Actual source code: mpiaijcusp.cu

petsc-3.7.3 2016-08-01
Report Typos and Errors
  1: #define PETSC_SKIP_COMPLEX
  2: #define PETSC_SKIP_SPINLOCK

  4: #include <petscconf.h>
  5: #include <../src/mat/impls/aij/mpi/mpiaij.h>   /*I "petscmat.h" I*/
  6: #include <../src/mat/impls/aij/mpi/mpicusp/mpicuspmatimpl.h>

 10: PetscErrorCode  MatMPIAIJSetPreallocation_MPIAIJCUSP(Mat B,PetscInt d_nz,const PetscInt d_nnz[],PetscInt o_nz,const PetscInt o_nnz[])
 11: {
 12:   Mat_MPIAIJ *b = (Mat_MPIAIJ*)B->data;
 13:   Mat_MPIAIJCUSP * cuspStruct = (Mat_MPIAIJCUSP*)b->spptr;
 15:   PetscInt       i;

 18:   PetscLayoutSetUp(B->rmap);
 19:   PetscLayoutSetUp(B->cmap);
 20:   if (d_nnz) {
 21:     for (i=0; i<B->rmap->n; i++) {
 22:       if (d_nnz[i] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"d_nnz cannot be less than 0: local row %D value %D",i,d_nnz[i]);
 23:     }
 24:   }
 25:   if (o_nnz) {
 26:     for (i=0; i<B->rmap->n; i++) {
 27:       if (o_nnz[i] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"o_nnz cannot be less than 0: local row %D value %D",i,o_nnz[i]);
 28:     }
 29:   }
 30:   if (!B->preallocated) {
 31:     /* Explicitly create 2 MATSEQAIJCUSP matrices. */
 32:     MatCreate(PETSC_COMM_SELF,&b->A);
 33:     MatSetSizes(b->A,B->rmap->n,B->cmap->n,B->rmap->n,B->cmap->n);
 34:     MatSetType(b->A,MATSEQAIJCUSP);
 35:     PetscLogObjectParent((PetscObject)B,(PetscObject)b->A);
 36:     MatCreate(PETSC_COMM_SELF,&b->B);
 37:     MatSetSizes(b->B,B->rmap->n,B->cmap->N,B->rmap->n,B->cmap->N);
 38:     MatSetType(b->B,MATSEQAIJCUSP);
 39:     PetscLogObjectParent((PetscObject)B,(PetscObject)b->B);
 40:   }
 41:   MatSeqAIJSetPreallocation(b->A,d_nz,d_nnz);
 42:   MatSeqAIJSetPreallocation(b->B,o_nz,o_nnz);
 43:   MatCUSPSetFormat(b->A,MAT_CUSP_MULT,cuspStruct->diagGPUMatFormat);
 44:   MatCUSPSetFormat(b->B,MAT_CUSP_MULT,cuspStruct->offdiagGPUMatFormat);
 45:   MatCUSPSetStream(b->A,cuspStruct->stream);
 46:   MatCUSPSetStream(b->B,cuspStruct->stream);
 47:   B->preallocated = PETSC_TRUE;
 48:   return(0);
 49: }

 53: PetscErrorCode  MatCreateVecs_MPIAIJCUSP(Mat mat,Vec *right,Vec *left)
 54: {
 56:   PetscInt rbs,cbs;

 59:   MatGetBlockSizes(mat,&rbs,&cbs);
 60:   if (right) {
 61:     VecCreate(PetscObjectComm((PetscObject)mat),right);
 62:     VecSetSizes(*right,mat->cmap->n,PETSC_DETERMINE);
 63:     VecSetBlockSize(*right,cbs);
 64:     VecSetType(*right,VECCUSP);
 65:     VecSetLayout(*right,mat->cmap);
 66:   }
 67:   if (left) {
 68:     VecCreate(PetscObjectComm((PetscObject)mat),left);
 69:     VecSetSizes(*left,mat->rmap->n,PETSC_DETERMINE);
 70:     VecSetBlockSize(*left,rbs);
 71:     VecSetType(*left,VECCUSP);
 72:     VecSetLayout(*left,mat->rmap);
 73:   }
 74:   return(0);
 75: }


 80: PetscErrorCode MatMult_MPIAIJCUSP(Mat A,Vec xx,Vec yy)
 81: {
 82:   /* This multiplication sequence is different sequence
 83:      than the CPU version. In particular, the diagonal block
 84:      multiplication kernel is launched in one stream. Then,
 85:      in a separate stream, the data transfers from DeviceToHost
 86:      (with MPI messaging in between), then HostToDevice are
 87:      launched. Once the data transfer stream is synchronized,
 88:      to ensure messaging is complete, the MatMultAdd kernel
 89:      is launched in the original (MatMult) stream to protect
 90:      against race conditions.

 92:      This sequence should only be called for GPU computation. */
 93:   Mat_MPIAIJ     *a = (Mat_MPIAIJ*)A->data;
 95:   PetscInt       nt;

 98:   VecGetLocalSize(xx,&nt);
 99:   if (nt != A->cmap->n) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Incompatible partition of A (%D) and xx (%D)",A->cmap->n,nt);
100:   VecScatterInitializeForGPU(a->Mvctx,xx,SCATTER_FORWARD);
101:   (*a->A->ops->mult)(a->A,xx,yy);
102:   VecScatterBegin(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
103:   VecScatterEnd(a->Mvctx,xx,a->lvec,INSERT_VALUES,SCATTER_FORWARD);
104:   (*a->B->ops->multadd)(a->B,a->lvec,yy,yy);
105:   VecScatterFinalizeForGPU(a->Mvctx);
106:   return(0);
107: }

109: PetscErrorCode MatSetValuesBatch_MPIAIJCUSP(Mat J, PetscInt Ne, PetscInt Nl, PetscInt *elemRows, const PetscScalar *elemMats);

113: PetscErrorCode MatCUSPSetFormat_MPIAIJCUSP(Mat A,MatCUSPFormatOperation op,MatCUSPStorageFormat format)
114: {
115:   Mat_MPIAIJ     *a           = (Mat_MPIAIJ*)A->data;
116:   Mat_MPIAIJCUSP * cuspStruct = (Mat_MPIAIJCUSP*)a->spptr;

119:   switch (op) {
120:   case MAT_CUSP_MULT_DIAG:
121:     cuspStruct->diagGPUMatFormat = format;
122:     break;
123:   case MAT_CUSP_MULT_OFFDIAG:
124:     cuspStruct->offdiagGPUMatFormat = format;
125:     break;
126:   case MAT_CUSP_ALL:
127:     cuspStruct->diagGPUMatFormat    = format;
128:     cuspStruct->offdiagGPUMatFormat = format;
129:     break;
130:   default:
131:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"unsupported operation %d for MatCUSPFormatOperation. Only MAT_CUSP_MULT_DIAG, MAT_CUSP_MULT_DIAG, and MAT_CUSP_MULT_ALL are currently supported.",op);
132:   }
133:   return(0);
134: }

138: PetscErrorCode MatSetFromOptions_MPIAIJCUSP(PetscOptionItems *PetscOptionsObject,Mat A)
139: {
140:   MatCUSPStorageFormat format;
141:   PetscErrorCode       ierr;
142:   PetscBool            flg;
143:   Mat_MPIAIJ           *a = (Mat_MPIAIJ*)A->data;
144:   Mat_MPIAIJCUSP       *cuspStruct = (Mat_MPIAIJCUSP*)a->spptr;

147:   MatSetFromOptions_MPIAIJ(PetscOptionsObject,A);

149:   PetscOptionsHead(PetscOptionsObject,"MPIAIJCUSP options");
150:   PetscObjectOptionsBegin((PetscObject)A);
151:   if (A->factortype==MAT_FACTOR_NONE) {
152:     PetscOptionsEnum("-mat_cusp_mult_diag_storage_format","sets storage format of the diagonal blocks of (mpi)aijcusp gpu matrices for SpMV",
153:                             "MatCUSPSetFormat",MatCUSPStorageFormats,(PetscEnum)cuspStruct->diagGPUMatFormat,(PetscEnum*)&format,&flg);
154:     if (flg) {
155:       MatCUSPSetFormat(A,MAT_CUSP_MULT_DIAG,format);
156:     }
157:     PetscOptionsEnum("-mat_cusp_mult_offdiag_storage_format","sets storage format of the off-diagonal blocks (mpi)aijcusp gpu matrices for SpMV",
158:                             "MatCUSPSetFormat",MatCUSPStorageFormats,(PetscEnum)cuspStruct->offdiagGPUMatFormat,(PetscEnum*)&format,&flg);
159:     if (flg) {
160:       MatCUSPSetFormat(A,MAT_CUSP_MULT_OFFDIAG,format);
161:     }
162:     PetscOptionsEnum("-mat_cusp_storage_format","sets storage format of the diagonal and off-diagonal blocks (mpi)aijcusp gpu matrices for SpMV",
163:                             "MatCUSPSetFormat",MatCUSPStorageFormats,(PetscEnum)cuspStruct->diagGPUMatFormat,(PetscEnum*)&format,&flg);
164:     if (flg) {
165:       MatCUSPSetFormat(A,MAT_CUSP_ALL,format);
166:     }
167:   }
168:   PetscOptionsEnd();
169:   return(0);
170: }

174: PetscErrorCode MatDestroy_MPIAIJCUSP(Mat A)
175: {
177:   Mat_MPIAIJ     *a           = (Mat_MPIAIJ*)A->data;
178:   Mat_MPIAIJCUSP *cuspStruct = (Mat_MPIAIJCUSP*)a->spptr;
179:   cudaError_t    err=cudaSuccess;

182:   try {
183:     err = cudaStreamDestroy(cuspStruct->stream);
184:     if (err!=cudaSuccess) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Mat_MPIAIJCUSP error: %s", cudaGetErrorString(err));
185:     delete cuspStruct;
186:   } catch(char *ex) {
187:     SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Mat_MPIAIJCUSP error: %s", ex);
188:   }
189:   cuspStruct = 0;
190:   MatDestroy_MPIAIJ(A);
191:   return(0);
192: }

196: PETSC_EXTERN PetscErrorCode MatCreate_MPIAIJCUSP(Mat A)
197: {
199:   Mat_MPIAIJ     *a;
200:   Mat_MPIAIJCUSP * cuspStruct;
201:   cudaError_t    err=cudaSuccess;

204:   MatCreate_MPIAIJ(A);
205:   PetscObjectComposeFunction((PetscObject)A,"MatMPIAIJSetPreallocation_C",MatMPIAIJSetPreallocation_MPIAIJCUSP);
206:   A->ops->getvecs        = MatCreateVecs_MPIAIJCUSP;
207:   A->ops->setvaluesbatch = MatSetValuesBatch_MPIAIJCUSP;

209:   a          = (Mat_MPIAIJ*)A->data;
210:   a->spptr   = new Mat_MPIAIJCUSP;
211:   cuspStruct = (Mat_MPIAIJCUSP*)a->spptr;

213:   cuspStruct->diagGPUMatFormat    = MAT_CUSP_CSR;
214:   cuspStruct->offdiagGPUMatFormat = MAT_CUSP_CSR;
215:   err = cudaStreamCreate(&(cuspStruct->stream));
216:   if (err!=cudaSuccess) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Mat_MPIAIJCUSP error: %s", cudaGetErrorString(err));

218:   A->ops->mult           = MatMult_MPIAIJCUSP;
219:   A->ops->setfromoptions = MatSetFromOptions_MPIAIJCUSP;
220:   A->ops->destroy        = MatDestroy_MPIAIJCUSP;

222:   PetscObjectComposeFunction((PetscObject)A,"MatCUSPSetFormat_C", MatCUSPSetFormat_MPIAIJCUSP);
223:   PetscObjectChangeTypeName((PetscObject)A,MATMPIAIJCUSP);
224:   return(0);
225: }


228: /*@
229:    MatCreateAIJCUSP - Creates a sparse matrix in AIJ (compressed row) format
230:    (the default parallel PETSc format).  This matrix will ultimately pushed down
231:    to NVidia GPUs and use the CUSP library for calculations. For good matrix
232:    assembly performance the user should preallocate the matrix storage by setting
233:    the parameter nz (or the array nnz).  By setting these parameters accurately,
234:    performance during matrix assembly can be increased by more than a factor of 50.


237:    Collective on MPI_Comm

239:    Input Parameters:
240: +  comm - MPI communicator, set to PETSC_COMM_SELF
241: .  m - number of rows
242: .  n - number of columns
243: .  nz - number of nonzeros per row (same for all rows)
244: -  nnz - array containing the number of nonzeros in the various rows
245:          (possibly different for each row) or NULL

247:    Output Parameter:
248: .  A - the matrix

250:    It is recommended that one use the MatCreate(), MatSetType() and/or MatSetFromOptions(),
251:    MatXXXXSetPreallocation() paradigm instead of this routine directly.
252:    [MatXXXXSetPreallocation() is, for example, MatSeqAIJSetPreallocation]

254:    Notes:
255:    If nnz is given then nz is ignored

257:    The AIJ format (also called the Yale sparse matrix format or
258:    compressed row storage), is fully compatible with standard Fortran 77
259:    storage.  That is, the stored row and column indices can begin at
260:    either one (as in Fortran) or zero.  See the users' manual for details.

262:    Specify the preallocated storage with either nz or nnz (not both).
263:    Set nz=PETSC_DEFAULT and nnz=NULL for PETSc to control dynamic memory
264:    allocation.  For large problems you MUST preallocate memory or you
265:    will get TERRIBLE performance, see the users' manual chapter on matrices.

267:    By default, this format uses inodes (identical nodes) when possible, to
268:    improve numerical efficiency of matrix-vector products and solves. We
269:    search for consecutive rows with the same nonzero structure, thereby
270:    reusing matrix information to achieve increased efficiency.

272:    Level: intermediate

274: .seealso: MatCreate(), MatCreateAIJ(), MatSetValues(), MatSeqAIJSetColumnIndices(), MatCreateSeqAIJWithArrays(), MatCreateAIJ(), MATMPIAIJCUSP, MATAIJCUSP
275: @*/
278: PetscErrorCode  MatCreateAIJCUSP(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt M,PetscInt N,PetscInt d_nz,const PetscInt d_nnz[],PetscInt o_nz,const PetscInt o_nnz[],Mat *A)
279: {
281:   PetscMPIInt    size;

284:   MatCreate(comm,A);
285:   MatSetSizes(*A,m,n,M,N);
286:   MPI_Comm_size(comm,&size);
287:   if (size > 1) {
288:     MatSetType(*A,MATMPIAIJCUSP);
289:     MatMPIAIJSetPreallocation(*A,d_nz,d_nnz,o_nz,o_nnz);
290:   } else {
291:     MatSetType(*A,MATSEQAIJCUSP);
292:     MatSeqAIJSetPreallocation(*A,d_nz,d_nnz);
293:   }
294:   return(0);
295: }

297: /*M
298:    MATAIJCUSP - MATMPIAIJCUSP= "aijcusp" = "mpiaijcusp" - A matrix type to be used for sparse matrices.

300:    A matrix type type whose data resides on Nvidia GPUs. These matrices can be CSR format.
301:    All matrix calculations are performed using the CUSP library. DIA and ELL
302:    formats are also available

304:    This matrix type is identical to MATSEQAIJCUSP when constructed with a single process communicator,
305:    and MATMPIAIJCUSP otherwise.  As a result, for single process communicators,
306:    MatSeqAIJSetPreallocation is supported, and similarly MatMPIAIJSetPreallocation is supported
307:    for communicators controlling multiple processes.  It is recommended that you call both of
308:    the above preallocation routines for simplicity.

310:    Options Database Keys:
311: +  -mat_type mpiaijcusp - sets the matrix type to "mpiaijcusp" during a call to MatSetFromOptions()
312: .  -mat_cusp_storage_format csr - sets the storage format of diagonal and off-diagonal matrices during a call to MatSetFromOptions(). Other storage formats include dia (diagonal) or ell (ellpack).
313: .  -mat_cusp_mult_diag_storage_format csr - sets the storage format of diagonal matrix during a call to MatSetFromOptions(). Other storage formats include dia (diagonal) or ell (ellpack).
314: -  -mat_cusp_mult_offdiag_storage_format csr - sets the storage format of off-diagonal matrix during a call to MatSetFromOptions(). Other storage formats include dia (diagonal) or ell (ellpack).

316:   Level: beginner

318:  .seealso: MatCreateAIJCUSP(), MATSEQAIJCUSP, MatCreateSeqAIJCUSP(), MatCUSPSetFormat(), MatCUSPStorageFormat, MatCUSPFormatOperation
319: M*/