Actual source code: mkl_cpardiso.c

petsc-3.7.3 2016-08-01
Report Typos and Errors
  1: #if defined(PETSC_HAVE_LIBMKL_INTEL_ILP64)
  2: #define MKL_ILP64
  3: #endif

  5: #include <../src/mat/impls/aij/seq/aij.h>                       /*I "petscmat.h" I*/
  6: #include <../src/mat/impls/aij/mpi/mpiaij.h>

  8: #include <stdio.h>
  9: #include <stdlib.h>
 10: #include <math.h>
 11: #include <mkl.h>
 12: #include <mkl_cluster_sparse_solver.h>

 14: /*
 15:  *  Possible mkl_cpardiso phases that controls the execution of the solver.
 16:  *  For more information check mkl_cpardiso manual.
 17:  */
 18: #define JOB_ANALYSIS 11
 19: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION 12
 20: #define JOB_ANALYSIS_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 13
 21: #define JOB_NUMERICAL_FACTORIZATION 22
 22: #define JOB_NUMERICAL_FACTORIZATION_SOLVE_ITERATIVE_REFINEMENT 23
 23: #define JOB_SOLVE_ITERATIVE_REFINEMENT 33
 24: #define JOB_SOLVE_FORWARD_SUBSTITUTION 331
 25: #define JOB_SOLVE_DIAGONAL_SUBSTITUTION 332
 26: #define JOB_SOLVE_BACKWARD_SUBSTITUTION 333
 27: #define JOB_RELEASE_OF_LU_MEMORY 0
 28: #define JOB_RELEASE_OF_ALL_MEMORY -1

 30: #define IPARM_SIZE 64
 31: #define INT_TYPE MKL_INT

 33: static const char *Err_MSG_CPardiso(int errNo){
 34:   switch (errNo) {
 35:     case -1:
 36:       return "input inconsistent"; break;
 37:     case -2:
 38:       return "not enough memory"; break;
 39:     case -3:
 40:       return "reordering problem"; break;
 41:     case -4:
 42:       return "zero pivot, numerical factorization or iterative refinement problem"; break;
 43:     case -5:
 44:       return "unclassified (internal) error"; break;
 45:     case -6:
 46:       return "preordering failed (matrix types 11, 13 only)"; break;
 47:     case -7:
 48:       return "diagonal matrix problem"; break;
 49:     case -8:
 50:       return "32-bit integer overflow problem"; break;
 51:     case -9:
 52:       return "not enough memory for OOC"; break;
 53:     case -10:
 54:       return "problems with opening OOC temporary files"; break;
 55:     case -11:
 56:       return "read/write problems with the OOC data file"; break;
 57:     default :
 58:       return "unknown error";
 59:   }
 60: }

 62: /*
 63:  *  Internal data structure.
 64:  *  For more information check mkl_cpardiso manual.
 65:  */

 67: typedef struct {

 69:   /* Configuration vector */
 70:   INT_TYPE     iparm[IPARM_SIZE];

 72:   /*
 73:    * Internal mkl_cpardiso memory location.
 74:    * After the first call to mkl_cpardiso do not modify pt, as that could cause a serious memory leak.
 75:    */
 76:   void         *pt[IPARM_SIZE];

 78:   MPI_Comm     comm_mkl_cpardiso;

 80:   /* Basic mkl_cpardiso info*/
 81:   INT_TYPE     phase, maxfct, mnum, mtype, n, nrhs, msglvl, err;

 83:   /* Matrix structure */
 84:   PetscScalar  *a;

 86:   INT_TYPE     *ia, *ja;

 88:   /* Number of non-zero elements */
 89:   INT_TYPE     nz;

 91:   /* Row permutaton vector*/
 92:   INT_TYPE     *perm;

 94:   /* Define is matrix preserve sparce structure. */
 95:   MatStructure matstruc;

 97:   PetscErrorCode (*ConvertToTriples)(Mat, MatReuse, PetscInt*, PetscInt**, PetscInt**, PetscScalar**);

 99:   /* True if mkl_cpardiso function have been used. */
100:   PetscBool CleanUp;
101: } Mat_MKL_CPARDISO;

103: /*
104:  * Copy the elements of matrix A.
105:  * Input:
106:  *   - Mat A: MATSEQAIJ matrix
107:  *   - int shift: matrix index.
108:  *     - 0 for c representation
109:  *     - 1 for fortran representation
110:  *   - MatReuse reuse:
111:  *     - MAT_INITIAL_MATRIX: Create a new aij representation
112:  *     - MAT_REUSE_MATRIX: Reuse all aij representation and just change values
113:  * Output:
114:  *   - int *nnz: Number of nonzero-elements.
115:  *   - int **r pointer to i index
116:  *   - int **c pointer to j elements
117:  *   - MATRIXTYPE **v: Non-zero elements
118:  */
121: PetscErrorCode MatCopy_seqaij_seqaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
122: {
123:   Mat_SeqAIJ *aa=(Mat_SeqAIJ*)A->data;

126:   *v=aa->a;
127:   if (reuse == MAT_INITIAL_MATRIX) {
128:     *r   = (INT_TYPE*)aa->i;
129:     *c   = (INT_TYPE*)aa->j;
130:     *nnz = aa->nz;
131:   }
132:   return(0);
133: }

137: PetscErrorCode MatConvertToTriples_mpiaij_mpiaij_MKL_CPARDISO(Mat A, MatReuse reuse, PetscInt *nnz, PetscInt **r, PetscInt **c, PetscScalar **v)
138: {
139:   const PetscInt    *ai, *aj, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
140:   PetscErrorCode    ierr;
141:   PetscInt          rstart,nz,i,j,jj,irow,countA,countB;
142:   PetscInt          *row,*col;
143:   const PetscScalar *av, *bv,*v1,*v2;
144:   PetscScalar       *val;
145:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ*)A->data;
146:   Mat_SeqAIJ        *aa  = (Mat_SeqAIJ*)(mat->A)->data;
147:   Mat_SeqAIJ        *bb  = (Mat_SeqAIJ*)(mat->B)->data;
148:   PetscInt          nn, colA_start,jB,jcol;

151:   ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
152:   av=aa->a; bv=bb->a;

154:   garray = mat->garray;

156:   if (reuse == MAT_INITIAL_MATRIX) {
157:     nz   = aa->nz + bb->nz;
158:     *nnz = nz;
159:     PetscMalloc((nz*(sizeof(PetscInt)+sizeof(PetscScalar)) + (m+1)*sizeof(PetscInt)), &row);
160:     col  = row + m + 1;
161:     val  = (PetscScalar*)(col + nz);
162:     *r = row; *c = col; *v = val;
163:     row[0] = 0;
164:   } else {
165:     row = *r; col = *c; val = *v;
166:   }

168:   nz = 0;
169:   for (i=0; i<m; i++) {
170:     row[i] = nz;
171:     countA     = ai[i+1] - ai[i];
172:     countB     = bi[i+1] - bi[i];
173:     ajj        = aj + ai[i]; /* ptr to the beginning of this row */
174:     bjj        = bj + bi[i];

176:     /* B part, smaller col index */
177:     colA_start = rstart + ajj[0]; /* the smallest global col index of A */
178:     jB         = 0;
179:     for (j=0; j<countB; j++) {
180:       jcol = garray[bjj[j]];
181:       if (jcol > colA_start) {
182:         jB = j;
183:         break;
184:       }
185:       col[nz]   = jcol;
186:       val[nz++] = *bv++;
187:       if (j==countB-1) jB = countB;
188:     }

190:     /* A part */
191:     for (j=0; j<countA; j++) {
192:       col[nz]   = rstart + ajj[j];
193:       val[nz++] = *av++;
194:     }

196:     /* B part, larger col index */
197:     for (j=jB; j<countB; j++) {
198:       col[nz]   = garray[bjj[j]];
199:       val[nz++] = *bv++;
200:     }
201:   }
202:   row[m] = nz;

204:   return(0);
205: }

207: /*
208:  * Free memory for Mat_MKL_CPARDISO structure and pointers to objects.
209:  */
212: PetscErrorCode MatDestroy_MKL_CPARDISO(Mat A)
213: {
214:   Mat_MKL_CPARDISO *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)A->spptr;
215:   PetscErrorCode   ierr;
216:    PetscBool        flg;

219:   /* Terminate instance, deallocate memories */
220:   if (mat_mkl_cpardiso->CleanUp) {
221:     mat_mkl_cpardiso->phase = JOB_RELEASE_OF_ALL_MEMORY;

223:     cluster_sparse_solver (
224:       mat_mkl_cpardiso->pt,
225:       &mat_mkl_cpardiso->maxfct,
226:       &mat_mkl_cpardiso->mnum,
227:       &mat_mkl_cpardiso->mtype,
228:       &mat_mkl_cpardiso->phase,
229:       &mat_mkl_cpardiso->n,
230:       NULL,
231:       NULL,
232:       NULL,
233:       mat_mkl_cpardiso->perm,
234:       &mat_mkl_cpardiso->nrhs,
235:       mat_mkl_cpardiso->iparm,
236:       &mat_mkl_cpardiso->msglvl,
237:       NULL,
238:       NULL,
239:       &mat_mkl_cpardiso->comm_mkl_cpardiso,
240:       &mat_mkl_cpardiso->err);
241:   }

243:   PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&flg);
244:   if (flg) {
245:     MatDestroy_SeqAIJ(A);
246:   } else {
247:     PetscFree(mat_mkl_cpardiso->ia);
248:     MatDestroy_MPIAIJ(A);
249:   }
250:   MPI_Comm_free(&(mat_mkl_cpardiso->comm_mkl_cpardiso));
251:   PetscFree(A->spptr);

253:   /* clear composed functions */
254:   PetscObjectComposeFunction((PetscObject)A,"MatFactorGetSolverPackage_C",NULL);
255:   PetscObjectComposeFunction((PetscObject)A,"MatMkl_CPardisoSetCntl_C",NULL);
256:   return(0);
257: }

259: /*
260:  * Computes Ax = b
261:  */
264: PetscErrorCode MatSolve_MKL_CPARDISO(Mat A,Vec b,Vec x)
265: {
266:   Mat_MKL_CPARDISO   *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)(A)->spptr;
267:   PetscErrorCode    ierr;
268:   PetscScalar       *xarray;
269:   const PetscScalar *barray;

272:   mat_mkl_cpardiso->nrhs = 1;
273:   VecGetArray(x,&xarray);
274:   VecGetArrayRead(b,&barray);

276:   /* solve phase */
277:   /*-------------*/
278:   mat_mkl_cpardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
279:   cluster_sparse_solver (
280:     mat_mkl_cpardiso->pt,
281:     &mat_mkl_cpardiso->maxfct,
282:     &mat_mkl_cpardiso->mnum,
283:     &mat_mkl_cpardiso->mtype,
284:     &mat_mkl_cpardiso->phase,
285:     &mat_mkl_cpardiso->n,
286:     mat_mkl_cpardiso->a,
287:     mat_mkl_cpardiso->ia,
288:     mat_mkl_cpardiso->ja,
289:     mat_mkl_cpardiso->perm,
290:     &mat_mkl_cpardiso->nrhs,
291:     mat_mkl_cpardiso->iparm,
292:     &mat_mkl_cpardiso->msglvl,
293:     (void*)barray,
294:     (void*)xarray,
295:     &mat_mkl_cpardiso->comm_mkl_cpardiso,
296:     &mat_mkl_cpardiso->err);

298:   if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));

300:   VecRestoreArray(x,&xarray);
301:   VecRestoreArrayRead(b,&barray);
302:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
303:   return(0);
304: }

308: PetscErrorCode MatSolveTranspose_MKL_CPARDISO(Mat A,Vec b,Vec x)
309: {
310:   Mat_MKL_CPARDISO *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)A->spptr;
311:   PetscErrorCode   ierr;

314: #if defined(PETSC_USE_COMPLEX)
315:   mat_mkl_cpardiso->iparm[12 - 1] = 1;
316: #else
317:   mat_mkl_cpardiso->iparm[12 - 1] = 2;
318: #endif
319:   MatSolve_MKL_CPARDISO(A,b,x);
320:   mat_mkl_cpardiso->iparm[12 - 1] = 0;
321:   return(0);
322: }

326: PetscErrorCode MatMatSolve_MKL_CPARDISO(Mat A,Mat B,Mat X)
327: {
328:   Mat_MKL_CPARDISO  *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)(A)->spptr;
329:   PetscErrorCode    ierr;
330:   PetscScalar       *barray, *xarray;
331:   PetscBool         flg;

334:   PetscObjectTypeCompare((PetscObject)B,MATSEQDENSE,&flg);
335:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATSEQDENSE matrix");
336:   PetscObjectTypeCompare((PetscObject)X,MATSEQDENSE,&flg);
337:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATSEQDENSE matrix");

339:   MatGetSize(B,NULL,(PetscInt*)&mat_mkl_cpardiso->nrhs);

341:   if(mat_mkl_cpardiso->nrhs > 0){
342:     MatDenseGetArray(B,&barray);
343:     MatDenseGetArray(X,&xarray);

345:     /* solve phase */
346:     /*-------------*/
347:     mat_mkl_cpardiso->phase = JOB_SOLVE_ITERATIVE_REFINEMENT;
348:     cluster_sparse_solver (
349:       mat_mkl_cpardiso->pt,
350:       &mat_mkl_cpardiso->maxfct,
351:       &mat_mkl_cpardiso->mnum,
352:       &mat_mkl_cpardiso->mtype,
353:       &mat_mkl_cpardiso->phase,
354:       &mat_mkl_cpardiso->n,
355:       mat_mkl_cpardiso->a,
356:       mat_mkl_cpardiso->ia,
357:       mat_mkl_cpardiso->ja,
358:       mat_mkl_cpardiso->perm,
359:       &mat_mkl_cpardiso->nrhs,
360:       mat_mkl_cpardiso->iparm,
361:       &mat_mkl_cpardiso->msglvl,
362:       (void*)barray,
363:       (void*)xarray,
364:       &mat_mkl_cpardiso->comm_mkl_cpardiso,
365:       &mat_mkl_cpardiso->err);
366:     if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));
367:   }
368:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
369:   return(0);

371: }

373: /*
374:  * LU Decomposition
375:  */
378: PetscErrorCode MatFactorNumeric_MKL_CPARDISO(Mat F,Mat A,const MatFactorInfo *info)
379: {
380:   Mat_MKL_CPARDISO *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)(F)->spptr;
381:   PetscErrorCode   ierr;

383:   /* numerical factorization phase */
384:   /*-------------------------------*/

387:   mat_mkl_cpardiso->matstruc = SAME_NONZERO_PATTERN;
388:   (*mat_mkl_cpardiso->ConvertToTriples)(A, MAT_REUSE_MATRIX,&mat_mkl_cpardiso->nz,&mat_mkl_cpardiso->ia,&mat_mkl_cpardiso->ja,&mat_mkl_cpardiso->a);

390:   /* numerical factorization phase */
391:   /*-------------------------------*/
392:   mat_mkl_cpardiso->phase = JOB_NUMERICAL_FACTORIZATION;
393:   cluster_sparse_solver (
394:     mat_mkl_cpardiso->pt,
395:     &mat_mkl_cpardiso->maxfct,
396:     &mat_mkl_cpardiso->mnum,
397:     &mat_mkl_cpardiso->mtype,
398:     &mat_mkl_cpardiso->phase,
399:     &mat_mkl_cpardiso->n,
400:     mat_mkl_cpardiso->a,
401:     mat_mkl_cpardiso->ia,
402:     mat_mkl_cpardiso->ja,
403:     mat_mkl_cpardiso->perm,
404:     &mat_mkl_cpardiso->nrhs,
405:     mat_mkl_cpardiso->iparm,
406:     &mat_mkl_cpardiso->msglvl,
407:     NULL,
408:     NULL,
409:     &mat_mkl_cpardiso->comm_mkl_cpardiso,
410:     &mat_mkl_cpardiso->err);
411:   if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));

413:   mat_mkl_cpardiso->matstruc = SAME_NONZERO_PATTERN;
414:   mat_mkl_cpardiso->CleanUp  = PETSC_TRUE;
415:   return(0);
416: }

418: /* Sets mkl_cpardiso options from the options database */
421: PetscErrorCode PetscSetMKL_CPARDISOFromOptions(Mat F, Mat A)
422: {
423:   Mat_MKL_CPARDISO    *mat_mkl_cpardiso = (Mat_MKL_CPARDISO*)F->spptr;
424:   PetscErrorCode      ierr;
425:   PetscInt            icntl;
426:   PetscBool           flg;
427:   int                 pt[IPARM_SIZE], threads;

430:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"MKL_CPARDISO Options","Mat");
431:   PetscOptionsInt("-mat_mkl_cpardiso_65",
432:     "Number of threads to use",
433:     "None",
434:     threads,
435:     &threads,
436:     &flg);
437:   if (flg) mkl_set_num_threads(threads);

439:   PetscOptionsInt("-mat_mkl_cpardiso_66",
440:     "Maximum number of factors with identical sparsity structure that must be kept in memory at the same time",
441:     "None",
442:      mat_mkl_cpardiso->maxfct,
443:     &icntl,
444:     &flg);
445:   if (flg) mat_mkl_cpardiso->maxfct = icntl;

447:   PetscOptionsInt("-mat_mkl_cpardiso_67",
448:     "Indicates the actual matrix for the solution phase",
449:     "None",
450:     mat_mkl_cpardiso->mnum,
451:     &icntl,
452:     &flg);
453:   if (flg) mat_mkl_cpardiso->mnum = icntl;

455:   PetscOptionsInt("-mat_mkl_cpardiso_68",
456:     "Message level information",
457:     "None",
458:     mat_mkl_cpardiso->msglvl,
459:     &icntl,
460:     &flg);
461:   if (flg) mat_mkl_cpardiso->msglvl = icntl;

463:   PetscOptionsInt("-mat_mkl_cpardiso_69",
464:     "Defines the matrix type",
465:     "None",
466:     mat_mkl_cpardiso->mtype,
467:     &icntl,
468:     &flg);
469:   if(flg){
470:     mat_mkl_cpardiso->mtype = icntl;
471: #if defined(PETSC_USE_REAL_SINGLE)
472:     mat_mkl_cpardiso->iparm[27] = 1;
473: #else
474:     mat_mkl_cpardiso->iparm[27] = 0;
475: #endif
476:     mat_mkl_cpardiso->iparm[34] = 1;
477:   }
478:   PetscOptionsInt("-mat_mkl_cpardiso_1",
479:     "Use default values",
480:     "None",
481:     mat_mkl_cpardiso->iparm[0],
482:     &icntl,
483:     &flg);

485:   if(flg && icntl != 0){
486:     PetscOptionsInt("-mat_mkl_cpardiso_2",
487:       "Fill-in reducing ordering for the input matrix",
488:       "None",
489:       mat_mkl_cpardiso->iparm[1],
490:       &icntl,
491:       &flg);
492:     if (flg) mat_mkl_cpardiso->iparm[1] = icntl;

494:     PetscOptionsInt("-mat_mkl_cpardiso_4",
495:       "Preconditioned CGS/CG",
496:       "None",
497:       mat_mkl_cpardiso->iparm[3],
498:       &icntl,
499:       &flg);
500:     if (flg) mat_mkl_cpardiso->iparm[3] = icntl;

502:     PetscOptionsInt("-mat_mkl_cpardiso_5",
503:       "User permutation",
504:       "None",
505:       mat_mkl_cpardiso->iparm[4],
506:       &icntl,
507:       &flg);
508:     if (flg) mat_mkl_cpardiso->iparm[4] = icntl;

510:     PetscOptionsInt("-mat_mkl_cpardiso_6",
511:       "Write solution on x",
512:       "None",
513:       mat_mkl_cpardiso->iparm[5],
514:       &icntl,
515:       &flg);
516:     if (flg) mat_mkl_cpardiso->iparm[5] = icntl;

518:     PetscOptionsInt("-mat_mkl_cpardiso_8",
519:       "Iterative refinement step",
520:       "None",
521:       mat_mkl_cpardiso->iparm[7],
522:       &icntl,
523:       &flg);
524:     if (flg) mat_mkl_cpardiso->iparm[7] = icntl;

526:     PetscOptionsInt("-mat_mkl_cpardiso_10",
527:       "Pivoting perturbation",
528:       "None",
529:       mat_mkl_cpardiso->iparm[9],
530:       &icntl,
531:       &flg);
532:     if (flg) mat_mkl_cpardiso->iparm[9] = icntl;

534:     PetscOptionsInt("-mat_mkl_cpardiso_11",
535:       "Scaling vectors",
536:       "None",
537:       mat_mkl_cpardiso->iparm[10],
538:       &icntl,
539:       &flg);
540:     if (flg) mat_mkl_cpardiso->iparm[10] = icntl;

542:     PetscOptionsInt("-mat_mkl_cpardiso_12",
543:       "Solve with transposed or conjugate transposed matrix A",
544:       "None",
545:       mat_mkl_cpardiso->iparm[11],
546:       &icntl,
547:       &flg);
548:     if (flg) mat_mkl_cpardiso->iparm[11] = icntl;

550:     PetscOptionsInt("-mat_mkl_cpardiso_13",
551:       "Improved accuracy using (non-) symmetric weighted matching",
552:       "None",
553:       mat_mkl_cpardiso->iparm[12],
554:       &icntl,
555:       &flg);
556:     if (flg) mat_mkl_cpardiso->iparm[12] = icntl;

558:     PetscOptionsInt("-mat_mkl_cpardiso_18",
559:       "Numbers of non-zero elements",
560:       "None",
561:       mat_mkl_cpardiso->iparm[17],
562:       &icntl,
563:       &flg);
564:     if (flg) mat_mkl_cpardiso->iparm[17] = icntl;

566:     PetscOptionsInt("-mat_mkl_cpardiso_19",
567:       "Report number of floating point operations",
568:       "None",
569:       mat_mkl_cpardiso->iparm[18],
570:       &icntl,
571:       &flg);
572:     if (flg) mat_mkl_cpardiso->iparm[18] = icntl;

574:     PetscOptionsInt("-mat_mkl_cpardiso_21",
575:       "Pivoting for symmetric indefinite matrices",
576:       "None",
577:       mat_mkl_cpardiso->iparm[20],
578:       &icntl,
579:       &flg);
580:     if (flg) mat_mkl_cpardiso->iparm[20] = icntl;

582:     PetscOptionsInt("-mat_mkl_cpardiso_24",
583:       "Parallel factorization control",
584:       "None",
585:       mat_mkl_cpardiso->iparm[23],
586:       &icntl,
587:       &flg);
588:     if (flg) mat_mkl_cpardiso->iparm[23] = icntl;

590:     PetscOptionsInt("-mat_mkl_cpardiso_25",
591:       "Parallel forward/backward solve control",
592:       "None",
593:       mat_mkl_cpardiso->iparm[24],
594:       &icntl,
595:       &flg);
596:     if (flg) mat_mkl_cpardiso->iparm[24] = icntl;

598:     PetscOptionsInt("-mat_mkl_cpardiso_27",
599:       "Matrix checker",
600:       "None",
601:       mat_mkl_cpardiso->iparm[26],
602:       &icntl,
603:       &flg);
604:     if (flg) mat_mkl_cpardiso->iparm[26] = icntl;

606:     PetscOptionsInt("-mat_mkl_cpardiso_31",
607:       "Partial solve and computing selected components of the solution vectors",
608:       "None",
609:       mat_mkl_cpardiso->iparm[30],
610:       &icntl,
611:       &flg);
612:     if (flg) mat_mkl_cpardiso->iparm[30] = icntl;

614:     PetscOptionsInt("-mat_mkl_cpardiso_34",
615:       "Optimal number of threads for conditional numerical reproducibility (CNR) mode",
616:       "None",
617:       mat_mkl_cpardiso->iparm[33],
618:       &icntl,
619:       &flg);
620:     if (flg) mat_mkl_cpardiso->iparm[33] = icntl;

622:     PetscOptionsInt("-mat_mkl_cpardiso_60",
623:       "Intel MKL_CPARDISO mode",
624:       "None",
625:       mat_mkl_cpardiso->iparm[59],
626:       &icntl,
627:       &flg);
628:     if (flg) mat_mkl_cpardiso->iparm[59] = icntl;
629:   }

631:   PetscOptionsEnd();
632:   return(0);
633: }

637: PetscErrorCode PetscInitialize_MKL_CPARDISO(Mat A, Mat_MKL_CPARDISO *mat_mkl_cpardiso)
638: {
639:   PetscErrorCode  ierr;
640:   PetscInt        i;
641:   PetscMPIInt     size;


645:   MPI_Comm_dup(PetscObjectComm((PetscObject)A),&(mat_mkl_cpardiso->comm_mkl_cpardiso));
646:   MPI_Comm_size(mat_mkl_cpardiso->comm_mkl_cpardiso, &size);

648:   mat_mkl_cpardiso->CleanUp = PETSC_FALSE;
649:   mat_mkl_cpardiso->maxfct = 1;
650:   mat_mkl_cpardiso->mnum = 1;
651:   mat_mkl_cpardiso->n = A->rmap->N;
652:   mat_mkl_cpardiso->msglvl = 0;
653:   mat_mkl_cpardiso->nrhs = 1;
654:   mat_mkl_cpardiso->err = 0;
655:   mat_mkl_cpardiso->phase = -1;
656: #if defined(PETSC_USE_COMPLEX)
657:   mat_mkl_cpardiso->mtype = 13;
658: #else
659:   mat_mkl_cpardiso->mtype = 11;
660: #endif

662: #if defined(PETSC_USE_REAL_SINGLE)
663:   mat_mkl_cpardiso->iparm[27] = 1;
664: #else
665:   mat_mkl_cpardiso->iparm[27] = 0;
666: #endif

668:   mat_mkl_cpardiso->iparm[34] = 1;  /* C style */

670:   mat_mkl_cpardiso->iparm[ 0] =  1; /* Solver default parameters overriden with provided by iparm */
671:   mat_mkl_cpardiso->iparm[ 1] =  2; /* Use METIS for fill-in reordering */
672:   mat_mkl_cpardiso->iparm[ 5] =  0; /* Write solution into x */
673:   mat_mkl_cpardiso->iparm[ 7] =  2; /* Max number of iterative refinement steps */
674:   mat_mkl_cpardiso->iparm[ 9] = 13; /* Perturb the pivot elements with 1E-13 */
675:   mat_mkl_cpardiso->iparm[10] =  1; /* Use nonsymmetric permutation and scaling MPS */
676:   mat_mkl_cpardiso->iparm[12] =  1; /* Switch on Maximum Weighted Matching algorithm (default for non-symmetric) */
677:   mat_mkl_cpardiso->iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
678:   mat_mkl_cpardiso->iparm[18] = -1; /* Output: Mflops for LU factorization */
679:   mat_mkl_cpardiso->iparm[26] =  1; /* Check input data for correctness */

681:   mat_mkl_cpardiso->iparm[39] = 0;
682:   if (size > 1) {
683:     mat_mkl_cpardiso->iparm[39] = 2;
684:     mat_mkl_cpardiso->iparm[40] = A->rmap->rstart;
685:     mat_mkl_cpardiso->iparm[41] = A->rmap->rend-1;
686:   }
687:   mat_mkl_cpardiso->perm = 0;
688:   return(0);
689: }

691: /*
692:  * Symbolic decomposition. Mkl_Pardiso analysis phase.
693:  */
696: PetscErrorCode MatLUFactorSymbolic_AIJMKL_CPARDISO(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
697: {
698:   Mat_MKL_CPARDISO *mat_mkl_cpardiso = (Mat_MKL_CPARDISO*)F->spptr;
699:   PetscErrorCode  ierr;

702:   mat_mkl_cpardiso->matstruc = DIFFERENT_NONZERO_PATTERN;

704:   /* Set MKL_CPARDISO options from the options database */
705:   PetscSetMKL_CPARDISOFromOptions(F,A);

707:   (*mat_mkl_cpardiso->ConvertToTriples)(A,MAT_INITIAL_MATRIX,&mat_mkl_cpardiso->nz,&mat_mkl_cpardiso->ia,&mat_mkl_cpardiso->ja,&mat_mkl_cpardiso->a);

709:   mat_mkl_cpardiso->n = A->rmap->N;

711:   /* analysis phase */
712:   /*----------------*/
713:   mat_mkl_cpardiso->phase = JOB_ANALYSIS;

715:   cluster_sparse_solver (
716:     mat_mkl_cpardiso->pt,
717:     &mat_mkl_cpardiso->maxfct,
718:     &mat_mkl_cpardiso->mnum,
719:     &mat_mkl_cpardiso->mtype,
720:     &mat_mkl_cpardiso->phase,
721:     &mat_mkl_cpardiso->n,
722:     mat_mkl_cpardiso->a,
723:     mat_mkl_cpardiso->ia,
724:     mat_mkl_cpardiso->ja,
725:     mat_mkl_cpardiso->perm,
726:     &mat_mkl_cpardiso->nrhs,
727:     mat_mkl_cpardiso->iparm,
728:     &mat_mkl_cpardiso->msglvl,
729:     NULL,
730:     NULL,
731:     &mat_mkl_cpardiso->comm_mkl_cpardiso,
732:     &mat_mkl_cpardiso->err);

734:   if (mat_mkl_cpardiso->err < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MKL_CPARDISO: err=%d, msg = \"%s\". Please check manual\n",mat_mkl_cpardiso->err,Err_MSG_CPardiso(mat_mkl_cpardiso->err));

736:   mat_mkl_cpardiso->CleanUp = PETSC_TRUE;
737:   F->ops->lufactornumeric = MatFactorNumeric_MKL_CPARDISO;
738:   F->ops->solve           = MatSolve_MKL_CPARDISO;
739:   F->ops->solvetranspose  = MatSolveTranspose_MKL_CPARDISO;
740:   F->ops->matsolve        = MatMatSolve_MKL_CPARDISO;
741:   return(0);
742: }

746: PetscErrorCode MatView_MKL_CPARDISO(Mat A, PetscViewer viewer)
747: {
748:   PetscErrorCode    ierr;
749:   PetscBool         iascii;
750:   PetscViewerFormat format;
751:   Mat_MKL_CPARDISO  *mat_mkl_cpardiso=(Mat_MKL_CPARDISO*)A->spptr;
752:   PetscInt          i;

755:   /* check if matrix is mkl_cpardiso type */
756:   if (A->ops->solve != MatSolve_MKL_CPARDISO) return(0);

758:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
759:   if (iascii) {
760:     PetscViewerGetFormat(viewer,&format);
761:     if (format == PETSC_VIEWER_ASCII_INFO) {
762:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO run parameters:\n");
763:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO phase:             %d \n",mat_mkl_cpardiso->phase);
764:       for(i = 1; i <= 64; i++){
765:         PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO iparm[%d]:     %d \n",i, mat_mkl_cpardiso->iparm[i - 1]);
766:       }
767:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO maxfct:     %d \n", mat_mkl_cpardiso->maxfct);
768:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO mnum:     %d \n", mat_mkl_cpardiso->mnum);
769:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO mtype:     %d \n", mat_mkl_cpardiso->mtype);
770:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO n:     %d \n", mat_mkl_cpardiso->n);
771:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO nrhs:     %d \n", mat_mkl_cpardiso->nrhs);
772:       PetscViewerASCIIPrintf(viewer,"MKL_CPARDISO msglvl:     %d \n", mat_mkl_cpardiso->msglvl);
773:     }
774:   }
775:   return(0);
776: }

780: PetscErrorCode MatGetInfo_MKL_CPARDISO(Mat A, MatInfoType flag, MatInfo *info)
781: {
782:   Mat_MKL_CPARDISO *mat_mkl_cpardiso =(Mat_MKL_CPARDISO*)A->spptr;

785:   info->block_size        = 1.0;
786:   info->nz_allocated      = mat_mkl_cpardiso->nz + 0.0;
787:   info->nz_unneeded       = 0.0;
788:   info->assemblies        = 0.0;
789:   info->mallocs           = 0.0;
790:   info->memory            = 0.0;
791:   info->fill_ratio_given  = 0;
792:   info->fill_ratio_needed = 0;
793:   info->factor_mallocs    = 0;
794:   return(0);
795: }

799: PetscErrorCode MatMkl_CPardisoSetCntl_MKL_CPARDISO(Mat F,PetscInt icntl,PetscInt ival)
800: {
801:   Mat_MKL_CPARDISO *mat_mkl_cpardiso =(Mat_MKL_CPARDISO*)F->spptr;

804:   if(icntl <= 64){
805:     mat_mkl_cpardiso->iparm[icntl - 1] = ival;
806:   } else {
807:     if(icntl == 65)
808:       mkl_set_num_threads((int)ival);
809:     else if(icntl == 66)
810:       mat_mkl_cpardiso->maxfct = ival;
811:     else if(icntl == 67)
812:       mat_mkl_cpardiso->mnum = ival;
813:     else if(icntl == 68)
814:       mat_mkl_cpardiso->msglvl = ival;
815:     else if(icntl == 69){
816:       int pt[IPARM_SIZE];
817:       mat_mkl_cpardiso->mtype = ival;
818: #if defined(PETSC_USE_REAL_SINGLE)
819:       mat_mkl_cpardiso->iparm[27] = 1;
820: #else
821:       mat_mkl_cpardiso->iparm[27] = 0;
822: #endif
823:       mat_mkl_cpardiso->iparm[34] = 1;
824:     }
825:   }
826:   return(0);
827: }

831: /*@
832:   MatMkl_CPardisoSetCntl - Set Mkl_Pardiso parameters

834:    Logically Collective on Mat

836:    Input Parameters:
837: +  F - the factored matrix obtained by calling MatGetFactor()
838: .  icntl - index of Mkl_Pardiso parameter
839: -  ival - value of Mkl_Pardiso parameter

841:   Options Database:
842: .   -mat_mkl_cpardiso_<icntl> <ival>

844:    Level: beginner

846:    References:
847: .      Mkl_Pardiso Users' Guide

849: .seealso: MatGetFactor()
850: @*/
851: PetscErrorCode MatMkl_CPardisoSetCntl(Mat F,PetscInt icntl,PetscInt ival)
852: {

856:   PetscTryMethod(F,"MatMkl_CPardisoSetCntl_C",(Mat,PetscInt,PetscInt),(F,icntl,ival));
857:   return(0);
858: }

862: static PetscErrorCode MatFactorGetSolverPackage_mkl_cpardiso(Mat A, const MatSolverPackage *type)
863: {
865:   *type = MATSOLVERMKL_CPARDISO;
866:   return(0);
867: }

869: /* MatGetFactor for MPI AIJ matrices */
872: static PetscErrorCode MatGetFactor_mpiaij_mkl_cpardiso(Mat A,MatFactorType ftype,Mat *F)
873: {
874:   Mat              B;
875:   PetscErrorCode   ierr;
876:   Mat_MKL_CPARDISO *mat_mkl_cpardiso;
877:   PetscBool        isSeqAIJ;

880:   /* Create the factorization matrix */

882:   PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);
883:   MatCreate(PetscObjectComm((PetscObject)A),&B);
884:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
885:   MatSetType(B,((PetscObject)A)->type_name);

887:   PetscNewLog(B,&mat_mkl_cpardiso);

889:   if (isSeqAIJ) {
890:     MatSeqAIJSetPreallocation(B,0,NULL);
891:   mat_mkl_cpardiso->ConvertToTriples = MatCopy_seqaij_seqaij_MKL_CPARDISO;
892:   } else {
893:     mat_mkl_cpardiso->ConvertToTriples = MatConvertToTriples_mpiaij_mpiaij_MKL_CPARDISO;
894:     MatMPIAIJSetPreallocation(B,0,NULL,0,NULL);
895:   }

897:   B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMKL_CPARDISO;
898:   B->ops->destroy = MatDestroy_MKL_CPARDISO;

900:   B->ops->view    = MatView_MKL_CPARDISO;
901:   B->ops->getinfo = MatGetInfo_MKL_CPARDISO;

903:   B->factortype   = ftype;
904:   B->assembled    = PETSC_TRUE;           /* required by -ksp_view */

906:   B->spptr = mat_mkl_cpardiso;

908:   /* set solvertype */
909:   PetscFree(B->solvertype);
910:   PetscStrallocpy(MATSOLVERMKL_CPARDISO,&B->solvertype);

912:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mkl_cpardiso);
913:   PetscObjectComposeFunction((PetscObject)B,"MatMkl_CPardisoSetCntl_C",MatMkl_CPardisoSetCntl_MKL_CPARDISO);
914:   PetscInitialize_MKL_CPARDISO(A, mat_mkl_cpardiso);

916:   *F = B;
917:   return(0);
918: }

922: PETSC_EXTERN PetscErrorCode MatSolverPackageRegister_MKL_CPardiso(void)
923: {
925: 
927:   MatSolverPackageRegister(MATSOLVERMKL_CPARDISO,MATMPIAIJ,MAT_FACTOR_LU,MatGetFactor_mpiaij_mkl_cpardiso);
928:   MatSolverPackageRegister(MATSOLVERMKL_CPARDISO,MATSEQAIJ,MAT_FACTOR_LU,MatGetFactor_mpiaij_mkl_cpardiso);
929:   return(0);
930: }