Actual source code: dainterp.c

petsc-3.7.3 2016-08-01
Report Typos and Errors
  2: /*
  3:   Code for interpolating between grids represented by DMDAs
  4: */

  6: /*
  7:       For linear elements there are two branches of code to compute the interpolation. They should compute the same results but may not. The "new version" does
  8:    not work for periodic domains, the old does. Change NEWVERSION to 1 to compile in the new version. Eventually when we are sure the two produce identical results
  9:    we will remove/merge the new version. Based on current tests, these both produce the same results. We are leaving NEWVERSION for now in the code since some
 10:    consider it cleaner, but old version is turned on since it handles periodic case.
 11: */
 12: #define NEWVERSION 0

 14: #include <petsc/private/dmdaimpl.h>    /*I   "petscdmda.h"   I*/

 18: /*@
 19:     DMCreateInterpolationScale - Forms L = R*1/diag(R*1) - L.*v is like a coarse grid average of the
 20:       nearby fine grid points.

 22:   Input Parameters:
 23: +      dac - DM that defines a coarse mesh
 24: .      daf - DM that defines a fine mesh
 25: -      mat - the restriction (or interpolation operator) from fine to coarse

 27:   Output Parameter:
 28: .    scale - the scaled vector

 30:   Level: developer

 32: .seealso: DMCreateInterpolation()

 34: @*/
 35: PetscErrorCode  DMCreateInterpolationScale(DM dac,DM daf,Mat mat,Vec *scale)
 36: {
 38:   Vec            fine;
 39:   PetscScalar    one = 1.0;

 42:   DMCreateGlobalVector(daf,&fine);
 43:   DMCreateGlobalVector(dac,scale);
 44:   VecSet(fine,one);
 45:   MatRestrict(mat,fine,*scale);
 46:   VecDestroy(&fine);
 47:   VecReciprocal(*scale);
 48:   return(0);
 49: }

 53: PetscErrorCode DMCreateInterpolation_DA_1D_Q1(DM dac,DM daf,Mat *A)
 54: {
 55:   PetscErrorCode         ierr;
 56:   PetscInt               i,i_start,m_f,Mx;
 57:   const PetscInt         *idx_f,*idx_c;
 58:   PetscInt               m_ghost,m_ghost_c;
 59:   PetscInt               row,col,i_start_ghost,mx,m_c,nc,ratio;
 60:   PetscInt               i_c,i_start_c,i_start_ghost_c,cols[2],dof;
 61:   PetscScalar            v[2],x;
 62:   Mat                    mat;
 63:   DMBoundaryType         bx;
 64:   ISLocalToGlobalMapping ltog_f,ltog_c;


 68:   DMDAGetInfo(dac,0,&Mx,0,0,0,0,0,0,0,&bx,0,0,0);
 69:   DMDAGetInfo(daf,0,&mx,0,0,0,0,0,&dof,0,0,0,0,0);
 70:   if (bx == DM_BOUNDARY_PERIODIC) {
 71:     ratio = mx/Mx;
 72:     if (ratio*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx  must be integer: mx %D Mx %D",mx,Mx);
 73:   } else {
 74:     ratio = (mx-1)/(Mx-1);
 75:     if (ratio*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
 76:   }

 78:   DMDAGetCorners(daf,&i_start,0,0,&m_f,0,0);
 79:   DMDAGetGhostCorners(daf,&i_start_ghost,0,0,&m_ghost,0,0);
 80:   DMGetLocalToGlobalMapping(daf,&ltog_f);
 81:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

 83:   DMDAGetCorners(dac,&i_start_c,0,0,&m_c,0,0);
 84:   DMDAGetGhostCorners(dac,&i_start_ghost_c,0,0,&m_ghost_c,0,0);
 85:   DMGetLocalToGlobalMapping(dac,&ltog_c);
 86:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);

 88:   /* create interpolation matrix */
 89:   MatCreate(PetscObjectComm((PetscObject)dac),&mat);
 90:   MatSetSizes(mat,m_f,m_c,mx,Mx);
 91:   MatSetType(mat,MATAIJ);
 92:   MatSeqAIJSetPreallocation(mat,2,NULL);
 93:   MatMPIAIJSetPreallocation(mat,2,NULL,1,NULL);

 95:   /* loop over local fine grid nodes setting interpolation for those*/
 96:   if (!NEWVERSION) {

 98:     for (i=i_start; i<i_start+m_f; i++) {
 99:       /* convert to local "natural" numbering and then to PETSc global numbering */
100:       row = idx_f[i-i_start_ghost];

102:       i_c = (i/ratio);    /* coarse grid node to left of fine grid node */
103:       if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
104:                                           i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);

106:       /*
107:        Only include those interpolation points that are truly
108:        nonzero. Note this is very important for final grid lines
109:        in x direction; since they have no right neighbor
110:        */
111:       x  = ((PetscReal)(i - i_c*ratio))/((PetscReal)ratio);
112:       nc = 0;
113:       /* one left and below; or we are right on it */
114:       col      = (i_c-i_start_ghost_c);
115:       cols[nc] = idx_c[col];
116:       v[nc++]  = -x + 1.0;
117:       /* one right? */
118:       if (i_c*ratio != i) {
119:         cols[nc] = idx_c[col+1];
120:         v[nc++]  = x;
121:       }
122:       MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
123:     }

125:   } else {
126:     PetscScalar *xi;
127:     PetscInt    li,nxi,n;
128:     PetscScalar Ni[2];

130:     /* compute local coordinate arrays */
131:     nxi  = ratio + 1;
132:     PetscMalloc1(nxi,&xi);
133:     for (li=0; li<nxi; li++) {
134:       xi[li] = -1.0 + (PetscScalar)li*(2.0/(PetscScalar)(nxi-1));
135:     }

137:     for (i=i_start; i<i_start+m_f; i++) {
138:       /* convert to local "natural" numbering and then to PETSc global numbering */
139:       row = idx_f[(i-i_start_ghost)];

141:       i_c = (i/ratio);    /* coarse grid node to left of fine grid node */
142:       if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
143:                                           i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);

145:       /* remainders */
146:       li = i - ratio * (i/ratio);
147:       if (i==mx-1) li = nxi-1;

149:       /* corners */
150:       col     = (i_c-i_start_ghost_c);
151:       cols[0] = idx_c[col];
152:       Ni[0]   = 1.0;
153:       if ((li==0) || (li==nxi-1)) {
154:         MatSetValue(mat,row,cols[0],Ni[0],INSERT_VALUES);
155:         continue;
156:       }

158:       /* edges + interior */
159:       /* remainders */
160:       if (i==mx-1) i_c--;

162:       col     = (i_c-i_start_ghost_c);
163:       cols[0] = idx_c[col]; /* one left and below; or we are right on it */
164:       cols[1] = idx_c[col+1];

166:       Ni[0] = 0.5*(1.0-xi[li]);
167:       Ni[1] = 0.5*(1.0+xi[li]);
168:       for (n=0; n<2; n++) {
169:         if (PetscAbsScalar(Ni[n])<1.0e-32) cols[n]=-1;
170:       }
171:       MatSetValues(mat,1,&row,2,cols,Ni,INSERT_VALUES);
172:     }
173:     PetscFree(xi);
174:   }
175:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
176:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
177:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
178:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
179:   MatCreateMAIJ(mat,dof,A);
180:   MatDestroy(&mat);
181:   return(0);
182: }

186: PetscErrorCode DMCreateInterpolation_DA_1D_Q0(DM dac,DM daf,Mat *A)
187: {
188:   PetscErrorCode         ierr;
189:   PetscInt               i,i_start,m_f,Mx;
190:   const PetscInt         *idx_f,*idx_c;
191:   ISLocalToGlobalMapping ltog_f,ltog_c;
192:   PetscInt               m_ghost,m_ghost_c;
193:   PetscInt               row,col,i_start_ghost,mx,m_c,nc,ratio;
194:   PetscInt               i_c,i_start_c,i_start_ghost_c,cols[2],dof;
195:   PetscScalar            v[2],x;
196:   Mat                    mat;
197:   DMBoundaryType         bx;

200:   DMDAGetInfo(dac,0,&Mx,0,0,0,0,0,0,0,&bx,0,0,0);
201:   DMDAGetInfo(daf,0,&mx,0,0,0,0,0,&dof,0,0,0,0,0);
202:   if (bx == DM_BOUNDARY_PERIODIC) {
203:     ratio = mx/Mx;
204:     if (ratio*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx  must be integer: mx %D Mx %D",mx,Mx);
205:   } else {
206:     ratio = (mx-1)/(Mx-1);
207:     if (ratio*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
208:   }

210:   DMDAGetCorners(daf,&i_start,0,0,&m_f,0,0);
211:   DMDAGetGhostCorners(daf,&i_start_ghost,0,0,&m_ghost,0,0);
212:   DMGetLocalToGlobalMapping(daf,&ltog_f);
213:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

215:   DMDAGetCorners(dac,&i_start_c,0,0,&m_c,0,0);
216:   DMDAGetGhostCorners(dac,&i_start_ghost_c,0,0,&m_ghost_c,0,0);
217:   DMGetLocalToGlobalMapping(dac,&ltog_c);
218:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);

220:   /* create interpolation matrix */
221:   MatCreate(PetscObjectComm((PetscObject)dac),&mat);
222:   MatSetSizes(mat,m_f,m_c,mx,Mx);
223:   MatSetType(mat,MATAIJ);
224:   MatSeqAIJSetPreallocation(mat,2,NULL);
225:   MatMPIAIJSetPreallocation(mat,2,NULL,0,NULL);

227:   /* loop over local fine grid nodes setting interpolation for those*/
228:   for (i=i_start; i<i_start+m_f; i++) {
229:     /* convert to local "natural" numbering and then to PETSc global numbering */
230:     row = idx_f[(i-i_start_ghost)];

232:     i_c = (i/ratio);    /* coarse grid node to left of fine grid node */

234:     /*
235:          Only include those interpolation points that are truly
236:          nonzero. Note this is very important for final grid lines
237:          in x direction; since they have no right neighbor
238:     */
239:     x  = ((PetscReal)(i - i_c*ratio))/((PetscReal)ratio);
240:     nc = 0;
241:     /* one left and below; or we are right on it */
242:     col      = (i_c-i_start_ghost_c);
243:     cols[nc] = idx_c[col];
244:     v[nc++]  = -x + 1.0;
245:     /* one right? */
246:     if (i_c*ratio != i) {
247:       cols[nc] = idx_c[col+1];
248:       v[nc++]  = x;
249:     }
250:     MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
251:   }
252:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
253:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
254:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
255:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
256:   MatCreateMAIJ(mat,dof,A);
257:   MatDestroy(&mat);
258:   PetscLogFlops(5.0*m_f);
259:   return(0);
260: }

264: PetscErrorCode DMCreateInterpolation_DA_2D_Q1(DM dac,DM daf,Mat *A)
265: {
266:   PetscErrorCode         ierr;
267:   PetscInt               i,j,i_start,j_start,m_f,n_f,Mx,My,dof;
268:   const PetscInt         *idx_c,*idx_f;
269:   ISLocalToGlobalMapping ltog_f,ltog_c;
270:   PetscInt               m_ghost,n_ghost,m_ghost_c,n_ghost_c,*dnz,*onz;
271:   PetscInt               row,col,i_start_ghost,j_start_ghost,cols[4],mx,m_c,my,nc,ratioi,ratioj;
272:   PetscInt               i_c,j_c,i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c,col_shift,col_scale;
273:   PetscMPIInt            size_c,size_f,rank_f;
274:   PetscScalar            v[4],x,y;
275:   Mat                    mat;
276:   DMBoundaryType         bx,by;

279:   DMDAGetInfo(dac,0,&Mx,&My,0,0,0,0,0,0,&bx,&by,0,0);
280:   DMDAGetInfo(daf,0,&mx,&my,0,0,0,0,&dof,0,0,0,0,0);
281:   if (bx == DM_BOUNDARY_PERIODIC) {
282:     ratioi = mx/Mx;
283:     if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx  must be integer: mx %D Mx %D",mx,Mx);
284:   } else {
285:     ratioi = (mx-1)/(Mx-1);
286:     if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
287:   }
288:   if (by == DM_BOUNDARY_PERIODIC) {
289:     ratioj = my/My;
290:     if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My  must be integer: my %D My %D",my,My);
291:   } else {
292:     ratioj = (my-1)/(My-1);
293:     if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
294:   }


297:   DMDAGetCorners(daf,&i_start,&j_start,0,&m_f,&n_f,0);
298:   DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,0,&m_ghost,&n_ghost,0);
299:   DMGetLocalToGlobalMapping(daf,&ltog_f);
300:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

302:   DMDAGetCorners(dac,&i_start_c,&j_start_c,0,&m_c,&n_c,0);
303:   DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,0,&m_ghost_c,&n_ghost_c,0);
304:   DMGetLocalToGlobalMapping(dac,&ltog_c);
305:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);

307:   /*
308:    Used for handling a coarse DMDA that lives on 1/4 the processors of the fine DMDA.
309:    The coarse vector is then duplicated 4 times (each time it lives on 1/4 of the
310:    processors). It's effective length is hence 4 times its normal length, this is
311:    why the col_scale is multiplied by the interpolation matrix column sizes.
312:    sol_shift allows each set of 1/4 processors do its own interpolation using ITS
313:    copy of the coarse vector. A bit of a hack but you do better.

315:    In the standard case when size_f == size_c col_scale == 1 and col_shift == 0
316:    */
317:   MPI_Comm_size(PetscObjectComm((PetscObject)dac),&size_c);
318:   MPI_Comm_size(PetscObjectComm((PetscObject)daf),&size_f);
319:   MPI_Comm_rank(PetscObjectComm((PetscObject)daf),&rank_f);
320:   col_scale = size_f/size_c;
321:   col_shift = Mx*My*(rank_f/size_c);

323:   MatPreallocateInitialize(PetscObjectComm((PetscObject)daf),m_f*n_f,col_scale*m_c*n_c,dnz,onz);
324:   for (j=j_start; j<j_start+n_f; j++) {
325:     for (i=i_start; i<i_start+m_f; i++) {
326:       /* convert to local "natural" numbering and then to PETSc global numbering */
327:       row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

329:       i_c = (i/ratioi);    /* coarse grid node to left of fine grid node */
330:       j_c = (j/ratioj);    /* coarse grid node below fine grid node */

332:       if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
333:                                           j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
334:       if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
335:                                           i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);

337:       /*
338:        Only include those interpolation points that are truly
339:        nonzero. Note this is very important for final grid lines
340:        in x and y directions; since they have no right/top neighbors
341:        */
342:       nc = 0;
343:       /* one left and below; or we are right on it */
344:       col        = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
345:       cols[nc++] = col_shift + idx_c[col];
346:       /* one right and below */
347:       if (i_c*ratioi != i) cols[nc++] = col_shift + idx_c[col+1];
348:       /* one left and above */
349:       if (j_c*ratioj != j) cols[nc++] = col_shift + idx_c[col+m_ghost_c];
350:       /* one right and above */
351:       if (i_c*ratioi != i && j_c*ratioj != j) cols[nc++] = col_shift + idx_c[col+(m_ghost_c+1)];
352:       MatPreallocateSet(row,nc,cols,dnz,onz);
353:     }
354:   }
355:   MatCreate(PetscObjectComm((PetscObject)daf),&mat);
356:   MatSetSizes(mat,m_f*n_f,col_scale*m_c*n_c,mx*my,col_scale*Mx*My);
357:   MatSetType(mat,MATAIJ);
358:   MatSeqAIJSetPreallocation(mat,0,dnz);
359:   MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
360:   MatPreallocateFinalize(dnz,onz);

362:   /* loop over local fine grid nodes setting interpolation for those*/
363:   if (!NEWVERSION) {

365:     for (j=j_start; j<j_start+n_f; j++) {
366:       for (i=i_start; i<i_start+m_f; i++) {
367:         /* convert to local "natural" numbering and then to PETSc global numbering */
368:         row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

370:         i_c = (i/ratioi);    /* coarse grid node to left of fine grid node */
371:         j_c = (j/ratioj);    /* coarse grid node below fine grid node */

373:         /*
374:          Only include those interpolation points that are truly
375:          nonzero. Note this is very important for final grid lines
376:          in x and y directions; since they have no right/top neighbors
377:          */
378:         x = ((PetscReal)(i - i_c*ratioi))/((PetscReal)ratioi);
379:         y = ((PetscReal)(j - j_c*ratioj))/((PetscReal)ratioj);

381:         nc = 0;
382:         /* one left and below; or we are right on it */
383:         col      = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
384:         cols[nc] = col_shift + idx_c[col];
385:         v[nc++]  = x*y - x - y + 1.0;
386:         /* one right and below */
387:         if (i_c*ratioi != i) {
388:           cols[nc] = col_shift + idx_c[col+1];
389:           v[nc++]  = -x*y + x;
390:         }
391:         /* one left and above */
392:         if (j_c*ratioj != j) {
393:           cols[nc] = col_shift + idx_c[col+m_ghost_c];
394:           v[nc++]  = -x*y + y;
395:         }
396:         /* one right and above */
397:         if (j_c*ratioj != j && i_c*ratioi != i) {
398:           cols[nc] = col_shift + idx_c[col+(m_ghost_c+1)];
399:           v[nc++]  = x*y;
400:         }
401:         MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
402:       }
403:     }

405:   } else {
406:     PetscScalar Ni[4];
407:     PetscScalar *xi,*eta;
408:     PetscInt    li,nxi,lj,neta;

410:     /* compute local coordinate arrays */
411:     nxi  = ratioi + 1;
412:     neta = ratioj + 1;
413:     PetscMalloc1(nxi,&xi);
414:     PetscMalloc1(neta,&eta);
415:     for (li=0; li<nxi; li++) {
416:       xi[li] = -1.0 + (PetscScalar)li*(2.0/(PetscScalar)(nxi-1));
417:     }
418:     for (lj=0; lj<neta; lj++) {
419:       eta[lj] = -1.0 + (PetscScalar)lj*(2.0/(PetscScalar)(neta-1));
420:     }

422:     /* loop over local fine grid nodes setting interpolation for those*/
423:     for (j=j_start; j<j_start+n_f; j++) {
424:       for (i=i_start; i<i_start+m_f; i++) {
425:         /* convert to local "natural" numbering and then to PETSc global numbering */
426:         row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

428:         i_c = (i/ratioi);    /* coarse grid node to left of fine grid node */
429:         j_c = (j/ratioj);    /* coarse grid node below fine grid node */

431:         /* remainders */
432:         li = i - ratioi * (i/ratioi);
433:         if (i==mx-1) li = nxi-1;
434:         lj = j - ratioj * (j/ratioj);
435:         if (j==my-1) lj = neta-1;

437:         /* corners */
438:         col     = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
439:         cols[0] = col_shift + idx_c[col]; /* left, below */
440:         Ni[0]   = 1.0;
441:         if ((li==0) || (li==nxi-1)) {
442:           if ((lj==0) || (lj==neta-1)) {
443:             MatSetValue(mat,row,cols[0],Ni[0],INSERT_VALUES);
444:             continue;
445:           }
446:         }

448:         /* edges + interior */
449:         /* remainders */
450:         if (i==mx-1) i_c--;
451:         if (j==my-1) j_c--;

453:         col     = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
454:         cols[0] = col_shift + idx_c[col]; /* left, below */
455:         cols[1] = col_shift + idx_c[col+1]; /* right, below */
456:         cols[2] = col_shift + idx_c[col+m_ghost_c]; /* left, above */
457:         cols[3] = col_shift + idx_c[col+(m_ghost_c+1)]; /* right, above */

459:         Ni[0] = 0.25*(1.0-xi[li])*(1.0-eta[lj]);
460:         Ni[1] = 0.25*(1.0+xi[li])*(1.0-eta[lj]);
461:         Ni[2] = 0.25*(1.0-xi[li])*(1.0+eta[lj]);
462:         Ni[3] = 0.25*(1.0+xi[li])*(1.0+eta[lj]);

464:         nc = 0;
465:         if (PetscAbsScalar(Ni[0])<1.0e-32) cols[0]=-1;
466:         if (PetscAbsScalar(Ni[1])<1.0e-32) cols[1]=-1;
467:         if (PetscAbsScalar(Ni[2])<1.0e-32) cols[2]=-1;
468:         if (PetscAbsScalar(Ni[3])<1.0e-32) cols[3]=-1;

470:         MatSetValues(mat,1,&row,4,cols,Ni,INSERT_VALUES);
471:       }
472:     }
473:     PetscFree(xi);
474:     PetscFree(eta);
475:   }
476:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
477:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
478:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
479:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
480:   MatCreateMAIJ(mat,dof,A);
481:   MatDestroy(&mat);
482:   return(0);
483: }

485: /*
486:        Contributed by Andrei Draganescu <aidraga@sandia.gov>
487: */
490: PetscErrorCode DMCreateInterpolation_DA_2D_Q0(DM dac,DM daf,Mat *A)
491: {
492:   PetscErrorCode         ierr;
493:   PetscInt               i,j,i_start,j_start,m_f,n_f,Mx,My,dof;
494:   const PetscInt         *idx_c,*idx_f;
495:   ISLocalToGlobalMapping ltog_f,ltog_c;
496:   PetscInt               m_ghost,n_ghost,m_ghost_c,n_ghost_c,*dnz,*onz;
497:   PetscInt               row,col,i_start_ghost,j_start_ghost,cols[4],mx,m_c,my,nc,ratioi,ratioj;
498:   PetscInt               i_c,j_c,i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c,col_shift,col_scale;
499:   PetscMPIInt            size_c,size_f,rank_f;
500:   PetscScalar            v[4];
501:   Mat                    mat;
502:   DMBoundaryType         bx,by;

505:   DMDAGetInfo(dac,0,&Mx,&My,0,0,0,0,0,0,&bx,&by,0,0);
506:   DMDAGetInfo(daf,0,&mx,&my,0,0,0,0,&dof,0,0,0,0,0);
507:   ratioi = mx/Mx;
508:   ratioj = my/My;
509:   if (ratioi*Mx != mx) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in x");
510:   if (ratioj*My != my) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in y");
511:   if (ratioi != 2) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in x must be 2");
512:   if (ratioj != 2) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in y must be 2");

514:   DMDAGetCorners(daf,&i_start,&j_start,0,&m_f,&n_f,0);
515:   DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,0,&m_ghost,&n_ghost,0);
516:   DMGetLocalToGlobalMapping(daf,&ltog_f);
517:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

519:   DMDAGetCorners(dac,&i_start_c,&j_start_c,0,&m_c,&n_c,0);
520:   DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,0,&m_ghost_c,&n_ghost_c,0);
521:   DMGetLocalToGlobalMapping(dac,&ltog_c);
522:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);

524:   /*
525:      Used for handling a coarse DMDA that lives on 1/4 the processors of the fine DMDA.
526:      The coarse vector is then duplicated 4 times (each time it lives on 1/4 of the
527:      processors). It's effective length is hence 4 times its normal length, this is
528:      why the col_scale is multiplied by the interpolation matrix column sizes.
529:      sol_shift allows each set of 1/4 processors do its own interpolation using ITS
530:      copy of the coarse vector. A bit of a hack but you do better.

532:      In the standard case when size_f == size_c col_scale == 1 and col_shift == 0
533:   */
534:   MPI_Comm_size(PetscObjectComm((PetscObject)dac),&size_c);
535:   MPI_Comm_size(PetscObjectComm((PetscObject)daf),&size_f);
536:   MPI_Comm_rank(PetscObjectComm((PetscObject)daf),&rank_f);
537:   col_scale = size_f/size_c;
538:   col_shift = Mx*My*(rank_f/size_c);

540:   MatPreallocateInitialize(PetscObjectComm((PetscObject)daf),m_f*n_f,col_scale*m_c*n_c,dnz,onz);
541:   for (j=j_start; j<j_start+n_f; j++) {
542:     for (i=i_start; i<i_start+m_f; i++) {
543:       /* convert to local "natural" numbering and then to PETSc global numbering */
544:       row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

546:       i_c = (i/ratioi);    /* coarse grid node to left of fine grid node */
547:       j_c = (j/ratioj);    /* coarse grid node below fine grid node */

549:       if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
550:     j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
551:       if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
552:     i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);

554:       /*
555:          Only include those interpolation points that are truly
556:          nonzero. Note this is very important for final grid lines
557:          in x and y directions; since they have no right/top neighbors
558:       */
559:       nc = 0;
560:       /* one left and below; or we are right on it */
561:       col        = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
562:       cols[nc++] = col_shift + idx_c[col];
563:       MatPreallocateSet(row,nc,cols,dnz,onz);
564:     }
565:   }
566:   MatCreate(PetscObjectComm((PetscObject)daf),&mat);
567:   MatSetSizes(mat,m_f*n_f,col_scale*m_c*n_c,mx*my,col_scale*Mx*My);
568:   MatSetType(mat,MATAIJ);
569:   MatSeqAIJSetPreallocation(mat,0,dnz);
570:   MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
571:   MatPreallocateFinalize(dnz,onz);

573:   /* loop over local fine grid nodes setting interpolation for those*/
574:   for (j=j_start; j<j_start+n_f; j++) {
575:     for (i=i_start; i<i_start+m_f; i++) {
576:       /* convert to local "natural" numbering and then to PETSc global numbering */
577:       row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

579:       i_c = (i/ratioi);    /* coarse grid node to left of fine grid node */
580:       j_c = (j/ratioj);    /* coarse grid node below fine grid node */
581:       nc  = 0;
582:       /* one left and below; or we are right on it */
583:       col      = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
584:       cols[nc] = col_shift + idx_c[col];
585:       v[nc++]  = 1.0;

587:       MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
588:     }
589:   }
590:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
591:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
592:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
593:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
594:   MatCreateMAIJ(mat,dof,A);
595:   MatDestroy(&mat);
596:   PetscLogFlops(13.0*m_f*n_f);
597:   return(0);
598: }

600: /*
601:        Contributed by Jianming Yang <jianming-yang@uiowa.edu>
602: */
605: PetscErrorCode DMCreateInterpolation_DA_3D_Q0(DM dac,DM daf,Mat *A)
606: {
607:   PetscErrorCode         ierr;
608:   PetscInt               i,j,l,i_start,j_start,l_start,m_f,n_f,p_f,Mx,My,Mz,dof;
609:   const PetscInt         *idx_c,*idx_f;
610:   ISLocalToGlobalMapping ltog_f,ltog_c;
611:   PetscInt               m_ghost,n_ghost,p_ghost,m_ghost_c,n_ghost_c,p_ghost_c,nc,*dnz,*onz;
612:   PetscInt               row,col,i_start_ghost,j_start_ghost,l_start_ghost,cols[8],mx,m_c,my,n_c,mz,p_c,ratioi,ratioj,ratiol;
613:   PetscInt               i_c,j_c,l_c,i_start_c,j_start_c,l_start_c,i_start_ghost_c,j_start_ghost_c,l_start_ghost_c,col_shift,col_scale;
614:   PetscMPIInt            size_c,size_f,rank_f;
615:   PetscScalar            v[8];
616:   Mat                    mat;
617:   DMBoundaryType         bx,by,bz;

620:   DMDAGetInfo(dac,0,&Mx,&My,&Mz,0,0,0,0,0,&bx,&by,&bz,0);
621:   DMDAGetInfo(daf,0,&mx,&my,&mz,0,0,0,&dof,0,0,0,0,0);
622:   ratioi = mx/Mx;
623:   ratioj = my/My;
624:   ratiol = mz/Mz;
625:   if (ratioi*Mx != mx) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in x");
626:   if (ratioj*My != my) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in y");
627:   if (ratiol*Mz != mz) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in z");
628:   if (ratioi != 2 && ratioi != 1) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in x must be 1 or 2");
629:   if (ratioj != 2 && ratioj != 1) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in y must be 1 or 2");
630:   if (ratiol != 2 && ratiol != 1) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in z must be 1 or 2");

632:   DMDAGetCorners(daf,&i_start,&j_start,&l_start,&m_f,&n_f,&p_f);
633:   DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&l_start_ghost,&m_ghost,&n_ghost,&p_ghost);
634:   DMGetLocalToGlobalMapping(daf,&ltog_f);
635:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

637:   DMDAGetCorners(dac,&i_start_c,&j_start_c,&l_start_c,&m_c,&n_c,&p_c);
638:   DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&l_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);
639:   DMGetLocalToGlobalMapping(dac,&ltog_c);
640:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);

642:   /*
643:      Used for handling a coarse DMDA that lives on 1/4 the processors of the fine DMDA.
644:      The coarse vector is then duplicated 4 times (each time it lives on 1/4 of the
645:      processors). It's effective length is hence 4 times its normal length, this is
646:      why the col_scale is multiplied by the interpolation matrix column sizes.
647:      sol_shift allows each set of 1/4 processors do its own interpolation using ITS
648:      copy of the coarse vector. A bit of a hack but you do better.

650:      In the standard case when size_f == size_c col_scale == 1 and col_shift == 0
651:   */
652:   MPI_Comm_size(PetscObjectComm((PetscObject)dac),&size_c);
653:   MPI_Comm_size(PetscObjectComm((PetscObject)daf),&size_f);
654:   MPI_Comm_rank(PetscObjectComm((PetscObject)daf),&rank_f);
655:   col_scale = size_f/size_c;
656:   col_shift = Mx*My*Mz*(rank_f/size_c);

658:   MatPreallocateInitialize(PetscObjectComm((PetscObject)daf),m_f*n_f*p_f,col_scale*m_c*n_c*p_c,dnz,onz);
659:   for (l=l_start; l<l_start+p_f; l++) {
660:     for (j=j_start; j<j_start+n_f; j++) {
661:       for (i=i_start; i<i_start+m_f; i++) {
662:         /* convert to local "natural" numbering and then to PETSc global numbering */
663:         row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

665:         i_c = (i/ratioi);    /* coarse grid node to left of fine grid node */
666:         j_c = (j/ratioj);    /* coarse grid node below fine grid node */
667:         l_c = (l/ratiol);

669:         if (l_c < l_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
670:     l_start %D l_c %D l_start_ghost_c %D",l_start,l_c,l_start_ghost_c);
671:         if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
672:     j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
673:         if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
674:     i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);

676:         /*
677:            Only include those interpolation points that are truly
678:            nonzero. Note this is very important for final grid lines
679:            in x and y directions; since they have no right/top neighbors
680:         */
681:         nc = 0;
682:         /* one left and below; or we are right on it */
683:         col        = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
684:         cols[nc++] = col_shift + idx_c[col];
685:         MatPreallocateSet(row,nc,cols,dnz,onz);
686:       }
687:     }
688:   }
689:   MatCreate(PetscObjectComm((PetscObject)daf),&mat);
690:   MatSetSizes(mat,m_f*n_f*p_f,col_scale*m_c*n_c*p_c,mx*my*mz,col_scale*Mx*My*Mz);
691:   MatSetType(mat,MATAIJ);
692:   MatSeqAIJSetPreallocation(mat,0,dnz);
693:   MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
694:   MatPreallocateFinalize(dnz,onz);

696:   /* loop over local fine grid nodes setting interpolation for those*/
697:   for (l=l_start; l<l_start+p_f; l++) {
698:     for (j=j_start; j<j_start+n_f; j++) {
699:       for (i=i_start; i<i_start+m_f; i++) {
700:         /* convert to local "natural" numbering and then to PETSc global numbering */
701:         row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

703:         i_c = (i/ratioi);    /* coarse grid node to left of fine grid node */
704:         j_c = (j/ratioj);    /* coarse grid node below fine grid node */
705:         l_c = (l/ratiol);
706:         nc  = 0;
707:         /* one left and below; or we are right on it */
708:         col      = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
709:         cols[nc] = col_shift + idx_c[col];
710:         v[nc++]  = 1.0;

712:         MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
713:       }
714:     }
715:   }
716:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
717:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
718:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
719:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
720:   MatCreateMAIJ(mat,dof,A);
721:   MatDestroy(&mat);
722:   PetscLogFlops(13.0*m_f*n_f*p_f);
723:   return(0);
724: }

728: PetscErrorCode DMCreateInterpolation_DA_3D_Q1(DM dac,DM daf,Mat *A)
729: {
730:   PetscErrorCode         ierr;
731:   PetscInt               i,j,i_start,j_start,m_f,n_f,Mx,My,dof,l;
732:   const PetscInt         *idx_c,*idx_f;
733:   ISLocalToGlobalMapping ltog_f,ltog_c;
734:   PetscInt               m_ghost,n_ghost,m_ghost_c,n_ghost_c,Mz,mz;
735:   PetscInt               row,col,i_start_ghost,j_start_ghost,cols[8],mx,m_c,my,nc,ratioi,ratioj,ratiok;
736:   PetscInt               i_c,j_c,i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c;
737:   PetscInt               l_start,p_f,l_start_ghost,p_ghost,l_start_c,p_c;
738:   PetscInt               l_start_ghost_c,p_ghost_c,l_c,*dnz,*onz;
739:   PetscScalar            v[8],x,y,z;
740:   Mat                    mat;
741:   DMBoundaryType         bx,by,bz;

744:   DMDAGetInfo(dac,0,&Mx,&My,&Mz,0,0,0,0,0,&bx,&by,&bz,0);
745:   DMDAGetInfo(daf,0,&mx,&my,&mz,0,0,0,&dof,0,0,0,0,0);
746:   if (mx == Mx) {
747:     ratioi = 1;
748:   } else if (bx == DM_BOUNDARY_PERIODIC) {
749:     ratioi = mx/Mx;
750:     if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx  must be integer: mx %D Mx %D",mx,Mx);
751:   } else {
752:     ratioi = (mx-1)/(Mx-1);
753:     if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
754:   }
755:   if (my == My) {
756:     ratioj = 1;
757:   } else if (by == DM_BOUNDARY_PERIODIC) {
758:     ratioj = my/My;
759:     if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My  must be integer: my %D My %D",my,My);
760:   } else {
761:     ratioj = (my-1)/(My-1);
762:     if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
763:   }
764:   if (mz == Mz) {
765:     ratiok = 1;
766:   } else if (bz == DM_BOUNDARY_PERIODIC) {
767:     ratiok = mz/Mz;
768:     if (ratiok*Mz != mz) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mz/Mz  must be integer: mz %D Mz %D",mz,Mz);
769:   } else {
770:     ratiok = (mz-1)/(Mz-1);
771:     if (ratiok*(Mz-1) != mz-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mz - 1)/(Mz - 1) must be integer: mz %D Mz %D",mz,Mz);
772:   }

774:   DMDAGetCorners(daf,&i_start,&j_start,&l_start,&m_f,&n_f,&p_f);
775:   DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&l_start_ghost,&m_ghost,&n_ghost,&p_ghost);
776:   DMGetLocalToGlobalMapping(daf,&ltog_f);
777:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

779:   DMDAGetCorners(dac,&i_start_c,&j_start_c,&l_start_c,&m_c,&n_c,&p_c);
780:   DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&l_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);
781:   DMGetLocalToGlobalMapping(dac,&ltog_c);
782:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);

784:   /* create interpolation matrix, determining exact preallocation */
785:   MatPreallocateInitialize(PetscObjectComm((PetscObject)dac),m_f*n_f*p_f,m_c*n_c*p_c,dnz,onz);
786:   /* loop over local fine grid nodes counting interpolating points */
787:   for (l=l_start; l<l_start+p_f; l++) {
788:     for (j=j_start; j<j_start+n_f; j++) {
789:       for (i=i_start; i<i_start+m_f; i++) {
790:         /* convert to local "natural" numbering and then to PETSc global numbering */
791:         row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
792:         i_c = (i/ratioi);
793:         j_c = (j/ratioj);
794:         l_c = (l/ratiok);
795:         if (l_c < l_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
796:                                             l_start %D l_c %D l_start_ghost_c %D",l_start,l_c,l_start_ghost_c);
797:         if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
798:                                             j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
799:         if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
800:                                             i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);

802:         /*
803:          Only include those interpolation points that are truly
804:          nonzero. Note this is very important for final grid lines
805:          in x and y directions; since they have no right/top neighbors
806:          */
807:         nc         = 0;
808:         col        = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
809:         cols[nc++] = idx_c[col];
810:         if (i_c*ratioi != i) {
811:           cols[nc++] = idx_c[col+1];
812:         }
813:         if (j_c*ratioj != j) {
814:           cols[nc++] = idx_c[col+m_ghost_c];
815:         }
816:         if (l_c*ratiok != l) {
817:           cols[nc++] = idx_c[col+m_ghost_c*n_ghost_c];
818:         }
819:         if (j_c*ratioj != j && i_c*ratioi != i) {
820:           cols[nc++] = idx_c[col+(m_ghost_c+1)];
821:         }
822:         if (j_c*ratioj != j && l_c*ratiok != l) {
823:           cols[nc++] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c)];
824:         }
825:         if (i_c*ratioi != i && l_c*ratiok != l) {
826:           cols[nc++] = idx_c[col+(m_ghost_c*n_ghost_c+1)];
827:         }
828:         if (i_c*ratioi != i && l_c*ratiok != l && j_c*ratioj != j) {
829:           cols[nc++] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c+1)];
830:         }
831:         MatPreallocateSet(row,nc,cols,dnz,onz);
832:       }
833:     }
834:   }
835:   MatCreate(PetscObjectComm((PetscObject)dac),&mat);
836:   MatSetSizes(mat,m_f*n_f*p_f,m_c*n_c*p_c,mx*my*mz,Mx*My*Mz);
837:   MatSetType(mat,MATAIJ);
838:   MatSeqAIJSetPreallocation(mat,0,dnz);
839:   MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
840:   MatPreallocateFinalize(dnz,onz);

842:   /* loop over local fine grid nodes setting interpolation for those*/
843:   if (!NEWVERSION) {

845:     for (l=l_start; l<l_start+p_f; l++) {
846:       for (j=j_start; j<j_start+n_f; j++) {
847:         for (i=i_start; i<i_start+m_f; i++) {
848:           /* convert to local "natural" numbering and then to PETSc global numbering */
849:           row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

851:           i_c = (i/ratioi);
852:           j_c = (j/ratioj);
853:           l_c = (l/ratiok);

855:           /*
856:            Only include those interpolation points that are truly
857:            nonzero. Note this is very important for final grid lines
858:            in x and y directions; since they have no right/top neighbors
859:            */
860:           x = ((PetscReal)(i - i_c*ratioi))/((PetscReal)ratioi);
861:           y = ((PetscReal)(j - j_c*ratioj))/((PetscReal)ratioj);
862:           z = ((PetscReal)(l - l_c*ratiok))/((PetscReal)ratiok);

864:           nc = 0;
865:           /* one left and below; or we are right on it */
866:           col = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c)+m_ghost_c*(j_c-j_start_ghost_c)+(i_c-i_start_ghost_c));

868:           cols[nc] = idx_c[col];
869:           v[nc++]  = .125*(1. - (2.0*x-1.))*(1. - (2.0*y-1.))*(1. - (2.0*z-1.));

871:           if (i_c*ratioi != i) {
872:             cols[nc] = idx_c[col+1];
873:             v[nc++]  = .125*(1. + (2.0*x-1.))*(1. - (2.0*y-1.))*(1. - (2.0*z-1.));
874:           }

876:           if (j_c*ratioj != j) {
877:             cols[nc] = idx_c[col+m_ghost_c];
878:             v[nc++]  = .125*(1. - (2.0*x-1.))*(1. + (2.0*y-1.))*(1. - (2.0*z-1.));
879:           }

881:           if (l_c*ratiok != l) {
882:             cols[nc] = idx_c[col+m_ghost_c*n_ghost_c];
883:             v[nc++]  = .125*(1. - (2.0*x-1.))*(1. - (2.0*y-1.))*(1. + (2.0*z-1.));
884:           }

886:           if (j_c*ratioj != j && i_c*ratioi != i) {
887:             cols[nc] = idx_c[col+(m_ghost_c+1)];
888:             v[nc++]  = .125*(1. + (2.0*x-1.))*(1. + (2.0*y-1.))*(1. - (2.0*z-1.));
889:           }

891:           if (j_c*ratioj != j && l_c*ratiok != l) {
892:             cols[nc] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c)];
893:             v[nc++]  = .125*(1. - (2.0*x-1.))*(1. + (2.0*y-1.))*(1. + (2.0*z-1.));
894:           }

896:           if (i_c*ratioi != i && l_c*ratiok != l) {
897:             cols[nc] = idx_c[col+(m_ghost_c*n_ghost_c+1)];
898:             v[nc++]  = .125*(1. + (2.0*x-1.))*(1. - (2.0*y-1.))*(1. + (2.0*z-1.));
899:           }

901:           if (i_c*ratioi != i && l_c*ratiok != l && j_c*ratioj != j) {
902:             cols[nc] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c+1)];
903:             v[nc++]  = .125*(1. + (2.0*x-1.))*(1. + (2.0*y-1.))*(1. + (2.0*z-1.));
904:           }
905:           MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
906:         }
907:       }
908:     }

910:   } else {
911:     PetscScalar *xi,*eta,*zeta;
912:     PetscInt    li,nxi,lj,neta,lk,nzeta,n;
913:     PetscScalar Ni[8];

915:     /* compute local coordinate arrays */
916:     nxi   = ratioi + 1;
917:     neta  = ratioj + 1;
918:     nzeta = ratiok + 1;
919:     PetscMalloc1(nxi,&xi);
920:     PetscMalloc1(neta,&eta);
921:     PetscMalloc1(nzeta,&zeta);
922:     for (li=0; li<nxi; li++) xi[li] = -1.0 + (PetscScalar)li*(2.0/(PetscScalar)(nxi-1));
923:     for (lj=0; lj<neta; lj++) eta[lj] = -1.0 + (PetscScalar)lj*(2.0/(PetscScalar)(neta-1));
924:     for (lk=0; lk<nzeta; lk++) zeta[lk] = -1.0 + (PetscScalar)lk*(2.0/(PetscScalar)(nzeta-1));

926:     for (l=l_start; l<l_start+p_f; l++) {
927:       for (j=j_start; j<j_start+n_f; j++) {
928:         for (i=i_start; i<i_start+m_f; i++) {
929:           /* convert to local "natural" numbering and then to PETSc global numbering */
930:           row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];

932:           i_c = (i/ratioi);
933:           j_c = (j/ratioj);
934:           l_c = (l/ratiok);

936:           /* remainders */
937:           li = i - ratioi * (i/ratioi);
938:           if (i==mx-1) li = nxi-1;
939:           lj = j - ratioj * (j/ratioj);
940:           if (j==my-1) lj = neta-1;
941:           lk = l - ratiok * (l/ratiok);
942:           if (l==mz-1) lk = nzeta-1;

944:           /* corners */
945:           col     = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c)+m_ghost_c*(j_c-j_start_ghost_c)+(i_c-i_start_ghost_c));
946:           cols[0] = idx_c[col];
947:           Ni[0]   = 1.0;
948:           if ((li==0) || (li==nxi-1)) {
949:             if ((lj==0) || (lj==neta-1)) {
950:               if ((lk==0) || (lk==nzeta-1)) {
951:                 MatSetValue(mat,row,cols[0],Ni[0],INSERT_VALUES);
952:                 continue;
953:               }
954:             }
955:           }

957:           /* edges + interior */
958:           /* remainders */
959:           if (i==mx-1) i_c--;
960:           if (j==my-1) j_c--;
961:           if (l==mz-1) l_c--;

963:           col     = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
964:           cols[0] = idx_c[col]; /* one left and below; or we are right on it */
965:           cols[1] = idx_c[col+1]; /* one right and below */
966:           cols[2] = idx_c[col+m_ghost_c];  /* one left and above */
967:           cols[3] = idx_c[col+(m_ghost_c+1)]; /* one right and above */

969:           cols[4] = idx_c[col+m_ghost_c*n_ghost_c]; /* one left and below and front; or we are right on it */
970:           cols[5] = idx_c[col+(m_ghost_c*n_ghost_c+1)]; /* one right and below, and front */
971:           cols[6] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c)]; /* one left and above and front*/
972:           cols[7] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c+1)]; /* one right and above and front */

974:           Ni[0] = 0.125*(1.0-xi[li])*(1.0-eta[lj])*(1.0-zeta[lk]);
975:           Ni[1] = 0.125*(1.0+xi[li])*(1.0-eta[lj])*(1.0-zeta[lk]);
976:           Ni[2] = 0.125*(1.0-xi[li])*(1.0+eta[lj])*(1.0-zeta[lk]);
977:           Ni[3] = 0.125*(1.0+xi[li])*(1.0+eta[lj])*(1.0-zeta[lk]);

979:           Ni[4] = 0.125*(1.0-xi[li])*(1.0-eta[lj])*(1.0+zeta[lk]);
980:           Ni[5] = 0.125*(1.0+xi[li])*(1.0-eta[lj])*(1.0+zeta[lk]);
981:           Ni[6] = 0.125*(1.0-xi[li])*(1.0+eta[lj])*(1.0+zeta[lk]);
982:           Ni[7] = 0.125*(1.0+xi[li])*(1.0+eta[lj])*(1.0+zeta[lk]);

984:           for (n=0; n<8; n++) {
985:             if (PetscAbsScalar(Ni[n])<1.0e-32) cols[n]=-1;
986:           }
987:           MatSetValues(mat,1,&row,8,cols,Ni,INSERT_VALUES);

989:         }
990:       }
991:     }
992:     PetscFree(xi);
993:     PetscFree(eta);
994:     PetscFree(zeta);
995:   }
996:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
997:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
998:   MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
999:   MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);

1001:   MatCreateMAIJ(mat,dof,A);
1002:   MatDestroy(&mat);
1003:   return(0);
1004: }

1008: PetscErrorCode  DMCreateInterpolation_DA(DM dac,DM daf,Mat *A,Vec *scale)
1009: {
1010:   PetscErrorCode   ierr;
1011:   PetscInt         dimc,Mc,Nc,Pc,mc,nc,pc,dofc,sc,dimf,Mf,Nf,Pf,mf,nf,pf,doff,sf;
1012:   DMBoundaryType   bxc,byc,bzc,bxf,byf,bzf;
1013:   DMDAStencilType  stc,stf;
1014:   DM_DA            *ddc = (DM_DA*)dac->data;


1022:   DMDAGetInfo(dac,&dimc,&Mc,&Nc,&Pc,&mc,&nc,&pc,&dofc,&sc,&bxc,&byc,&bzc,&stc);
1023:   DMDAGetInfo(daf,&dimf,&Mf,&Nf,&Pf,&mf,&nf,&pf,&doff,&sf,&bxf,&byf,&bzf,&stf);
1024:   if (dimc != dimf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Dimensions of DMDA do not match %D %D",dimc,dimf);
1025:   if (dofc != doff) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"DOF of DMDA do not match %D %D",dofc,doff);
1026:   if (sc != sf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil width of DMDA do not match %D %D",sc,sf);
1027:   if (bxc != bxf || byc != byf || bzc != bzf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Boundary type different in two DMDAs");
1028:   if (stc != stf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil type different in two DMDAs");
1029:   if (Mc < 2 && Mf > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in x direction");
1030:   if (dimc > 1 && Nc < 2 && Nf > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in y direction");
1031:   if (dimc > 2 && Pc < 2 && Pf > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in z direction");

1033:   if (ddc->interptype == DMDA_Q1) {
1034:     if (dimc == 1) {
1035:       DMCreateInterpolation_DA_1D_Q1(dac,daf,A);
1036:     } else if (dimc == 2) {
1037:       DMCreateInterpolation_DA_2D_Q1(dac,daf,A);
1038:     } else if (dimc == 3) {
1039:       DMCreateInterpolation_DA_3D_Q1(dac,daf,A);
1040:     } else SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_SUP,"No support for this DMDA dimension %D for interpolation type %d",dimc,(int)ddc->interptype);
1041:   } else if (ddc->interptype == DMDA_Q0) {
1042:     if (dimc == 1) {
1043:       DMCreateInterpolation_DA_1D_Q0(dac,daf,A);
1044:     } else if (dimc == 2) {
1045:       DMCreateInterpolation_DA_2D_Q0(dac,daf,A);
1046:     } else if (dimc == 3) {
1047:       DMCreateInterpolation_DA_3D_Q0(dac,daf,A);
1048:     } else SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_SUP,"No support for this DMDA dimension %D for interpolation type %d",dimc,(int)ddc->interptype);
1049:   }
1050:   if (scale) {
1051:     DMCreateInterpolationScale((DM)dac,(DM)daf,*A,scale);
1052:   }
1053:   return(0);
1054: }

1058: PetscErrorCode DMCreateInjection_DA_1D(DM dac,DM daf,VecScatter *inject)
1059: {
1060:   PetscErrorCode         ierr;
1061:   PetscInt               i,i_start,m_f,Mx,dof;
1062:   const PetscInt         *idx_f;
1063:   ISLocalToGlobalMapping ltog_f;
1064:   PetscInt               m_ghost,m_ghost_c;
1065:   PetscInt               row,i_start_ghost,mx,m_c,nc,ratioi;
1066:   PetscInt               i_start_c,i_start_ghost_c;
1067:   PetscInt               *cols;
1068:   DMBoundaryType         bx;
1069:   Vec                    vecf,vecc;
1070:   IS                     isf;

1073:   DMDAGetInfo(dac,0,&Mx,0,0,0,0,0,0,0,&bx,0,0,0);
1074:   DMDAGetInfo(daf,0,&mx,0,0,0,0,0,&dof,0,0,0,0,0);
1075:   if (bx == DM_BOUNDARY_PERIODIC) {
1076:     ratioi = mx/Mx;
1077:     if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx  must be integer: mx %D Mx %D",mx,Mx);
1078:   } else {
1079:     ratioi = (mx-1)/(Mx-1);
1080:     if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
1081:   }

1083:   DMDAGetCorners(daf,&i_start,0,0,&m_f,0,0);
1084:   DMDAGetGhostCorners(daf,&i_start_ghost,0,0,&m_ghost,0,0);
1085:   DMGetLocalToGlobalMapping(daf,&ltog_f);
1086:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

1088:   DMDAGetCorners(dac,&i_start_c,0,0,&m_c,0,0);
1089:   DMDAGetGhostCorners(dac,&i_start_ghost_c,0,0,&m_ghost_c,0,0);


1092:   /* loop over local fine grid nodes setting interpolation for those*/
1093:   nc   = 0;
1094:   PetscMalloc1(m_f,&cols);


1097:   for (i=i_start_c; i<i_start_c+m_c; i++) {
1098:     PetscInt i_f = i*ratioi;

1100:     if (i_f < i_start_ghost || i_f >= i_start_ghost+m_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\ni_c %D i_f %D fine ghost range [%D,%D]",i,i_f,i_start_ghost,i_start_ghost+m_ghost);

1102:     row        = idx_f[(i_f-i_start_ghost)];
1103:     cols[nc++] = row;
1104:   }

1106:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
1107:   ISCreateBlock(PetscObjectComm((PetscObject)daf),dof,nc,cols,PETSC_OWN_POINTER,&isf);
1108:   DMGetGlobalVector(dac,&vecc);
1109:   DMGetGlobalVector(daf,&vecf);
1110:   VecScatterCreate(vecf,isf,vecc,NULL,inject);
1111:   DMRestoreGlobalVector(dac,&vecc);
1112:   DMRestoreGlobalVector(daf,&vecf);
1113:   ISDestroy(&isf);
1114:   return(0);
1115: }

1119: PetscErrorCode DMCreateInjection_DA_2D(DM dac,DM daf,VecScatter *inject)
1120: {
1121:   PetscErrorCode         ierr;
1122:   PetscInt               i,j,i_start,j_start,m_f,n_f,Mx,My,dof;
1123:   const PetscInt         *idx_c,*idx_f;
1124:   ISLocalToGlobalMapping ltog_f,ltog_c;
1125:   PetscInt               m_ghost,n_ghost,m_ghost_c,n_ghost_c;
1126:   PetscInt               row,i_start_ghost,j_start_ghost,mx,m_c,my,nc,ratioi,ratioj;
1127:   PetscInt               i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c;
1128:   PetscInt               *cols;
1129:   DMBoundaryType         bx,by;
1130:   Vec                    vecf,vecc;
1131:   IS                     isf;

1134:   DMDAGetInfo(dac,0,&Mx,&My,0,0,0,0,0,0,&bx,&by,0,0);
1135:   DMDAGetInfo(daf,0,&mx,&my,0,0,0,0,&dof,0,0,0,0,0);
1136:   if (bx == DM_BOUNDARY_PERIODIC) {
1137:     ratioi = mx/Mx;
1138:     if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx  must be integer: mx %D Mx %D",mx,Mx);
1139:   } else {
1140:     ratioi = (mx-1)/(Mx-1);
1141:     if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
1142:   }
1143:   if (by == DM_BOUNDARY_PERIODIC) {
1144:     ratioj = my/My;
1145:     if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My  must be integer: my %D My %D",my,My);
1146:   } else {
1147:     ratioj = (my-1)/(My-1);
1148:     if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
1149:   }

1151:   DMDAGetCorners(daf,&i_start,&j_start,0,&m_f,&n_f,0);
1152:   DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,0,&m_ghost,&n_ghost,0);
1153:   DMGetLocalToGlobalMapping(daf,&ltog_f);
1154:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

1156:   DMDAGetCorners(dac,&i_start_c,&j_start_c,0,&m_c,&n_c,0);
1157:   DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,0,&m_ghost_c,&n_ghost_c,0);
1158:   DMGetLocalToGlobalMapping(dac,&ltog_c);
1159:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);

1161:   /* loop over local fine grid nodes setting interpolation for those*/
1162:   nc   = 0;
1163:   PetscMalloc1(n_f*m_f,&cols);
1164:   for (j=j_start_c; j<j_start_c+n_c; j++) {
1165:     for (i=i_start_c; i<i_start_c+m_c; i++) {
1166:       PetscInt i_f = i*ratioi,j_f = j*ratioj;
1167:       if (j_f < j_start_ghost || j_f >= j_start_ghost+n_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
1168:     j_c %D j_f %D fine ghost range [%D,%D]",j,j_f,j_start_ghost,j_start_ghost+n_ghost);
1169:       if (i_f < i_start_ghost || i_f >= i_start_ghost+m_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
1170:     i_c %D i_f %D fine ghost range [%D,%D]",i,i_f,i_start_ghost,i_start_ghost+m_ghost);
1171:       row        = idx_f[(m_ghost*(j_f-j_start_ghost) + (i_f-i_start_ghost))];
1172:       cols[nc++] = row;
1173:     }
1174:   }
1175:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
1176:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);

1178:   ISCreateBlock(PetscObjectComm((PetscObject)daf),dof,nc,cols,PETSC_OWN_POINTER,&isf);
1179:   DMGetGlobalVector(dac,&vecc);
1180:   DMGetGlobalVector(daf,&vecf);
1181:   VecScatterCreate(vecf,isf,vecc,NULL,inject);
1182:   DMRestoreGlobalVector(dac,&vecc);
1183:   DMRestoreGlobalVector(daf,&vecf);
1184:   ISDestroy(&isf);
1185:   return(0);
1186: }

1190: PetscErrorCode DMCreateInjection_DA_3D(DM dac,DM daf,VecScatter *inject)
1191: {
1192:   PetscErrorCode         ierr;
1193:   PetscInt               i,j,k,i_start,j_start,k_start,m_f,n_f,p_f,Mx,My,Mz;
1194:   PetscInt               m_ghost,n_ghost,p_ghost,m_ghost_c,n_ghost_c,p_ghost_c;
1195:   PetscInt               i_start_ghost,j_start_ghost,k_start_ghost;
1196:   PetscInt               mx,my,mz,ratioi,ratioj,ratiok;
1197:   PetscInt               i_start_c,j_start_c,k_start_c;
1198:   PetscInt               m_c,n_c,p_c;
1199:   PetscInt               i_start_ghost_c,j_start_ghost_c,k_start_ghost_c;
1200:   PetscInt               row,nc,dof;
1201:   const PetscInt         *idx_c,*idx_f;
1202:   ISLocalToGlobalMapping ltog_f,ltog_c;
1203:   PetscInt               *cols;
1204:   DMBoundaryType         bx,by,bz;
1205:   Vec                    vecf,vecc;
1206:   IS                     isf;

1209:   DMDAGetInfo(dac,0,&Mx,&My,&Mz,0,0,0,0,0,&bx,&by,&bz,0);
1210:   DMDAGetInfo(daf,0,&mx,&my,&mz,0,0,0,&dof,0,0,0,0,0);

1212:   if (bx == DM_BOUNDARY_PERIODIC) {
1213:     ratioi = mx/Mx;
1214:     if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx  must be integer: mx %D Mx %D",mx,Mx);
1215:   } else {
1216:     ratioi = (mx-1)/(Mx-1);
1217:     if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
1218:   }
1219:   if (by == DM_BOUNDARY_PERIODIC) {
1220:     ratioj = my/My;
1221:     if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My  must be integer: my %D My %D",my,My);
1222:   } else {
1223:     ratioj = (my-1)/(My-1);
1224:     if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
1225:   }
1226:   if (bz == DM_BOUNDARY_PERIODIC) {
1227:     ratiok = mz/Mz;
1228:     if (ratiok*Mz != mz) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mz/Mz  must be integer: mz %D My %D",mz,Mz);
1229:   } else {
1230:     ratiok = (mz-1)/(Mz-1);
1231:     if (ratiok*(Mz-1) != mz-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mz - 1)/(Mz - 1) must be integer: mz %D Mz %D",mz,Mz);
1232:   }

1234:   DMDAGetCorners(daf,&i_start,&j_start,&k_start,&m_f,&n_f,&p_f);
1235:   DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&k_start_ghost,&m_ghost,&n_ghost,&p_ghost);
1236:   DMGetLocalToGlobalMapping(daf,&ltog_f);
1237:   ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);

1239:   DMDAGetCorners(dac,&i_start_c,&j_start_c,&k_start_c,&m_c,&n_c,&p_c);
1240:   DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&k_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);
1241:   DMGetLocalToGlobalMapping(dac,&ltog_c);
1242:   ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);


1245:   /* loop over local fine grid nodes setting interpolation for those*/
1246:   nc   = 0;
1247:   PetscMalloc1(n_f*m_f*p_f,&cols);
1248:   for (k=k_start_c; k<k_start_c+p_c; k++) {
1249:     for (j=j_start_c; j<j_start_c+n_c; j++) {
1250:       for (i=i_start_c; i<i_start_c+m_c; i++) {
1251:         PetscInt i_f = i*ratioi,j_f = j*ratioj,k_f = k*ratiok;
1252:         if (k_f < k_start_ghost || k_f >= k_start_ghost+p_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA  "
1253:                                                                           "k_c %D k_f %D fine ghost range [%D,%D]",k,k_f,k_start_ghost,k_start_ghost+p_ghost);
1254:         if (j_f < j_start_ghost || j_f >= j_start_ghost+n_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA  "
1255:                                                                           "j_c %D j_f %D fine ghost range [%D,%D]",j,j_f,j_start_ghost,j_start_ghost+n_ghost);
1256:         if (i_f < i_start_ghost || i_f >= i_start_ghost+m_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA  "
1257:                                                                           "i_c %D i_f %D fine ghost range [%D,%D]",i,i_f,i_start_ghost,i_start_ghost+m_ghost);
1258:         row        = idx_f[(m_ghost*n_ghost*(k_f-k_start_ghost) + m_ghost*(j_f-j_start_ghost) + (i_f-i_start_ghost))];
1259:         cols[nc++] = row;
1260:       }
1261:     }
1262:   }
1263:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
1264:   ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);

1266:   ISCreateBlock(PetscObjectComm((PetscObject)daf),dof,nc,cols,PETSC_OWN_POINTER,&isf);
1267:   DMGetGlobalVector(dac,&vecc);
1268:   DMGetGlobalVector(daf,&vecf);
1269:   VecScatterCreate(vecf,isf,vecc,NULL,inject);
1270:   DMRestoreGlobalVector(dac,&vecc);
1271:   DMRestoreGlobalVector(daf,&vecf);
1272:   ISDestroy(&isf);
1273:   return(0);
1274: }

1278: PetscErrorCode  DMCreateInjection_DA(DM dac,DM daf,Mat *mat)
1279: {
1280:   PetscErrorCode  ierr;
1281:   PetscInt        dimc,Mc,Nc,Pc,mc,nc,pc,dofc,sc,dimf,Mf,Nf,Pf,mf,nf,pf,doff,sf;
1282:   DMBoundaryType  bxc,byc,bzc,bxf,byf,bzf;
1283:   DMDAStencilType stc,stf;
1284:   VecScatter      inject = NULL;


1291:   DMDAGetInfo(dac,&dimc,&Mc,&Nc,&Pc,&mc,&nc,&pc,&dofc,&sc,&bxc,&byc,&bzc,&stc);
1292:   DMDAGetInfo(daf,&dimf,&Mf,&Nf,&Pf,&mf,&nf,&pf,&doff,&sf,&bxf,&byf,&bzf,&stf);
1293:   if (dimc != dimf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Dimensions of DMDA do not match %D %D",dimc,dimf);
1294:   if (dofc != doff) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"DOF of DMDA do not match %D %D",dofc,doff);
1295:   if (sc != sf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil width of DMDA do not match %D %D",sc,sf);
1296:   if (bxc != bxf || byc != byf || bzc != bzf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Boundary type different in two DMDAs");
1297:   if (stc != stf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil type different in two DMDAs");
1298:   if (Mc < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in x direction");
1299:   if (dimc > 1 && Nc < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in y direction");
1300:   if (dimc > 2 && Pc < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in z direction");

1302:   if (dimc == 1) {
1303:     DMCreateInjection_DA_1D(dac,daf,&inject);
1304:   } else if (dimc == 2) {
1305:     DMCreateInjection_DA_2D(dac,daf,&inject);
1306:   } else if (dimc == 3) {
1307:     DMCreateInjection_DA_3D(dac,daf,&inject);
1308:   }
1309:   MatCreateScatter(PetscObjectComm((PetscObject)inject), inject, mat);
1310:   VecScatterDestroy(&inject);
1311:   return(0);
1312: }

1316: PetscErrorCode  DMCreateAggregates_DA(DM dac,DM daf,Mat *rest)
1317: {
1318:   PetscErrorCode         ierr;
1319:   PetscInt               dimc,Mc,Nc,Pc,mc,nc,pc,dofc,sc;
1320:   PetscInt               dimf,Mf,Nf,Pf,mf,nf,pf,doff,sf;
1321:   DMBoundaryType         bxc,byc,bzc,bxf,byf,bzf;
1322:   DMDAStencilType        stc,stf;
1323:   PetscInt               i,j,l;
1324:   PetscInt               i_start,j_start,l_start, m_f,n_f,p_f;
1325:   PetscInt               i_start_ghost,j_start_ghost,l_start_ghost,m_ghost,n_ghost,p_ghost;
1326:   const PetscInt         *idx_f;
1327:   PetscInt               i_c,j_c,l_c;
1328:   PetscInt               i_start_c,j_start_c,l_start_c, m_c,n_c,p_c;
1329:   PetscInt               i_start_ghost_c,j_start_ghost_c,l_start_ghost_c,m_ghost_c,n_ghost_c,p_ghost_c;
1330:   const PetscInt         *idx_c;
1331:   PetscInt               d;
1332:   PetscInt               a;
1333:   PetscInt               max_agg_size;
1334:   PetscInt               *fine_nodes;
1335:   PetscScalar            *one_vec;
1336:   PetscInt               fn_idx;
1337:   ISLocalToGlobalMapping ltogmf,ltogmc;


1344:   DMDAGetInfo(dac,&dimc,&Mc,&Nc,&Pc,&mc,&nc,&pc,&dofc,&sc,&bxc,&byc,&bzc,&stc);
1345:   DMDAGetInfo(daf,&dimf,&Mf,&Nf,&Pf,&mf,&nf,&pf,&doff,&sf,&bxf,&byf,&bzf,&stf);
1346:   if (dimc != dimf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Dimensions of DMDA do not match %D %D",dimc,dimf);
1347:   if (dofc != doff) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"DOF of DMDA do not match %D %D",dofc,doff);
1348:   if (sc != sf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil width of DMDA do not match %D %D",sc,sf);
1349:   if (bxc != bxf || byc != byf || bzc != bzf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Boundary type different in two DMDAs");
1350:   if (stc != stf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil type different in two DMDAs");

1352:   if (Mf < Mc) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Coarse grid has more points than fine grid, Mc %D, Mf %D", Mc, Mf);
1353:   if (Nf < Nc) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Coarse grid has more points than fine grid, Nc %D, Nf %D", Nc, Nf);
1354:   if (Pf < Pc) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Coarse grid has more points than fine grid, Pc %D, Pf %D", Pc, Pf);

1356:   if (Pc < 0) Pc = 1;
1357:   if (Pf < 0) Pf = 1;
1358:   if (Nc < 0) Nc = 1;
1359:   if (Nf < 0) Nf = 1;

1361:   DMDAGetCorners(daf,&i_start,&j_start,&l_start,&m_f,&n_f,&p_f);
1362:   DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&l_start_ghost,&m_ghost,&n_ghost,&p_ghost);

1364:   DMGetLocalToGlobalMapping(daf,&ltogmf);
1365:   ISLocalToGlobalMappingGetIndices(ltogmf,&idx_f);

1367:   DMDAGetCorners(dac,&i_start_c,&j_start_c,&l_start_c,&m_c,&n_c,&p_c);
1368:   DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&l_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);

1370:   DMGetLocalToGlobalMapping(dac,&ltogmc);
1371:   ISLocalToGlobalMappingGetIndices(ltogmc,&idx_c);

1373:   /*
1374:      Basic idea is as follows. Here's a 2D example, suppose r_x, r_y are the ratios
1375:      for dimension 1 and 2 respectively.
1376:      Let (i,j) be a coarse grid node. All the fine grid nodes between r_x*i and r_x*(i+1)
1377:      and r_y*j and r_y*(j+1) will be grouped into the same coarse grid agregate.
1378:      Each specific dof on the fine grid is mapped to one dof on the coarse grid.
1379:   */

1381:   max_agg_size = (Mf/Mc+1)*(Nf/Nc+1)*(Pf/Pc+1);

1383:   /* create the matrix that will contain the restriction operator */
1384:   MatCreateAIJ(PetscObjectComm((PetscObject)daf), m_c*n_c*p_c*dofc, m_f*n_f*p_f*doff, Mc*Nc*Pc*dofc, Mf*Nf*Pf*doff,
1385:                       max_agg_size, NULL, max_agg_size, NULL, rest);

1387:   /* store nodes in the fine grid here */
1388:   PetscMalloc2(max_agg_size, &one_vec,max_agg_size, &fine_nodes);
1389:   for (i=0; i<max_agg_size; i++) one_vec[i] = 1.0;

1391:   /* loop over all coarse nodes */
1392:   for (l_c=l_start_c; l_c<l_start_c+p_c; l_c++) {
1393:     for (j_c=j_start_c; j_c<j_start_c+n_c; j_c++) {
1394:       for (i_c=i_start_c; i_c<i_start_c+m_c; i_c++) {
1395:         for (d=0; d<dofc; d++) {
1396:           /* convert to local "natural" numbering and then to PETSc global numbering */
1397:           a = idx_c[dofc*(m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c))] + d;

1399:           fn_idx = 0;
1400:           /* Corresponding fine points are all points (i_f, j_f, l_f) such that
1401:              i_c*Mf/Mc <= i_f < (i_c+1)*Mf/Mc
1402:              (same for other dimensions)
1403:           */
1404:           for (l=l_c*Pf/Pc; l<PetscMin((l_c+1)*Pf/Pc,Pf); l++) {
1405:             for (j=j_c*Nf/Nc; j<PetscMin((j_c+1)*Nf/Nc,Nf); j++) {
1406:               for (i=i_c*Mf/Mc; i<PetscMin((i_c+1)*Mf/Mc,Mf); i++) {
1407:                 fine_nodes[fn_idx] = idx_f[doff*(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))] + d;
1408:                 fn_idx++;
1409:               }
1410:             }
1411:           }
1412:           /* add all these points to one aggregate */
1413:           MatSetValues(*rest, 1, &a, fn_idx, fine_nodes, one_vec, INSERT_VALUES);
1414:         }
1415:       }
1416:     }
1417:   }
1418:   ISLocalToGlobalMappingRestoreIndices(ltogmf,&idx_f);
1419:   ISLocalToGlobalMappingRestoreIndices(ltogmc,&idx_c);
1420:   PetscFree2(one_vec,fine_nodes);
1421:   MatAssemblyBegin(*rest, MAT_FINAL_ASSEMBLY);
1422:   MatAssemblyEnd(*rest, MAT_FINAL_ASSEMBLY);
1423:   return(0);
1424: }