*x5 + v[76]*x6 + v[91]*x7  + v[106]*x8 + v[121]*x9 + v[136]*x10 + v[151]*x11 + v[166]*x12 + v[181]*x13 + v[196]*x14 + v[211]*x15;
974:       sum3  +=  v[2]*x1  + v[17]*x2 + v[32]*x3 + v[47]*x4 + v[62]*x5 + v[77]*x6 + v[92]*x7  + v[107]*x8 + v[122]*x9 + v[137]*x10 + v[152]*x11 + v[167]*x12 + v[182]*x13 + v[197]*x14 + v[212]*x15;
975:       sum4  +=  v[3]*x1  + v[18]*x2 + v[33]*x3 + v[48]*x4 + v[63]*x5 + v[78]*x6 + v[93]*x7  + v[108]*x8 + v[123]*x9 + v[138]*x10 + v[153]*x11 + v[168]*x12 + v[183]*x13 + v[198]*x14 + v[213]*x15;
976:       sum5  += v[4]*x1  + v[19]*x2 + v[34]*x3 + v[49]*x4 + v[64]*x5 + v[79]*x6 + v[94]*x7  + v[109]*x8 + v[124]*x9 + v[139]*x10 + v[154]*x11 + v[169]*x12 + v[184]*x13 + v[199]*x14 + v[214]*x15;
977:       sum6  += v[5]*x1  + v[20]*x2 + v[35]*x3 + v[50]*x4 + v[65]*x5 + v[80]*x6 + v[95]*x7  + v[110]*x8 + v[125]*x9 + v[140]*x10 + v[155]*x11 + v[170]*x12 + v[185]*x13 + v[200]*x14 + v[215]*x15;
978:       sum7  += v[6]*x1  + v[21]*x2 + v[36]*x3 + v[51]*x4 + v[66]*x5 + v[81]*x6 + v[96]*x7  + v[111]*x8 + v[126]*x9 + v[141]*x10 + v[156]*x11 + v[171]*x12 + v[186]*x13 + v[201]*x14 + v[216]*x15;
979:       sum8  += v[7]*x1  + v[22]*x2 + v[37]*x3 + v[52]*x4 + v[67]*x5 + v[82]*x6 + v[97]*x7  + v[112]*x8 + v[127]*x9 + v[142]*x10 + v[157]*x11 + v[172]*x12 + v[187]*x13 + v[202]*x14 + v[217]*x15;
980:       sum9  += v[8]*x1  + v[23]*x2 + v[38]*x3 + v[53]*x4 + v[68]*x5 + v[83]*x6 + v[98]*x7  + v[113]*x8 + v[128]*x9 + v[143]*x10 + v[158]*x11 + v[173]*x12 + v[188]*x13 + v[203]*x14 + v[218]*x15;
981:       sum10 += v[9]*x1  + v[24]*x2 + v[39]*x3 + v[54]*x4 + v[69]*x5 + v[84]*x6 + v[99]*x7  + v[114]*x8 + v[129]*x9 + v[144]*x10 + v[159]*x11 + v[174]*x12 + v[189]*x13 + v[204]*x14 + v[219]*x15;
982:       sum11 += v[10]*x1 + v[25]*x2 + v[40]*x3 + v[55]*x4 + v[70]*x5 + v[85]*x6 + v[100]*x7 + v[115]*x8 + v[130]*x9 + v[145]*x10 + v[160]*x11 + v[175]*x12 + v[190]*x13 + v[205]*x14 + v[220]*x15;
983:       sum12 += v[11]*x1 + v[26]*x2 + v[41]*x3 + v[56]*x4 + v[71]*x5 + v[86]*x6 + v[101]*x7 + v[116]*x8 + v[131]*x9 + v[146]*x10 + v[161]*x11 + v[176]*x12 + v[191]*x13 + v[206]*x14 + v[221]*x15;
984:       sum13 += v[12]*x1 + v[27]*x2 + v[42]*x3 + v[57]*x4 + v[72]*x5 + v[87]*x6 + v[102]*x7 + v[117]*x8 + v[132]*x9 + v[147]*x10 + v[162]*x11 + v[177]*x12 + v[192]*x13 + v[207]*x14 + v[222]*x15;
985:       sum14 += v[13]*x1 + v[28]*x2 + v[43]*x3 + v[58]*x4 + v[73]*x5 + v[88]*x6 + v[103]*x7 + v[118]*x8 + v[133]*x9 + v[148]*x10 + v[163]*x11 + v[178]*x12 + v[193]*x13 + v[208]*x14 + v[223]*x15;
986:       sum15 += v[14]*x1 + v[29]*x2 + v[44]*x3 + v[59]*x4 + v[74]*x5 + v[89]*x6 + v[104]*x7 + v[119]*x8 + v[134]*x9 + v[149]*x10 + v[164]*x11 + v[179]*x12 + v[194]*x13 + v[209]*x14 + v[224]*x15;
987:       v     += 225;
988:     }
989:     if (usecprow) z = zarray + 15*ridx[i];
990:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6; z[6] = sum7;
991:     z[7] = sum8; z[8] = sum9; z[9] = sum10; z[10] = sum11; z[11] = sum12; z[12] = sum13; z[13] = sum14;z[14] = sum15;

993:     if (!usecprow) z += 15;
994:   }

996:   VecRestoreArrayRead(xx,&x);
997:   VecRestoreArray(zz,&zarray);
998:   PetscLogFlops(450.0*a->nz - 15.0*a->nonzerorowcnt);
999:   return(0);
1000: }


1003: /*
1004:     This will not work with MatScalar == float because it calls the BLAS
1005: */
1008: PetscErrorCode MatMult_SeqBAIJ_N(Mat A,Vec xx,Vec zz)
1009: {
1010:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1011:   PetscScalar       *z = 0,*work,*workt,*zarray;
1012:   const PetscScalar *x,*xb;
1013:   const MatScalar   *v;
1014:   PetscErrorCode    ierr;
1015:   PetscInt          mbs,i,bs=A->rmap->bs,j,n,bs2=a->bs2;
1016:   const PetscInt    *idx,*ii,*ridx=NULL;
1017:   PetscInt          ncols,k;
1018:   PetscBool         usecprow=a->compressedrow.use;

1021:   VecGetArrayRead(xx,&x);
1022:   VecGetArray(zz,&zarray);

1024:   idx = a->j;
1025:   v   = a->a;
1026:   if (usecprow) {
1027:     mbs  = a->compressedrow.nrows;
1028:     ii   = a->compressedrow.i;
1029:     ridx = a->compressedrow.rindex;
1030:   } else {
1031:     mbs = a->mbs;
1032:     ii  = a->i;
1033:     z   = zarray;
1034:   }

1036:   if (!a->mult_work) {
1037:     k    = PetscMax(A->rmap->n,A->cmap->n);
1038:     PetscMalloc1(k+1,&a->mult_work);
1039:   }
1040:   work = a->mult_work;
1041:   for (i=0; i<mbs; i++) {
1042:     n           = ii[1] - ii[0]; ii++;
1043:     ncols       = n*bs;
1044:     workt       = work;
1045:     for (j=0; j<n; j++) {
1046:       xb = x + bs*(*idx++);
1047:       for (k=0; k<bs; k++) workt[k] = xb[k];
1048:       workt += bs;
1049:     }
1050:     if (usecprow) z = zarray + bs*ridx[i];
1051:     PetscKernel_w_gets_Ar_times_v(bs,ncols,work,v,z);
1052:     /* BLASgemv_("N",&bs,&ncols,&_DOne,v,&bs,work,&_One,&_DZero,z,&_One); */
1053:     v += n*bs2;
1054:     if (!usecprow) z += bs;
1055:   }
1056:   VecRestoreArrayRead(xx,&x);
1057:   VecRestoreArray(zz,&zarray);
1058:   PetscLogFlops(2.0*a->nz*bs2 - bs*a->nonzerorowcnt);
1059:   return(0);
1060: }

1064: PetscErrorCode MatMultAdd_SeqBAIJ_1(Mat A,Vec xx,Vec yy,Vec zz)
1065: {
1066:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1067:   const PetscScalar *x;
1068:   PetscScalar       *y,*z,sum;
1069:   const MatScalar   *v;
1070:   PetscErrorCode    ierr;
1071:   PetscInt          mbs=a->mbs,i,n,*ridx=NULL;
1072:   const PetscInt    *idx,*ii;
1073:   PetscBool         usecprow=a->compressedrow.use;

1076:   VecGetArrayRead(xx,&x);
1077:   VecGetArrayPair(yy,zz,&y,&z);

1079:   idx = a->j;
1080:   v   = a->a;
1081:   if (usecprow) {
1082:     if (zz != yy) {
1083:       PetscMemcpy(z,y,mbs*sizeof(PetscScalar));
1084:     }
1085:     mbs  = a->compressedrow.nrows;
1086:     ii   = a->compressedrow.i;
1087:     ridx = a->compressedrow.rindex;
1088:   } else {
1089:     ii = a->i;
1090:   }

1092:   for (i=0; i<mbs; i++) {
1093:     n = ii[1] - ii[0];
1094:     ii++;
1095:     if (!usecprow) {
1096:       sum         = y[i];
1097:     } else {
1098:       sum = y[ridx[i]];
1099:     }
1100:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA); /* Indices for the next row (assumes same size as this one) */
1101:     PetscPrefetchBlock(v+n,n,0,PETSC_PREFETCH_HINT_NTA);   /* Entries for the next row */
1102:     PetscSparseDensePlusDot(sum,x,v,idx,n);
1103:     v   += n;
1104:     idx += n;
1105:     if (usecprow) {
1106:       z[ridx[i]] = sum;
1107:     } else {
1108:       z[i] = sum;
1109:     }
1110:   }
1111:   VecRestoreArrayRead(xx,&x);
1112:   VecRestoreArrayPair(yy,zz,&y,&z);
1113:   PetscLogFlops(2.0*a->nz);
1114:   return(0);
1115: }

1119: PetscErrorCode MatMultAdd_SeqBAIJ_2(Mat A,Vec xx,Vec yy,Vec zz)
1120: {
1121:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1122:   PetscScalar       *y = 0,*z = 0,sum1,sum2;
1123:   const PetscScalar *x,*xb;
1124:   PetscScalar       x1,x2,*yarray,*zarray;
1125:   const MatScalar   *v;
1126:   PetscErrorCode    ierr;
1127:   PetscInt          mbs = a->mbs,i,n,j;
1128:   const PetscInt    *idx,*ii,*ridx = NULL;
1129:   PetscBool         usecprow = a->compressedrow.use;

1132:   VecGetArrayRead(xx,&x);
1133:   VecGetArrayPair(yy,zz,&yarray,&zarray);

1135:   idx = a->j;
1136:   v   = a->a;
1137:   if (usecprow) {
1138:     if (zz != yy) {
1139:       PetscMemcpy(zarray,yarray,2*mbs*sizeof(PetscScalar));
1140:     }
1141:     mbs  = a->compressedrow.nrows;
1142:     ii   = a->compressedrow.i;
1143:     ridx = a->compressedrow.rindex;
1144:     if (zz != yy) {
1145:       PetscMemcpy(zarray,yarray,a->mbs*sizeof(PetscScalar));
1146:     }
1147:   } else {
1148:     ii = a->i;
1149:     y  = yarray;
1150:     z  = zarray;
1151:   }

1153:   for (i=0; i<mbs; i++) {
1154:     n = ii[1] - ii[0]; ii++;
1155:     if (usecprow) {
1156:       z = zarray + 2*ridx[i];
1157:       y = yarray + 2*ridx[i];
1158:     }
1159:     sum1 = y[0]; sum2 = y[1];
1160:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);   /* Indices for the next row (assumes same size as this one) */
1161:     PetscPrefetchBlock(v+4*n,4*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
1162:     for (j=0; j<n; j++) {
1163:       xb = x + 2*(*idx++);
1164:       x1 = xb[0];
1165:       x2 = xb[1];

1167:       sum1 += v[0]*x1 + v[2]*x2;
1168:       sum2 += v[1]*x1 + v[3]*x2;
1169:       v    += 4;
1170:     }
1171:     z[0] = sum1; z[1] = sum2;
1172:     if (!usecprow) {
1173:       z += 2; y += 2;
1174:     }
1175:   }
1176:   VecRestoreArrayRead(xx,&x);
1177:   VecRestoreArrayPair(yy,zz,&yarray,&zarray);
1178:   PetscLogFlops(4.0*a->nz);
1179:   return(0);
1180: }

1184: PetscErrorCode MatMultAdd_SeqBAIJ_3(Mat A,Vec xx,Vec yy,Vec zz)
1185: {
1186:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1187:   PetscScalar       *y = 0,*z = 0,sum1,sum2,sum3,x1,x2,x3,*yarray,*zarray;
1188:   const PetscScalar *x,*xb;
1189:   const MatScalar   *v;
1190:   PetscErrorCode    ierr;
1191:   PetscInt          mbs = a->mbs,i,j,n;
1192:   const PetscInt    *idx,*ii,*ridx = NULL;
1193:   PetscBool         usecprow = a->compressedrow.use;

1196:   VecGetArrayRead(xx,&x);
1197:   VecGetArrayPair(yy,zz,&yarray,&zarray);

1199:   idx = a->j;
1200:   v   = a->a;
1201:   if (usecprow) {
1202:     if (zz != yy) {
1203:       PetscMemcpy(zarray,yarray,3*mbs*sizeof(PetscScalar));
1204:     }
1205:     mbs  = a->compressedrow.nrows;
1206:     ii   = a->compressedrow.i;
1207:     ridx = a->compressedrow.rindex;
1208:   } else {
1209:     ii = a->i;
1210:     y  = yarray;
1211:     z  = zarray;
1212:   }

1214:   for (i=0; i<mbs; i++) {
1215:     n = ii[1] - ii[0]; ii++;
1216:     if (usecprow) {
1217:       z = zarray + 3*ridx[i];
1218:       y = yarray + 3*ridx[i];
1219:     }
1220:     sum1 = y[0]; sum2 = y[1]; sum3 = y[2];
1221:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);   /* Indices for the next row (assumes same size as this one) */
1222:     PetscPrefetchBlock(v+9*n,9*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
1223:     for (j=0; j<n; j++) {
1224:       xb    = x + 3*(*idx++); x1 = xb[0]; x2 = xb[1]; x3 = xb[2];
1225:       sum1 += v[0]*x1 + v[3]*x2 + v[6]*x3;
1226:       sum2 += v[1]*x1 + v[4]*x2 + v[7]*x3;
1227:       sum3 += v[2]*x1 + v[5]*x2 + v[8]*x3;
1228:       v    += 9;
1229:     }
1230:     z[0] = sum1; z[1] = sum2; z[2] = sum3;
1231:     if (!usecprow) {
1232:       z += 3; y += 3;
1233:     }
1234:   }
1235:   VecRestoreArrayRead(xx,&x);
1236:   VecRestoreArrayPair(yy,zz,&yarray,&zarray);
1237:   PetscLogFlops(18.0*a->nz);
1238:   return(0);
1239: }

1243: PetscErrorCode MatMultAdd_SeqBAIJ_4(Mat A,Vec xx,Vec yy,Vec zz)
1244: {
1245:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1246:   PetscScalar       *y = 0,*z = 0,sum1,sum2,sum3,sum4,x1,x2,x3,x4,*yarray,*zarray;
1247:   const PetscScalar *x,*xb;
1248:   const MatScalar   *v;
1249:   PetscErrorCode    ierr;
1250:   PetscInt          mbs = a->mbs,i,j,n;
1251:   const PetscInt    *idx,*ii,*ridx=NULL;
1252:   PetscBool         usecprow=a->compressedrow.use;

1255:   VecGetArrayRead(xx,&x);
1256:   VecGetArrayPair(yy,zz,&yarray,&zarray);

1258:   idx = a->j;
1259:   v   = a->a;
1260:   if (usecprow) {
1261:     if (zz != yy) {
1262:       PetscMemcpy(zarray,yarray,4*mbs*sizeof(PetscScalar));
1263:     }
1264:     mbs  = a->compressedrow.nrows;
1265:     ii   = a->compressedrow.i;
1266:     ridx = a->compressedrow.rindex;
1267:   } else {
1268:     ii = a->i;
1269:     y  = yarray;
1270:     z  = zarray;
1271:   }

1273:   for (i=0; i<mbs; i++) {
1274:     n = ii[1] - ii[0]; ii++;
1275:     if (usecprow) {
1276:       z = zarray + 4*ridx[i];
1277:       y = yarray + 4*ridx[i];
1278:     }
1279:     sum1 = y[0]; sum2 = y[1]; sum3 = y[2]; sum4 = y[3];
1280:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
1281:     PetscPrefetchBlock(v+16*n,16*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
1282:     for (j=0; j<n; j++) {
1283:       xb    = x + 4*(*idx++);
1284:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];
1285:       sum1 += v[0]*x1 + v[4]*x2 + v[8]*x3   + v[12]*x4;
1286:       sum2 += v[1]*x1 + v[5]*x2 + v[9]*x3   + v[13]*x4;
1287:       sum3 += v[2]*x1 + v[6]*x2 + v[10]*x3  + v[14]*x4;
1288:       sum4 += v[3]*x1 + v[7]*x2 + v[11]*x3  + v[15]*x4;
1289:       v    += 16;
1290:     }
1291:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4;
1292:     if (!usecprow) {
1293:       z += 4; y += 4;
1294:     }
1295:   }
1296:   VecRestoreArrayRead(xx,&x);
1297:   VecRestoreArrayPair(yy,zz,&yarray,&zarray);
1298:   PetscLogFlops(32.0*a->nz);
1299:   return(0);
1300: }

1304: PetscErrorCode MatMultAdd_SeqBAIJ_5(Mat A,Vec xx,Vec yy,Vec zz)
1305: {
1306:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1307:   PetscScalar       *y = 0,*z = 0,sum1,sum2,sum3,sum4,sum5,x1,x2,x3,x4,x5;
1308:   const PetscScalar *x,*xb;
1309:   PetscScalar       *yarray,*zarray;
1310:   const MatScalar   *v;
1311:   PetscErrorCode    ierr;
1312:   PetscInt          mbs = a->mbs,i,j,n;
1313:   const PetscInt    *idx,*ii,*ridx = NULL;
1314:   PetscBool         usecprow=a->compressedrow.use;

1317:   VecGetArrayRead(xx,&x);
1318:   VecGetArrayPair(yy,zz,&yarray,&zarray);

1320:   idx = a->j;
1321:   v   = a->a;
1322:   if (usecprow) {
1323:     if (zz != yy) {
1324:       PetscMemcpy(zarray,yarray,5*mbs*sizeof(PetscScalar));
1325:     }
1326:     mbs  = a->compressedrow.nrows;
1327:     ii   = a->compressedrow.i;
1328:     ridx = a->compressedrow.rindex;
1329:   } else {
1330:     ii = a->i;
1331:     y  = yarray;
1332:     z  = zarray;
1333:   }

1335:   for (i=0; i<mbs; i++) {
1336:     n = ii[1] - ii[0]; ii++;
1337:     if (usecprow) {
1338:       z = zarray + 5*ridx[i];
1339:       y = yarray + 5*ridx[i];
1340:     }
1341:     sum1 = y[0]; sum2 = y[1]; sum3 = y[2]; sum4 = y[3]; sum5 = y[4];
1342:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
1343:     PetscPrefetchBlock(v+25*n,25*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
1344:     for (j=0; j<n; j++) {
1345:       xb    = x + 5*(*idx++);
1346:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4];
1347:       sum1 += v[0]*x1 + v[5]*x2 + v[10]*x3  + v[15]*x4 + v[20]*x5;
1348:       sum2 += v[1]*x1 + v[6]*x2 + v[11]*x3  + v[16]*x4 + v[21]*x5;
1349:       sum3 += v[2]*x1 + v[7]*x2 + v[12]*x3  + v[17]*x4 + v[22]*x5;
1350:       sum4 += v[3]*x1 + v[8]*x2 + v[13]*x3  + v[18]*x4 + v[23]*x5;
1351:       sum5 += v[4]*x1 + v[9]*x2 + v[14]*x3  + v[19]*x4 + v[24]*x5;
1352:       v    += 25;
1353:     }
1354:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5;
1355:     if (!usecprow) {
1356:       z += 5; y += 5;
1357:     }
1358:   }
1359:   VecRestoreArrayRead(xx,&x);
1360:   VecRestoreArrayPair(yy,zz,&yarray,&zarray);
1361:   PetscLogFlops(50.0*a->nz);
1362:   return(0);
1363: }
1366: PetscErrorCode MatMultAdd_SeqBAIJ_6(Mat A,Vec xx,Vec yy,Vec zz)
1367: {
1368:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1369:   PetscScalar       *y = 0,*z = 0,sum1,sum2,sum3,sum4,sum5,sum6;
1370:   const PetscScalar *x,*xb;
1371:   PetscScalar       x1,x2,x3,x4,x5,x6,*yarray,*zarray;
1372:   const MatScalar   *v;
1373:   PetscErrorCode    ierr;
1374:   PetscInt          mbs = a->mbs,i,j,n;
1375:   const PetscInt    *idx,*ii,*ridx=NULL;
1376:   PetscBool         usecprow=a->compressedrow.use;

1379:   VecGetArrayRead(xx,&x);
1380:   VecGetArrayPair(yy,zz,&yarray,&zarray);

1382:   idx = a->j;
1383:   v   = a->a;
1384:   if (usecprow) {
1385:     if (zz != yy) {
1386:       PetscMemcpy(zarray,yarray,6*mbs*sizeof(PetscScalar));
1387:     }
1388:     mbs  = a->compressedrow.nrows;
1389:     ii   = a->compressedrow.i;
1390:     ridx = a->compressedrow.rindex;
1391:   } else {
1392:     ii = a->i;
1393:     y  = yarray;
1394:     z  = zarray;
1395:   }

1397:   for (i=0; i<mbs; i++) {
1398:     n = ii[1] - ii[0]; ii++;
1399:     if (usecprow) {
1400:       z = zarray + 6*ridx[i];
1401:       y = yarray + 6*ridx[i];
1402:     }
1403:     sum1 = y[0]; sum2 = y[1]; sum3 = y[2]; sum4 = y[3]; sum5 = y[4]; sum6 = y[5];
1404:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
1405:     PetscPrefetchBlock(v+36*n,36*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
1406:     for (j=0; j<n; j++) {
1407:       xb    = x + 6*(*idx++);
1408:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4]; x6 = xb[5];
1409:       sum1 += v[0]*x1 + v[6]*x2  + v[12]*x3  + v[18]*x4 + v[24]*x5 + v[30]*x6;
1410:       sum2 += v[1]*x1 + v[7]*x2  + v[13]*x3  + v[19]*x4 + v[25]*x5 + v[31]*x6;
1411:       sum3 += v[2]*x1 + v[8]*x2  + v[14]*x3  + v[20]*x4 + v[26]*x5 + v[32]*x6;
1412:       sum4 += v[3]*x1 + v[9]*x2  + v[15]*x3  + v[21]*x4 + v[27]*x5 + v[33]*x6;
1413:       sum5 += v[4]*x1 + v[10]*x2 + v[16]*x3  + v[22]*x4 + v[28]*x5 + v[34]*x6;
1414:       sum6 += v[5]*x1 + v[11]*x2 + v[17]*x3  + v[23]*x4 + v[29]*x5 + v[35]*x6;
1415:       v    += 36;
1416:     }
1417:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6;
1418:     if (!usecprow) {
1419:       z += 6; y += 6;
1420:     }
1421:   }
1422:   VecRestoreArrayRead(xx,&x);
1423:   VecRestoreArrayPair(yy,zz,&yarray,&zarray);
1424:   PetscLogFlops(72.0*a->nz);
1425:   return(0);
1426: }

1430: PetscErrorCode MatMultAdd_SeqBAIJ_7(Mat A,Vec xx,Vec yy,Vec zz)
1431: {
1432:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1433:   PetscScalar       *y = 0,*z = 0,sum1,sum2,sum3,sum4,sum5,sum6,sum7;
1434:   const PetscScalar *x,*xb;
1435:   PetscScalar       x1,x2,x3,x4,x5,x6,x7,*yarray,*zarray;
1436:   const MatScalar   *v;
1437:   PetscErrorCode    ierr;
1438:   PetscInt          mbs = a->mbs,i,j,n;
1439:   const PetscInt    *idx,*ii,*ridx = NULL;
1440:   PetscBool         usecprow=a->compressedrow.use;

1443:   VecGetArrayRead(xx,&x);
1444:   VecGetArrayPair(yy,zz,&yarray,&zarray);

1446:   idx = a->j;
1447:   v   = a->a;
1448:   if (usecprow) {
1449:     if (zz != yy) {
1450:       PetscMemcpy(zarray,yarray,7*mbs*sizeof(PetscScalar));
1451:     }
1452:     mbs  = a->compressedrow.nrows;
1453:     ii   = a->compressedrow.i;
1454:     ridx = a->compressedrow.rindex;
1455:   } else {
1456:     ii = a->i;
1457:     y  = yarray;
1458:     z  = zarray;
1459:   }

1461:   for (i=0; i<mbs; i++) {
1462:     n = ii[1] - ii[0]; ii++;
1463:     if (usecprow) {
1464:       z = zarray + 7*ridx[i];
1465:       y = yarray + 7*ridx[i];
1466:     }
1467:     sum1 = y[0]; sum2 = y[1]; sum3 = y[2]; sum4 = y[3]; sum5 = y[4]; sum6 = y[5]; sum7 = y[6];
1468:     PetscPrefetchBlock(idx+n,n,0,PETSC_PREFETCH_HINT_NTA);     /* Indices for the next row (assumes same size as this one) */
1469:     PetscPrefetchBlock(v+49*n,49*n,0,PETSC_PREFETCH_HINT_NTA); /* Entries for the next row */
1470:     for (j=0; j<n; j++) {
1471:       xb    = x + 7*(*idx++);
1472:       x1    = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3]; x5 = xb[4]; x6 = xb[5]; x7 = xb[6];
1473:       sum1 += v[0]*x1 + v[7]*x2  + v[14]*x3  + v[21]*x4 + v[28]*x5 + v[35]*x6 + v[42]*x7;
1474:       sum2 += v[1]*x1 + v[8]*x2  + v[15]*x3  + v[22]*x4 + v[29]*x5 + v[36]*x6 + v[43]*x7;
1475:       sum3 += v[2]*x1 + v[9]*x2  + v[16]*x3  + v[23]*x4 + v[30]*x5 + v[37]*x6 + v[44]*x7;
1476:       sum4 += v[3]*x1 + v[10]*x2 + v[17]*x3  + v[24]*x4 + v[31]*x5 + v[38]*x6 + v[45]*x7;
1477:       sum5 += v[4]*x1 + v[11]*x2 + v[18]*x3  + v[25]*x4 + v[32]*x5 + v[39]*x6 + v[46]*x7;
1478:       sum6 += v[5]*x1 + v[12]*x2 + v[19]*x3  + v[26]*x4 + v[33]*x5 + v[40]*x6 + v[47]*x7;
1479:       sum7 += v[6]*x1 + v[13]*x2 + v[20]*x3  + v[27]*x4 + v[34]*x5 + v[41]*x6 + v[48]*x7;
1480:       v    += 49;
1481:     }
1482:     z[0] = sum1; z[1] = sum2; z[2] = sum3; z[3] = sum4; z[4] = sum5; z[5] = sum6; z[6] = sum7;
1483:     if (!usecprow) {
1484:       z += 7; y += 7;
1485:     }
1486:   }
1487:   VecRestoreArrayRead(xx,&x);
1488:   VecRestoreArrayPair(yy,zz,&yarray,&zarray);
1489:   PetscLogFlops(98.0*a->nz);
1490:   return(0);
1491: }

1495: PetscErrorCode MatMultAdd_SeqBAIJ_N(Mat A,Vec xx,Vec yy,Vec zz)
1496: {
1497:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1498:   PetscScalar       *z = 0,*work,*workt,*zarray;
1499:   const PetscScalar *x,*xb;
1500:   const MatScalar   *v;
1501:   PetscErrorCode    ierr;
1502:   PetscInt          mbs,i,bs=A->rmap->bs,j,n,bs2=a->bs2;
1503:   PetscInt          ncols,k;
1504:   const PetscInt    *ridx = NULL,*idx,*ii;
1505:   PetscBool         usecprow = a->compressedrow.use;

1508:   VecCopy(yy,zz);
1509:   VecGetArrayRead(xx,&x);
1510:   VecGetArray(zz,&zarray);

1512:   idx = a->j;
1513:   v   = a->a;
1514:   if (usecprow) {
1515:     mbs  = a->compressedrow.nrows;
1516:     ii   = a->compressedrow.i;
1517:     ridx = a->compressedrow.rindex;
1518:   } else {
1519:     mbs = a->mbs;
1520:     ii  = a->i;
1521:     z   = zarray;
1522:   }

1524:   if (!a->mult_work) {
1525:     k    = PetscMax(A->rmap->n,A->cmap->n);
1526:     PetscMalloc1(k+1,&a->mult_work);
1527:   }
1528:   work = a->mult_work;
1529:   for (i=0; i<mbs; i++) {
1530:     n     = ii[1] - ii[0]; ii++;
1531:     ncols = n*bs;
1532:     workt = work;
1533:     for (j=0; j<n; j++) {
1534:       xb = x + bs*(*idx++);
1535:       for (k=0; k<bs; k++) workt[k] = xb[k];
1536:       workt += bs;
1537:     }
1538:     if (usecprow) z = zarray + bs*ridx[i];
1539:     PetscKernel_w_gets_w_plus_Ar_times_v(bs,ncols,work,v,z);
1540:     /* BLASgemv_("N",&bs,&ncols,&_DOne,v,&bs,work,&_One,&_DOne,z,&_One); */
1541:     v += n*bs2;
1542:     if (!usecprow) z += bs;
1543:   }
1544:   VecRestoreArrayRead(xx,&x);
1545:   VecRestoreArray(zz,&zarray);
1546:   PetscLogFlops(2.0*a->nz*bs2);
1547:   return(0);
1548: }

1552: PetscErrorCode MatMultHermitianTranspose_SeqBAIJ(Mat A,Vec xx,Vec zz)
1553: {
1554:   PetscScalar    zero = 0.0;

1558:   VecSet(zz,zero);
1559:   MatMultHermitianTransposeAdd_SeqBAIJ(A,xx,zz,zz);
1560:   return(0);
1561: }

1565: PetscErrorCode MatMultTranspose_SeqBAIJ(Mat A,Vec xx,Vec zz)
1566: {
1567:   PetscScalar    zero = 0.0;

1571:   VecSet(zz,zero);
1572:   MatMultTransposeAdd_SeqBAIJ(A,xx,zz,zz);
1573:   return(0);
1574: }

1578: PetscErrorCode MatMultHermitianTransposeAdd_SeqBAIJ(Mat A,Vec xx,Vec yy,Vec zz)
1579: {
1580:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1581:   PetscScalar       *z,x1,x2,x3,x4,x5;
1582:   const PetscScalar *x,*xb = NULL;
1583:   const MatScalar   *v;
1584:   PetscErrorCode    ierr;
1585:   PetscInt          mbs,i,rval,bs=A->rmap->bs,j,n;
1586:   const PetscInt    *idx,*ii,*ib,*ridx = NULL;
1587:   Mat_CompressedRow cprow = a->compressedrow;
1588:   PetscBool         usecprow = cprow.use;

1591:   if (yy != zz) { VecCopy(yy,zz); }
1592:   VecGetArrayRead(xx,&x);
1593:   VecGetArray(zz,&z);

1595:   idx = a->j;
1596:   v   = a->a;
1597:   if (usecprow) {
1598:     mbs  = cprow.nrows;
1599:     ii   = cprow.i;
1600:     ridx = cprow.rindex;
1601:   } else {
1602:     mbs=a->mbs;
1603:     ii = a->i;
1604:     xb = x;
1605:   }

1607:   switch (bs) {
1608:   case 1:
1609:     for (i=0; i<mbs; i++) {
1610:       if (usecprow) xb = x + ridx[i];
1611:       x1 = xb[0];
1612:       ib = idx + ii[0];
1613:       n  = ii[1] - ii[0]; ii++;
1614:       for (j=0; j<n; j++) {
1615:         rval     = ib[j];
1616:         z[rval] += PetscConj(*v) * x1;
1617:         v++;
1618:       }
1619:       if (!usecprow) xb++;
1620:     }
1621:     break;
1622:   case 2:
1623:     for (i=0; i<mbs; i++) {
1624:       if (usecprow) xb = x + 2*ridx[i];
1625:       x1 = xb[0]; x2 = xb[1];
1626:       ib = idx + ii[0];
1627:       n  = ii[1] - ii[0]; ii++;
1628:       for (j=0; j<n; j++) {
1629:         rval       = ib[j]*2;
1630:         z[rval++] += PetscConj(v[0])*x1 + PetscConj(v[1])*x2;
1631:         z[rval++] += PetscConj(v[2])*x1 + PetscConj(v[3])*x2;
1632:         v         += 4;
1633:       }
1634:       if (!usecprow) xb += 2;
1635:     }
1636:     break;
1637:   case 3:
1638:     for (i=0; i<mbs; i++) {
1639:       if (usecprow) xb = x + 3*ridx[i];
1640:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2];
1641:       ib = idx + ii[0];
1642:       n  = ii[1] - ii[0]; ii++;
1643:       for (j=0; j<n; j++) {
1644:         rval       = ib[j]*3;
1645:         z[rval++] += PetscConj(v[0])*x1 + PetscConj(v[1])*x2 + PetscConj(v[2])*x3;
1646:         z[rval++] += PetscConj(v[3])*x1 + PetscConj(v[4])*x2 + PetscConj(v[5])*x3;
1647:         z[rval++] += PetscConj(v[6])*x1 + PetscConj(v[7])*x2 + PetscConj(v[8])*x3;
1648:         v         += 9;
1649:       }
1650:       if (!usecprow) xb += 3;
1651:     }
1652:     break;
1653:   case 4:
1654:     for (i=0; i<mbs; i++) {
1655:       if (usecprow) xb = x + 4*ridx[i];
1656:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];
1657:       ib = idx + ii[0];
1658:       n  = ii[1] - ii[0]; ii++;
1659:       for (j=0; j<n; j++) {
1660:         rval       = ib[j]*4;
1661:         z[rval++] +=  PetscConj(v[0])*x1 + PetscConj(v[1])*x2  + PetscConj(v[2])*x3  + PetscConj(v[3])*x4;
1662:         z[rval++] +=  PetscConj(v[4])*x1 + PetscConj(v[5])*x2  + PetscConj(v[6])*x3  + PetscConj(v[7])*x4;
1663:         z[rval++] +=  PetscConj(v[8])*x1 + PetscConj(v[9])*x2  + PetscConj(v[10])*x3 + PetscConj(v[11])*x4;
1664:         z[rval++] += PetscConj(v[12])*x1 + PetscConj(v[13])*x2 + PetscConj(v[14])*x3 + PetscConj(v[15])*x4;
1665:         v         += 16;
1666:       }
1667:       if (!usecprow) xb += 4;
1668:     }
1669:     break;
1670:   case 5:
1671:     for (i=0; i<mbs; i++) {
1672:       if (usecprow) xb = x + 5*ridx[i];
1673:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2];
1674:       x4 = xb[3]; x5 = xb[4];
1675:       ib = idx + ii[0];
1676:       n  = ii[1] - ii[0]; ii++;
1677:       for (j=0; j<n; j++) {
1678:         rval       = ib[j]*5;
1679:         z[rval++] +=  PetscConj(v[0])*x1 +  PetscConj(v[1])*x2 +  PetscConj(v[2])*x3 +  PetscConj(v[3])*x4 +  PetscConj(v[4])*x5;
1680:         z[rval++] +=  PetscConj(v[5])*x1 +  PetscConj(v[6])*x2 +  PetscConj(v[7])*x3 +  PetscConj(v[8])*x4 +  PetscConj(v[9])*x5;
1681:         z[rval++] += PetscConj(v[10])*x1 + PetscConj(v[11])*x2 + PetscConj(v[12])*x3 + PetscConj(v[13])*x4 + PetscConj(v[14])*x5;
1682:         z[rval++] += PetscConj(v[15])*x1 + PetscConj(v[16])*x2 + PetscConj(v[17])*x3 + PetscConj(v[18])*x4 + PetscConj(v[19])*x5;
1683:         z[rval++] += PetscConj(v[20])*x1 + PetscConj(v[21])*x2 + PetscConj(v[22])*x3 + PetscConj(v[23])*x4 + PetscConj(v[24])*x5;
1684:         v         += 25;
1685:       }
1686:       if (!usecprow) xb += 5;
1687:     }
1688:     break;
1689:   default: /* block sizes larger than 5 by 5 are handled by BLAS */
1690:     SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"block size larger than 5 is not supported yet");
1691: #if 0
1692:     {
1693:       PetscInt          ncols,k,bs2=a->bs2;
1694:       PetscScalar       *work,*workt,zb;
1695:       const PetscScalar *xtmp;
1696:       if (!a->mult_work) {
1697:         k    = PetscMax(A->rmap->n,A->cmap->n);
1698:         PetscMalloc1(k+1,&a->mult_work);
1699:       }
1700:       work = a->mult_work;
1701:       xtmp = x;
1702:       for (i=0; i<mbs; i++) {
1703:         n     = ii[1] - ii[0]; ii++;
1704:         ncols = n*bs;
1705:         PetscMemzero(work,ncols*sizeof(PetscScalar));
1706:         if (usecprow) xtmp = x + bs*ridx[i];
1707:         PetscKernel_w_gets_w_plus_trans_Ar_times_v(bs,ncols,xtmp,v,work);
1708:         /* BLASgemv_("T",&bs,&ncols,&_DOne,v,&bs,xtmp,&_One,&_DOne,work,&_One); */
1709:         v += n*bs2;
1710:         if (!usecprow) xtmp += bs;
1711:         workt = work;
1712:         for (j=0; j<n; j++) {
1713:           zb = z + bs*(*idx++);
1714:           for (k=0; k<bs; k++) zb[k] += workt[k] ;
1715:           workt += bs;
1716:         }
1717:       }
1718:     }
1719: #endif
1720:   }
1721:   VecRestoreArrayRead(xx,&x);
1722:   VecRestoreArray(zz,&z);
1723:   PetscLogFlops(2.0*a->nz*a->bs2);
1724:   return(0);
1725: }

1729: PetscErrorCode MatMultTransposeAdd_SeqBAIJ(Mat A,Vec xx,Vec yy,Vec zz)
1730: {
1731:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
1732:   PetscScalar       *zb,*z,x1,x2,x3,x4,x5;
1733:   const PetscScalar *x,*xb = 0;
1734:   const MatScalar   *v;
1735:   PetscErrorCode    ierr;
1736:   PetscInt          mbs,i,rval,bs=A->rmap->bs,j,n,bs2=a->bs2;
1737:   const PetscInt    *idx,*ii,*ib,*ridx = NULL;
1738:   Mat_CompressedRow cprow   = a->compressedrow;
1739:   PetscBool         usecprow=cprow.use;

1742:   if (yy != zz) { VecCopy(yy,zz); }
1743:   VecGetArrayRead(xx,&x);
1744:   VecGetArray(zz,&z);

1746:   idx = a->j;
1747:   v   = a->a;
1748:   if (usecprow) {
1749:     mbs  = cprow.nrows;
1750:     ii   = cprow.i;
1751:     ridx = cprow.rindex;
1752:   } else {
1753:     mbs=a->mbs;
1754:     ii = a->i;
1755:     xb = x;
1756:   }

1758:   switch (bs) {
1759:   case 1:
1760:     for (i=0; i<mbs; i++) {
1761:       if (usecprow) xb = x + ridx[i];
1762:       x1 = xb[0];
1763:       ib = idx + ii[0];
1764:       n  = ii[1] - ii[0]; ii++;
1765:       for (j=0; j<n; j++) {
1766:         rval     = ib[j];
1767:         z[rval] += *v * x1;
1768:         v++;
1769:       }
1770:       if (!usecprow) xb++;
1771:     }
1772:     break;
1773:   case 2:
1774:     for (i=0; i<mbs; i++) {
1775:       if (usecprow) xb = x + 2*ridx[i];
1776:       x1 = xb[0]; x2 = xb[1];
1777:       ib = idx + ii[0];
1778:       n  = ii[1] - ii[0]; ii++;
1779:       for (j=0; j<n; j++) {
1780:         rval       = ib[j]*2;
1781:         z[rval++] += v[0]*x1 + v[1]*x2;
1782:         z[rval++] += v[2]*x1 + v[3]*x2;
1783:         v         += 4;
1784:       }
1785:       if (!usecprow) xb += 2;
1786:     }
1787:     break;
1788:   case 3:
1789:     for (i=0; i<mbs; i++) {
1790:       if (usecprow) xb = x + 3*ridx[i];
1791:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2];
1792:       ib = idx + ii[0];
1793:       n  = ii[1] - ii[0]; ii++;
1794:       for (j=0; j<n; j++) {
1795:         rval       = ib[j]*3;
1796:         z[rval++] += v[0]*x1 + v[1]*x2 + v[2]*x3;
1797:         z[rval++] += v[3]*x1 + v[4]*x2 + v[5]*x3;
1798:         z[rval++] += v[6]*x1 + v[7]*x2 + v[8]*x3;
1799:         v         += 9;
1800:       }
1801:       if (!usecprow) xb += 3;
1802:     }
1803:     break;
1804:   case 4:
1805:     for (i=0; i<mbs; i++) {
1806:       if (usecprow) xb = x + 4*ridx[i];
1807:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2]; x4 = xb[3];
1808:       ib = idx + ii[0];
1809:       n  = ii[1] - ii[0]; ii++;
1810:       for (j=0; j<n; j++) {
1811:         rval       = ib[j]*4;
1812:         z[rval++] +=  v[0]*x1 +  v[1]*x2 +  v[2]*x3 +  v[3]*x4;
1813:         z[rval++] +=  v[4]*x1 +  v[5]*x2 +  v[6]*x3 +  v[7]*x4;
1814:         z[rval++] +=  v[8]*x1 +  v[9]*x2 + v[10]*x3 + v[11]*x4;
1815:         z[rval++] += v[12]*x1 + v[13]*x2 + v[14]*x3 + v[15]*x4;
1816:         v         += 16;
1817:       }
1818:       if (!usecprow) xb += 4;
1819:     }
1820:     break;
1821:   case 5:
1822:     for (i=0; i<mbs; i++) {
1823:       if (usecprow) xb = x + 5*ridx[i];
1824:       x1 = xb[0]; x2 = xb[1]; x3 = xb[2];
1825:       x4 = xb[3]; x5 = xb[4];
1826:       ib = idx + ii[0];
1827:       n  = ii[1] - ii[0]; ii++;
1828:       for (j=0; j<n; j++) {
1829:         rval       = ib[j]*5;
1830:         z[rval++] +=  v[0]*x1 +  v[1]*x2 +  v[2]*x3 +  v[3]*x4 +  v[4]*x5;
1831:         z[rval++] +=  v[5]*x1 +  v[6]*x2 +  v[7]*x3 +  v[8]*x4 +  v[9]*x5;
1832:         z[rval++] += v[10]*x1 + v[11]*x2 + v[12]*x3 + v[13]*x4 + v[14]*x5;
1833:         z[rval++] += v[15]*x1 + v[16]*x2 + v[17]*x3 + v[18]*x4 + v[19]*x5;
1834:         z[rval++] += v[20]*x1 + v[21]*x2 + v[22]*x3 + v[23]*x4 + v[24]*x5;
1835:         v         += 25;
1836:       }
1837:       if (!usecprow) xb += 5;
1838:     }
1839:     break;
1840:   default: {      /* block sizes larger then 5 by 5 are handled by BLAS */
1841:     PetscInt          ncols,k;
1842:     PetscScalar       *work,*workt;
1843:     const PetscScalar *xtmp;
1844:     if (!a->mult_work) {
1845:       k    = PetscMax(A->rmap->n,A->cmap->n);
1846:       PetscMalloc1(k+1,&a->mult_work);
1847:     }
1848:     work = a->mult_work;
1849:     xtmp = x;
1850:     for (i=0; i<mbs; i++) {
1851:       n     = ii[1] - ii[0]; ii++;
1852:       ncols = n*bs;
1853:       PetscMemzero(work,ncols*sizeof(PetscScalar));
1854:       if (usecprow) xtmp = x + bs*ridx[i];
1855:       PetscKernel_w_gets_w_plus_trans_Ar_times_v(bs,ncols,xtmp,v,work);
1856:       /* BLASgemv_("T",&bs,&ncols,&_DOne,v,&bs,xtmp,&_One,&_DOne,work,&_One); */
1857:       v += n*bs2;
1858:       if (!usecprow) xtmp += bs;
1859:       workt = work;
1860:       for (j=0; j<n; j++) {
1861:         zb = z + bs*(*idx++);
1862:         for (k=0; k<bs; k++) zb[k] += workt[k];
1863:         workt += bs;
1864:       }
1865:     }
1866:     }
1867:   }
1868:   VecRestoreArrayRead(xx,&x);
1869:   VecRestoreArray(zz,&z);
1870:   PetscLogFlops(2.0*a->nz*a->bs2);
1871:   return(0);
1872: }

1876: PetscErrorCode MatScale_SeqBAIJ(Mat inA,PetscScalar alpha)
1877: {
1878:   Mat_SeqBAIJ    *a      = (Mat_SeqBAIJ*)inA->data;
1879:   PetscInt       totalnz = a->bs2*a->nz;
1880:   PetscScalar    oalpha  = alpha;
1882:   PetscBLASInt   one = 1,tnz;

1885:   PetscBLASIntCast(totalnz,&tnz);
1886:   PetscStackCallBLAS("BLASscal",BLASscal_(&tnz,&oalpha,a->a,&one));
1887:   PetscLogFlops(totalnz);
1888:   return(0);
1889: }

1893: PetscErrorCode MatNorm_SeqBAIJ(Mat A,NormType type,PetscReal *norm)
1894: {
1896:   Mat_SeqBAIJ    *a  = (Mat_SeqBAIJ*)A->data;
1897:   MatScalar      *v  = a->a;
1898:   PetscReal      sum = 0.0;
1899:   PetscInt       i,j,k,bs=A->rmap->bs,nz=a->nz,bs2=a->bs2,k1;

1902:   if (type == NORM_FROBENIUS) {
1903:     for (i=0; i< bs2*nz; i++) {
1904:       sum += PetscRealPart(PetscConj(*v)*(*v)); v++;
1905:     }
1906:     *norm = PetscSqrtReal(sum);
1907:     PetscLogFlops(2*bs2*nz);
1908:   } else if (type == NORM_1) { /* maximum column sum */
1909:     PetscReal *tmp;
1910:     PetscInt  *bcol = a->j;
1911:     PetscCalloc1(A->cmap->n+1,&tmp);
1912:     for (i=0; i<nz; i++) {
1913:       for (j=0; j<bs; j++) {
1914:         k1 = bs*(*bcol) + j; /* column index */
1915:         for (k=0; k<bs; k++) {
1916:           tmp[k1] += PetscAbsScalar(*v); v++;
1917:         }
1918:       }
1919:       bcol++;
1920:     }
1921:     *norm = 0.0;
1922:     for (j=0; j<A->cmap->n; j++) {
1923:       if (tmp[j] > *norm) *norm = tmp[j];
1924:     }
1925:     PetscFree(tmp);
1926:     PetscLogFlops(PetscMax(bs2*nz-1,0));
1927:   } else if (type == NORM_INFINITY) { /* maximum row sum */
1928:     *norm = 0.0;
1929:     for (k=0; k<bs; k++) {
1930:       for (j=0; j<a->mbs; j++) {
1931:         v   = a->a + bs2*a->i[j] + k;
1932:         sum = 0.0;
1933:         for (i=0; i<a->i[j+1]-a->i[j]; i++) {
1934:           for (k1=0; k1<bs; k1++) {
1935:             sum += PetscAbsScalar(*v);
1936:             v   += bs;
1937:           }
1938:         }
1939:         if (sum > *norm) *norm = sum;
1940:       }
1941:     }
1942:     PetscLogFlops(PetscMax(bs2*nz-1,0));
1943:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for this norm yet");
1944:   return(0);
1945: }


1950: PetscErrorCode MatEqual_SeqBAIJ(Mat A,Mat B,PetscBool * flg)
1951: {
1952:   Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)A->data,*b = (Mat_SeqBAIJ*)B->data;

1956:   /* If the  matrix/block dimensions are not equal, or no of nonzeros or shift */
1957:   if ((A->rmap->N != B->rmap->N) || (A->cmap->n != B->cmap->n) || (A->rmap->bs != B->rmap->bs)|| (a->nz != b->nz)) {
1958:     *flg = PETSC_FALSE;
1959:     return(0);
1960:   }

1962:   /* if the a->i are the same */
1963:   PetscMemcmp(a->i,b->i,(a->mbs+1)*sizeof(PetscInt),flg);
1964:   if (!*flg) return(0);

1966:   /* if a->j are the same */
1967:   PetscMemcmp(a->j,b->j,(a->nz)*sizeof(PetscInt),flg);
1968:   if (!*flg) return(0);

1970:   /* if a->a are the same */
1971:   PetscMemcmp(a->a,b->a,(a->nz)*(A->rmap->bs)*(B->rmap->bs)*sizeof(PetscScalar),flg);
1972:   return(0);

1974: }

1978: PetscErrorCode MatGetDiagonal_SeqBAIJ(Mat A,Vec v)
1979: {
1980:   Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)A->data;
1982:   PetscInt       i,j,k,n,row,bs,*ai,*aj,ambs,bs2;
1983:   PetscScalar    *x,zero = 0.0;
1984:   MatScalar      *aa,*aa_j;

1987:   if (A->factortype) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for factored matrix");
1988:   bs   = A->rmap->bs;
1989:   aa   = a->a;
1990:   ai   = a->i;
1991:   aj   = a->j;
1992:   ambs = a->mbs;
1993:   bs2  = a->bs2;

1995:   VecSet(v,zero);
1996:   VecGetArray(v,&x);
1997:   VecGetLocalSize(v,&n);
1998:   if (n != A->rmap->N) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Nonconforming matrix and vector");
1999:   for (i=0; i<ambs; i++) {
2000:     for (j=ai[i]; j<ai[i+1]; j++) {
2001:       if (aj[j] == i) {
2002:         row  = i*bs;
2003:         aa_j = aa+j*bs2;
2004:         for (k=0; k<bs2; k+=(bs+1),row++) x[row] = aa_j[k];
2005:         break;
2006:       }
2007:     }
2008:   }
2009:   VecRestoreArray(v,&x);
2010:   return(0);
2011: }

2015: PetscErrorCode MatDiagonalScale_SeqBAIJ(Mat A,Vec ll,Vec rr)
2016: {
2017:   Mat_SeqBAIJ       *a = (Mat_SeqBAIJ*)A->data;
2018:   const PetscScalar *l,*r,*li,*ri;
2019:   PetscScalar       x;
2020:   MatScalar         *aa, *v;
2021:   PetscErrorCode    ierr;
2022:   PetscInt          i,j,k,lm,rn,M,m,n,mbs,tmp,bs,bs2,iai;
2023:   const PetscInt    *ai,*aj;

2026:   ai  = a->i;
2027:   aj  = a->j;
2028:   aa  = a->a;
2029:   m   = A->rmap->n;
2030:   n   = A->cmap->n;
2031:   bs  = A->rmap->bs;
2032:   mbs = a->mbs;
2033:   bs2 = a->bs2;
2034:   if (ll) {
2035:     VecGetArrayRead(ll,&l);
2036:     VecGetLocalSize(ll,&lm);
2037:     if (lm != m) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Left scaling vector wrong length");
2038:     for (i=0; i<mbs; i++) { /* for each block row */
2039:       M  = ai[i+1] - ai[i];
2040:       li = l + i*bs;
2041:       v  = aa + bs2*ai[i];
2042:       for (j=0; j<M; j++) { /* for each block */
2043:         for (k=0; k<bs2; k++) {
2044:           (*v++) *= li[k%bs];
2045:         }
2046:       }
2047:     }
2048:     VecRestoreArrayRead(ll,&l);
2049:     PetscLogFlops(a->nz);
2050:   }

2052:   if (rr) {
2053:     VecGetArrayRead(rr,&r);
2054:     VecGetLocalSize(rr,&rn);
2055:     if (rn != n) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Right scaling vector wrong length");
2056:     for (i=0; i<mbs; i++) { /* for each block row */
2057:       iai = ai[i];
2058:       M   = ai[i+1] - iai;
2059:       v   = aa + bs2*iai;
2060:       for (j=0; j<M; j++) { /* for each block */
2061:         ri = r + bs*aj[iai+j];
2062:         for (k=0; k<bs; k++) {
2063:           x = ri[k];
2064:           for (tmp=0; tmp<bs; tmp++) v[tmp] *= x;
2065:           v += bs;
2066:         }
2067:       }
2068:     }
2069:     VecRestoreArrayRead(rr,&r);
2070:     PetscLogFlops(a->nz);
2071:   }
2072:   return(0);
2073: }


2078: PetscErrorCode MatGetInfo_SeqBAIJ(Mat A,MatInfoType flag,MatInfo *info)
2079: {
2080:   Mat_SeqBAIJ *a = (Mat_SeqBAIJ*)A->data;

2083:   info->block_size   = a->bs2;
2084:   info->nz_allocated = a->bs2*a->maxnz;
2085:   info->nz_used      = a->bs2*a->nz;
2086:   info->nz_unneeded  = (double)(info->nz_allocated - info->nz_used);
2087:   info->assemblies   = A->num_ass;
2088:   info->mallocs      = A->info.mallocs;
2089:   info->memory       = ((PetscObject)A)->mem;
2090:   if (A->factortype) {
2091:     info->fill_ratio_given  = A->info.fill_ratio_given;
2092:     info->fill_ratio_needed = A->info.fill_ratio_needed;
2093:     info->factor_mallocs    = A->info.factor_mallocs;
2094:   } else {
2095:     info->fill_ratio_given  = 0;
2096:     info->fill_ratio_needed = 0;
2097:     info->factor_mallocs    = 0;
2098:   }
2099:   return(0);
2100: }

2104: PetscErrorCode MatZeroEntries_SeqBAIJ(Mat A)
2105: {
2106:   Mat_SeqBAIJ    *a = (Mat_SeqBAIJ*)A->data;

2110:   PetscMemzero(a->a,a->bs2*a->i[a->mbs]*sizeof(MatScalar));
2111:   return(0);
2112: }