Actual source code: util.c

petsc-3.7.3 2016-08-01
Report Typos and Errors
  1: /*
  2:  GAMG geometric-algebric multigrid PC - Mark Adams 2011
  3:  */
  4: #include <petsc/private/matimpl.h>
  5: #include <../src/ksp/pc/impls/gamg/gamg.h>           /*I "petscpc.h" I*/
  6: #include <petsc/private/kspimpl.h>

 10: /*
 11:    Produces a set of block column indices of the matrix row, one for each block represented in the original row

 13:    n - the number of block indices in cc[]
 14:    cc - the block indices (must be large enough to contain the indices)
 15: */
 16: PETSC_STATIC_INLINE PetscErrorCode MatCollapseRow(Mat Amat,PetscInt row,PetscInt bs,PetscInt *n,PetscInt *cc)
 17: {
 18:   PetscInt       cnt = -1,nidx,j;
 19:   const PetscInt *idx;

 23:   MatGetRow(Amat,row,&nidx,&idx,NULL);
 24:   if (nidx) {
 25:     cnt = 0;
 26:     cc[cnt] = idx[0]/bs;
 27:     for (j=1; j<nidx; j++) {
 28:       if (cc[cnt] < idx[j]/bs) cc[++cnt] = idx[j]/bs;
 29:     }
 30:   }
 31:   MatRestoreRow(Amat,row,&nidx,&idx,NULL);
 32:   *n = cnt+1;
 33:   return(0);
 34: }

 38: /*
 39:     Produces a set of block column indices of the matrix block row, one for each block represented in the original set of rows

 41:     ncollapsed - the number of block indices
 42:     collapsed - the block indices (must be large enough to contain the indices)
 43: */
 44: PETSC_STATIC_INLINE PetscErrorCode MatCollapseRows(Mat Amat,PetscInt start,PetscInt bs,PetscInt *w0,PetscInt *w1,PetscInt *w2,PetscInt *ncollapsed,PetscInt **collapsed)
 45: {
 46:   PetscInt       i,nprev,*cprev = w0,ncur = 0,*ccur = w1,*merged = w2,*cprevtmp;

 50:   MatCollapseRow(Amat,start,bs,&nprev,cprev);
 51:   for (i=start+1; i<start+bs; i++) {
 52:     MatCollapseRow(Amat,i,bs,&ncur,ccur);
 53:     PetscMergeIntArray(nprev,cprev,ncur,ccur,&nprev,&merged);
 54:     cprevtmp = cprev; cprev = merged; merged = cprevtmp;
 55:   }
 56:   *ncollapsed = nprev;
 57:   if (collapsed) *collapsed  = cprev;
 58:   return(0);
 59: }


 62: /* -------------------------------------------------------------------------- */
 63: /*
 64:    PCGAMGCreateGraph - create simple scaled scalar graph from matrix

 66:  Input Parameter:
 67:  . Amat - matrix
 68:  Output Parameter:
 69:  . a_Gmaat - eoutput scalar graph (symmetric?)
 70:  */
 73: PetscErrorCode PCGAMGCreateGraph(Mat Amat, Mat *a_Gmat)
 74: {
 76:   PetscInt       Istart,Iend,Ii,i,jj,kk,ncols,nloc,NN,MM,bs;
 77:   MPI_Comm       comm;
 78:   Mat            Gmat;
 79:   MatType        mtype;

 82:   PetscObjectGetComm((PetscObject)Amat,&comm);
 83:   MatGetOwnershipRange(Amat, &Istart, &Iend);
 84:   MatGetSize(Amat, &MM, &NN);
 85:   MatGetBlockSize(Amat, &bs);
 86:   nloc = (Iend-Istart)/bs;

 88: #if defined PETSC_GAMG_USE_LOG
 89:   PetscLogEventBegin(petsc_gamg_setup_events[GRAPH],0,0,0,0);
 90: #endif

 92:   if (bs > 1) {
 93:     const PetscScalar *vals;
 94:     const PetscInt    *idx;
 95:     PetscInt          *d_nnz, *o_nnz,*blockmask = NULL,maskcnt,*w0,*w1,*w2;
 96:     PetscBool         ismpiaij,isseqaij;

 98:     /*
 99:        Determine the preallocation needed for the scalar matrix derived from the vector matrix.
100:     */

102:     PetscObjectTypeCompare((PetscObject)Amat,MATSEQAIJ,&isseqaij);
103:     PetscObjectTypeCompare((PetscObject)Amat,MATMPIAIJ,&ismpiaij);

105:     PetscMalloc2(nloc, &d_nnz,isseqaij ? 0 : nloc, &o_nnz);

107:     if (isseqaij) {
108:       PetscInt       max_d_nnz;

110:       /*
111:           Determine exact preallocation count for (sequential) scalar matrix
112:       */
113:       MatSeqAIJGetMaxRowNonzeros(Amat,&max_d_nnz);
114:       max_d_nnz = PetscMin(nloc,bs*max_d_nnz);
115:       PetscMalloc3(max_d_nnz, &w0,max_d_nnz, &w1,max_d_nnz, &w2);
116:       for (Ii = 0, jj = 0; Ii < Iend; Ii += bs, jj++) {
117:         MatCollapseRows(Amat,Ii,bs,w0,w1,w2,&d_nnz[jj],NULL);
118:       }
119:       PetscFree3(w0,w1,w2);

121:     } else if (ismpiaij) {
122:       Mat            Daij,Oaij;
123:       const PetscInt *garray;
124:       PetscInt       max_d_nnz;

126:       MatMPIAIJGetSeqAIJ(Amat,&Daij,&Oaij,&garray);

128:       /*
129:           Determine exact preallocation count for diagonal block portion of scalar matrix
130:       */
131:       MatSeqAIJGetMaxRowNonzeros(Daij,&max_d_nnz);
132:       max_d_nnz = PetscMin(nloc,bs*max_d_nnz);
133:       PetscMalloc3(max_d_nnz, &w0,max_d_nnz, &w1,max_d_nnz, &w2);
134:       for (Ii = 0, jj = 0; Ii < Iend - Istart; Ii += bs, jj++) {
135:         MatCollapseRows(Daij,Ii,bs,w0,w1,w2,&d_nnz[jj],NULL);
136:       }
137:       PetscFree3(w0,w1,w2);

139:       /*
140:          Over estimate (usually grossly over), preallocation count for off-diagonal portion of scalar matrix
141:       */
142:       for (Ii = 0, jj = 0; Ii < Iend - Istart; Ii += bs, jj++) {
143:         o_nnz[jj] = 0;
144:         for (kk=0; kk<bs; kk++) { /* rows that get collapsed to a single row */
145:           MatGetRow(Oaij,Ii+kk,&ncols,0,0);
146:           o_nnz[jj] += ncols;
147:           MatRestoreRow(Oaij,Ii+kk,&ncols,0,0);
148:         }
149:         if (o_nnz[jj] > (NN/bs-nloc)) o_nnz[jj] = NN/bs-nloc;
150:       }

152:     } else {
153:       /*

155:        This is O(nloc*nloc/bs) work!

157:        This is accurate for the "diagonal" block of the matrix but will be grossly high for the
158:        off diagonal block most of the time but could be too low for the off-diagonal.

160:        This should be fixed to be accurate for the off-diagonal portion. Cannot just use a mask
161:        for the off-diagonal portion since for huge matrices that would require too much memory per
162:        MPI process.
163:       */
164:       PetscMalloc1(nloc, &blockmask);
165:       for (Ii = Istart, jj = 0; Ii < Iend; Ii += bs, jj++) {
166:         o_nnz[jj] = 0;
167:         PetscMemzero(blockmask,nloc*sizeof(PetscInt));
168:         for (kk=0; kk<bs; kk++) { /* rows that get collapsed to a single row */
169:           MatGetRow(Amat,Ii+kk,&ncols,&idx,0);
170:           for (i=0; i<ncols; i++) {
171:             if (idx[i] >= Istart && idx[i] < Iend) {
172:               blockmask[(idx[i] - Istart)/bs] = 1;
173:             }
174:           }
175:           if (ncols > o_nnz[jj]) {
176:             o_nnz[jj] = ncols;
177:             if (o_nnz[jj] > (NN/bs-nloc)) o_nnz[jj] = NN/bs-nloc;
178:           }
179:           MatRestoreRow(Amat,Ii+kk,&ncols,&idx,0);
180:         }
181:         maskcnt = 0;
182:         for (i=0; i<nloc; i++) {
183:           if (blockmask[i]) maskcnt++;
184:         }
185:         d_nnz[jj] = maskcnt;
186:       }
187:       PetscFree(blockmask);
188:     }

190:     /* get scalar copy (norms) of matrix -- AIJ specific!!! */
191:     MatGetType(Amat,&mtype);
192:     MatCreate(comm, &Gmat);
193:     MatSetSizes(Gmat,nloc,nloc,PETSC_DETERMINE,PETSC_DETERMINE);
194:     MatSetBlockSizes(Gmat, 1, 1);
195:     MatSetType(Gmat, mtype);
196:     MatSeqAIJSetPreallocation(Gmat,0,d_nnz);
197:     MatMPIAIJSetPreallocation(Gmat,0,d_nnz,0,o_nnz);
198:     PetscFree2(d_nnz,o_nnz);

200:     for (Ii = Istart; Ii < Iend; Ii++) {
201:       PetscInt dest_row = Ii/bs;
202:       MatGetRow(Amat,Ii,&ncols,&idx,&vals);
203:       for (jj=0; jj<ncols; jj++) {
204:         PetscInt    dest_col = idx[jj]/bs;
205:         PetscScalar sv       = PetscAbs(PetscRealPart(vals[jj]));
206:         MatSetValues(Gmat,1,&dest_row,1,&dest_col,&sv,ADD_VALUES);
207:       }
208:       MatRestoreRow(Amat,Ii,&ncols,&idx,&vals);
209:     }
210:     MatAssemblyBegin(Gmat,MAT_FINAL_ASSEMBLY);
211:     MatAssemblyEnd(Gmat,MAT_FINAL_ASSEMBLY);
212:   } else {
213:     /* just copy scalar matrix - abs() not taken here but scaled later */
214:     MatDuplicate(Amat, MAT_COPY_VALUES, &Gmat);
215:   }

217: #if defined PETSC_GAMG_USE_LOG
218:   PetscLogEventEnd(petsc_gamg_setup_events[GRAPH],0,0,0,0);
219: #endif

221:   *a_Gmat = Gmat;
222:   return(0);
223: }

225: /* -------------------------------------------------------------------------- */
226: /*
227:    PCGAMGFilterGraph - filter (remove zero and possibly small values from the) graph and symetrize if needed

229:  Input Parameter:
230:  . vfilter - threshold paramter [0,1)
231:  . symm - symetrize?
232:  In/Output Parameter:
233:  . a_Gmat - original graph
234:  */
237: PetscErrorCode PCGAMGFilterGraph(Mat *a_Gmat,PetscReal vfilter,PetscBool symm)
238: {
239:   PetscErrorCode    ierr;
240:   PetscInt          Istart,Iend,Ii,jj,ncols,nnz0,nnz1, NN, MM, nloc;
241:   PetscMPIInt       rank;
242:   Mat               Gmat  = *a_Gmat, tGmat, matTrans;
243:   MPI_Comm          comm;
244:   const PetscScalar *vals;
245:   const PetscInt    *idx;
246:   PetscInt          *d_nnz, *o_nnz;
247:   Vec               diag;
248:   MatType           mtype;

251: #if defined PETSC_GAMG_USE_LOG
252:   PetscLogEventBegin(petsc_gamg_setup_events[GRAPH],0,0,0,0);
253: #endif
254:   /* scale Gmat for all values between -1 and 1 */
255:   MatCreateVecs(Gmat, &diag, 0);
256:   MatGetDiagonal(Gmat, diag);
257:   VecReciprocal(diag);
258:   VecSqrtAbs(diag);
259:   MatDiagonalScale(Gmat, diag, diag);
260:   VecDestroy(&diag);

262:   if (vfilter < 0.0 && !symm) {
263:     /* Just use the provided matrix as the graph but make all values positive */
264:     Mat_MPIAIJ  *aij = (Mat_MPIAIJ*)Gmat->data;
265:     MatInfo     info;
266:     PetscScalar *avals;
267:     PetscMPIInt size;

269:     MPI_Comm_size(PetscObjectComm((PetscObject)Gmat),&size);
270:     if (size == 1) {
271:       MatGetInfo(Gmat,MAT_LOCAL,&info);
272:       MatSeqAIJGetArray(Gmat,&avals);
273:       for (jj = 0; jj<info.nz_used; jj++) avals[jj] = PetscAbsScalar(avals[jj]);
274:       MatSeqAIJRestoreArray(Gmat,&avals);
275:     } else {
276:       MatGetInfo(aij->A,MAT_LOCAL,&info);
277:       MatSeqAIJGetArray(aij->A,&avals);
278:       for (jj = 0; jj<info.nz_used; jj++) avals[jj] = PetscAbsScalar(avals[jj]);
279:       MatSeqAIJRestoreArray(aij->A,&avals);
280:       MatGetInfo(aij->B,MAT_LOCAL,&info);
281:       MatSeqAIJGetArray(aij->B,&avals);
282:       for (jj = 0; jj<info.nz_used; jj++) avals[jj] = PetscAbsScalar(avals[jj]);
283:       MatSeqAIJRestoreArray(aij->B,&avals);
284:     }
285: #if defined PETSC_GAMG_USE_LOG
286:     PetscLogEventEnd(petsc_gamg_setup_events[GRAPH],0,0,0,0);
287: #endif
288:     return(0);
289:   }

291:   PetscObjectGetComm((PetscObject)Gmat,&comm);
292:   MPI_Comm_rank(comm,&rank);
293:   MatGetOwnershipRange(Gmat, &Istart, &Iend);
294:   nloc = Iend - Istart;
295:   MatGetSize(Gmat, &MM, &NN);

297:   if (symm) {
298:     MatTranspose(Gmat, MAT_INITIAL_MATRIX, &matTrans);
299:   }

301:   /* Determine upper bound on nonzeros needed in new filtered matrix */
302:   PetscMalloc2(nloc, &d_nnz,nloc, &o_nnz);
303:   for (Ii = Istart, jj = 0; Ii < Iend; Ii++, jj++) {
304:     MatGetRow(Gmat,Ii,&ncols,NULL,NULL);
305:     d_nnz[jj] = ncols;
306:     o_nnz[jj] = ncols;
307:     MatRestoreRow(Gmat,Ii,&ncols,NULL,NULL);
308:     if (symm) {
309:       MatGetRow(matTrans,Ii,&ncols,NULL,NULL);
310:       d_nnz[jj] += ncols;
311:       o_nnz[jj] += ncols;
312:       MatRestoreRow(matTrans,Ii,&ncols,NULL,NULL);
313:     }
314:     if (d_nnz[jj] > nloc) d_nnz[jj] = nloc;
315:     if (o_nnz[jj] > (MM-nloc)) o_nnz[jj] = MM - nloc;
316:   }
317:   MatGetType(Gmat,&mtype);
318:   MatCreate(comm, &tGmat);
319:   MatSetSizes(tGmat,nloc,nloc,MM,MM);
320:   MatSetBlockSizes(tGmat, 1, 1);
321:   MatSetType(tGmat, mtype);
322:   MatSeqAIJSetPreallocation(tGmat,0,d_nnz);
323:   MatMPIAIJSetPreallocation(tGmat,0,d_nnz,0,o_nnz);
324:   PetscFree2(d_nnz,o_nnz);
325:   if (symm) {
326:     MatDestroy(&matTrans);
327:   } else {
328:     /* all entries are generated locally so MatAssembly will be slightly faster for large process counts */
329:     MatSetOption(tGmat,MAT_NO_OFF_PROC_ENTRIES,PETSC_TRUE);
330:   }

332:   for (Ii = Istart, nnz0 = nnz1 = 0; Ii < Iend; Ii++) {
333:     MatGetRow(Gmat,Ii,&ncols,&idx,&vals);
334:     for (jj=0; jj<ncols; jj++,nnz0++) {
335:       PetscScalar sv = PetscAbs(PetscRealPart(vals[jj]));
336:       if (PetscRealPart(sv) > vfilter) {
337:         nnz1++;
338:         if (symm) {
339:           sv  *= 0.5;
340:           MatSetValues(tGmat,1,&Ii,1,&idx[jj],&sv,ADD_VALUES);
341:           MatSetValues(tGmat,1,&idx[jj],1,&Ii,&sv,ADD_VALUES);
342:         } else {
343:           MatSetValues(tGmat,1,&Ii,1,&idx[jj],&sv,ADD_VALUES);
344:         }
345:       }
346:     }
347:     MatRestoreRow(Gmat,Ii,&ncols,&idx,&vals);
348:   }
349:   MatAssemblyBegin(tGmat,MAT_FINAL_ASSEMBLY);
350:   MatAssemblyEnd(tGmat,MAT_FINAL_ASSEMBLY);

352: #if defined PETSC_GAMG_USE_LOG
353:   PetscLogEventEnd(petsc_gamg_setup_events[GRAPH],0,0,0,0);
354: #endif

356: #if defined(PETSC_USE_INFO)
357:   {
358:     double t1 = (!nnz0) ? 1. : 100.*(double)nnz1/(double)nnz0, t2 = (!nloc) ? 1. : (double)nnz0/(double)nloc;
359:     PetscInfo4(*a_Gmat,"\t %g%% nnz after filtering, with threshold %g, %g nnz ave. (N=%D)\n",t1,vfilter,t2,MM);
360:   }
361: #endif
362:   MatDestroy(&Gmat);
363:   *a_Gmat = tGmat;
364:   return(0);
365: }

367: /* -------------------------------------------------------------------------- */
368: /*
369:    PCGAMGGetDataWithGhosts - hacks into Mat MPIAIJ so this must have > 1 pe

371:    Input Parameter:
372:    . Gmat - MPIAIJ matrix for scattters
373:    . data_sz - number of data terms per node (# cols in output)
374:    . data_in[nloc*data_sz] - column oriented data
375:    Output Parameter:
376:    . a_stride - numbrt of rows of output
377:    . a_data_out[stride*data_sz] - output data with ghosts
378: */
381: PetscErrorCode PCGAMGGetDataWithGhosts(Mat Gmat,PetscInt data_sz,PetscReal data_in[],PetscInt *a_stride,PetscReal **a_data_out)
382: {
384:   MPI_Comm       comm;
385:   Vec            tmp_crds;
386:   Mat_MPIAIJ     *mpimat = (Mat_MPIAIJ*)Gmat->data;
387:   PetscInt       nnodes,num_ghosts,dir,kk,jj,my0,Iend,nloc;
388:   PetscScalar    *data_arr;
389:   PetscReal      *datas;
390:   PetscBool      isMPIAIJ;

393:   PetscObjectGetComm((PetscObject)Gmat,&comm);
394:   PetscObjectTypeCompare((PetscObject)Gmat, MATMPIAIJ, &isMPIAIJ);
395:   MatGetOwnershipRange(Gmat, &my0, &Iend);
396:   nloc      = Iend - my0;
397:   VecGetLocalSize(mpimat->lvec, &num_ghosts);
398:   nnodes    = num_ghosts + nloc;
399:   *a_stride = nnodes;
400:   MatCreateVecs(Gmat, &tmp_crds, 0);

402:   PetscMalloc1(data_sz*nnodes, &datas);
403:   for (dir=0; dir<data_sz; dir++) {
404:     /* set local, and global */
405:     for (kk=0; kk<nloc; kk++) {
406:       PetscInt    gid = my0 + kk;
407:       PetscScalar crd = (PetscScalar)data_in[dir*nloc + kk]; /* col oriented */
408:       datas[dir*nnodes + kk] = PetscRealPart(crd);

410:       VecSetValues(tmp_crds, 1, &gid, &crd, INSERT_VALUES);
411:     }
412:     VecAssemblyBegin(tmp_crds);
413:     VecAssemblyEnd(tmp_crds);
414:     /* get ghost datas */
415:     VecScatterBegin(mpimat->Mvctx,tmp_crds,mpimat->lvec,INSERT_VALUES,SCATTER_FORWARD);
416:     VecScatterEnd(mpimat->Mvctx,tmp_crds,mpimat->lvec,INSERT_VALUES,SCATTER_FORWARD);
417:     VecGetArray(mpimat->lvec, &data_arr);
418:     for (kk=nloc,jj=0;jj<num_ghosts;kk++,jj++) datas[dir*nnodes + kk] = PetscRealPart(data_arr[jj]);
419:     VecRestoreArray(mpimat->lvec, &data_arr);
420:   }
421:   VecDestroy(&tmp_crds);
422:   *a_data_out = datas;
423:   return(0);
424: }


427: /*
428:  *
429:  *  GAMGTableCreate
430:  */

434: PetscErrorCode GAMGTableCreate(PetscInt a_size, GAMGHashTable *a_tab)
435: {
437:   PetscInt       kk;

440:   a_tab->size = a_size;
441:   PetscMalloc1(a_size, &a_tab->table);
442:   PetscMalloc1(a_size, &a_tab->data);
443:   for (kk=0; kk<a_size; kk++) a_tab->table[kk] = -1;
444:   return(0);
445: }

449: PetscErrorCode GAMGTableDestroy(GAMGHashTable *a_tab)
450: {

454:   PetscFree(a_tab->table);
455:   PetscFree(a_tab->data);
456:   return(0);
457: }

461: PetscErrorCode GAMGTableAdd(GAMGHashTable *a_tab, PetscInt a_key, PetscInt a_data)
462: {
463:   PetscInt kk,idx;

466:   if (a_key<0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_USER,"Negative key %d.",a_key);
467:   for (kk = 0, idx = GAMG_HASH(a_key);
468:        kk < a_tab->size;
469:        kk++, idx = (idx==(a_tab->size-1)) ? 0 : idx + 1) {

471:     if (a_tab->table[idx] == a_key) {
472:       /* exists */
473:       a_tab->data[idx] = a_data;
474:       break;
475:     } else if (a_tab->table[idx] == -1) {
476:       /* add */
477:       a_tab->table[idx] = a_key;
478:       a_tab->data[idx]  = a_data;
479:       break;
480:     }
481:   }
482:   if (kk==a_tab->size) {
483:     /* this is not to efficient, waiting until completely full */
484:     PetscInt       oldsize = a_tab->size, new_size = 2*a_tab->size + 5, *oldtable = a_tab->table, *olddata = a_tab->data;

487:     a_tab->size = new_size;

489:     PetscMalloc1(a_tab->size, &a_tab->table);
490:     PetscMalloc1(a_tab->size, &a_tab->data);

492:     for (kk=0;kk<a_tab->size;kk++) a_tab->table[kk] = -1;
493:     for (kk=0;kk<oldsize;kk++) {
494:       if (oldtable[kk] != -1) {
495:         GAMGTableAdd(a_tab, oldtable[kk], olddata[kk]);
496:        }
497:     }
498:     PetscFree(oldtable);
499:     PetscFree(olddata);
500:     GAMGTableAdd(a_tab, a_key, a_data);
501:   }
502:   return(0);
503: }