Actual source code: dainterp.c
petsc-3.7.3 2016-08-01
2: /*
3: Code for interpolating between grids represented by DMDAs
4: */
6: /*
7: For linear elements there are two branches of code to compute the interpolation. They should compute the same results but may not. The "new version" does
8: not work for periodic domains, the old does. Change NEWVERSION to 1 to compile in the new version. Eventually when we are sure the two produce identical results
9: we will remove/merge the new version. Based on current tests, these both produce the same results. We are leaving NEWVERSION for now in the code since some
10: consider it cleaner, but old version is turned on since it handles periodic case.
11: */
12: #define NEWVERSION 0
14: #include <petsc/private/dmdaimpl.h> /*I "petscdmda.h" I*/
18: /*@
19: DMCreateInterpolationScale - Forms L = R*1/diag(R*1) - L.*v is like a coarse grid average of the
20: nearby fine grid points.
22: Input Parameters:
23: + dac - DM that defines a coarse mesh
24: . daf - DM that defines a fine mesh
25: - mat - the restriction (or interpolation operator) from fine to coarse
27: Output Parameter:
28: . scale - the scaled vector
30: Level: developer
32: .seealso: DMCreateInterpolation()
34: @*/
35: PetscErrorCode DMCreateInterpolationScale(DM dac,DM daf,Mat mat,Vec *scale)
36: {
38: Vec fine;
39: PetscScalar one = 1.0;
42: DMCreateGlobalVector(daf,&fine);
43: DMCreateGlobalVector(dac,scale);
44: VecSet(fine,one);
45: MatRestrict(mat,fine,*scale);
46: VecDestroy(&fine);
47: VecReciprocal(*scale);
48: return(0);
49: }
53: PetscErrorCode DMCreateInterpolation_DA_1D_Q1(DM dac,DM daf,Mat *A)
54: {
55: PetscErrorCode ierr;
56: PetscInt i,i_start,m_f,Mx;
57: const PetscInt *idx_f,*idx_c;
58: PetscInt m_ghost,m_ghost_c;
59: PetscInt row,col,i_start_ghost,mx,m_c,nc,ratio;
60: PetscInt i_c,i_start_c,i_start_ghost_c,cols[2],dof;
61: PetscScalar v[2],x;
62: Mat mat;
63: DMBoundaryType bx;
64: ISLocalToGlobalMapping ltog_f,ltog_c;
68: DMDAGetInfo(dac,0,&Mx,0,0,0,0,0,0,0,&bx,0,0,0);
69: DMDAGetInfo(daf,0,&mx,0,0,0,0,0,&dof,0,0,0,0,0);
70: if (bx == DM_BOUNDARY_PERIODIC) {
71: ratio = mx/Mx;
72: if (ratio*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx must be integer: mx %D Mx %D",mx,Mx);
73: } else {
74: ratio = (mx-1)/(Mx-1);
75: if (ratio*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
76: }
78: DMDAGetCorners(daf,&i_start,0,0,&m_f,0,0);
79: DMDAGetGhostCorners(daf,&i_start_ghost,0,0,&m_ghost,0,0);
80: DMGetLocalToGlobalMapping(daf,<og_f);
81: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
83: DMDAGetCorners(dac,&i_start_c,0,0,&m_c,0,0);
84: DMDAGetGhostCorners(dac,&i_start_ghost_c,0,0,&m_ghost_c,0,0);
85: DMGetLocalToGlobalMapping(dac,<og_c);
86: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
88: /* create interpolation matrix */
89: MatCreate(PetscObjectComm((PetscObject)dac),&mat);
90: MatSetSizes(mat,m_f,m_c,mx,Mx);
91: MatSetType(mat,MATAIJ);
92: MatSeqAIJSetPreallocation(mat,2,NULL);
93: MatMPIAIJSetPreallocation(mat,2,NULL,1,NULL);
95: /* loop over local fine grid nodes setting interpolation for those*/
96: if (!NEWVERSION) {
98: for (i=i_start; i<i_start+m_f; i++) {
99: /* convert to local "natural" numbering and then to PETSc global numbering */
100: row = idx_f[i-i_start_ghost];
102: i_c = (i/ratio); /* coarse grid node to left of fine grid node */
103: if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
104: i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);
106: /*
107: Only include those interpolation points that are truly
108: nonzero. Note this is very important for final grid lines
109: in x direction; since they have no right neighbor
110: */
111: x = ((PetscReal)(i - i_c*ratio))/((PetscReal)ratio);
112: nc = 0;
113: /* one left and below; or we are right on it */
114: col = (i_c-i_start_ghost_c);
115: cols[nc] = idx_c[col];
116: v[nc++] = -x + 1.0;
117: /* one right? */
118: if (i_c*ratio != i) {
119: cols[nc] = idx_c[col+1];
120: v[nc++] = x;
121: }
122: MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
123: }
125: } else {
126: PetscScalar *xi;
127: PetscInt li,nxi,n;
128: PetscScalar Ni[2];
130: /* compute local coordinate arrays */
131: nxi = ratio + 1;
132: PetscMalloc1(nxi,&xi);
133: for (li=0; li<nxi; li++) {
134: xi[li] = -1.0 + (PetscScalar)li*(2.0/(PetscScalar)(nxi-1));
135: }
137: for (i=i_start; i<i_start+m_f; i++) {
138: /* convert to local "natural" numbering and then to PETSc global numbering */
139: row = idx_f[(i-i_start_ghost)];
141: i_c = (i/ratio); /* coarse grid node to left of fine grid node */
142: if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
143: i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);
145: /* remainders */
146: li = i - ratio * (i/ratio);
147: if (i==mx-1) li = nxi-1;
149: /* corners */
150: col = (i_c-i_start_ghost_c);
151: cols[0] = idx_c[col];
152: Ni[0] = 1.0;
153: if ((li==0) || (li==nxi-1)) {
154: MatSetValue(mat,row,cols[0],Ni[0],INSERT_VALUES);
155: continue;
156: }
158: /* edges + interior */
159: /* remainders */
160: if (i==mx-1) i_c--;
162: col = (i_c-i_start_ghost_c);
163: cols[0] = idx_c[col]; /* one left and below; or we are right on it */
164: cols[1] = idx_c[col+1];
166: Ni[0] = 0.5*(1.0-xi[li]);
167: Ni[1] = 0.5*(1.0+xi[li]);
168: for (n=0; n<2; n++) {
169: if (PetscAbsScalar(Ni[n])<1.0e-32) cols[n]=-1;
170: }
171: MatSetValues(mat,1,&row,2,cols,Ni,INSERT_VALUES);
172: }
173: PetscFree(xi);
174: }
175: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
176: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
177: MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
178: MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
179: MatCreateMAIJ(mat,dof,A);
180: MatDestroy(&mat);
181: return(0);
182: }
186: PetscErrorCode DMCreateInterpolation_DA_1D_Q0(DM dac,DM daf,Mat *A)
187: {
188: PetscErrorCode ierr;
189: PetscInt i,i_start,m_f,Mx;
190: const PetscInt *idx_f,*idx_c;
191: ISLocalToGlobalMapping ltog_f,ltog_c;
192: PetscInt m_ghost,m_ghost_c;
193: PetscInt row,col,i_start_ghost,mx,m_c,nc,ratio;
194: PetscInt i_c,i_start_c,i_start_ghost_c,cols[2],dof;
195: PetscScalar v[2],x;
196: Mat mat;
197: DMBoundaryType bx;
200: DMDAGetInfo(dac,0,&Mx,0,0,0,0,0,0,0,&bx,0,0,0);
201: DMDAGetInfo(daf,0,&mx,0,0,0,0,0,&dof,0,0,0,0,0);
202: if (bx == DM_BOUNDARY_PERIODIC) {
203: ratio = mx/Mx;
204: if (ratio*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx must be integer: mx %D Mx %D",mx,Mx);
205: } else {
206: ratio = (mx-1)/(Mx-1);
207: if (ratio*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
208: }
210: DMDAGetCorners(daf,&i_start,0,0,&m_f,0,0);
211: DMDAGetGhostCorners(daf,&i_start_ghost,0,0,&m_ghost,0,0);
212: DMGetLocalToGlobalMapping(daf,<og_f);
213: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
215: DMDAGetCorners(dac,&i_start_c,0,0,&m_c,0,0);
216: DMDAGetGhostCorners(dac,&i_start_ghost_c,0,0,&m_ghost_c,0,0);
217: DMGetLocalToGlobalMapping(dac,<og_c);
218: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
220: /* create interpolation matrix */
221: MatCreate(PetscObjectComm((PetscObject)dac),&mat);
222: MatSetSizes(mat,m_f,m_c,mx,Mx);
223: MatSetType(mat,MATAIJ);
224: MatSeqAIJSetPreallocation(mat,2,NULL);
225: MatMPIAIJSetPreallocation(mat,2,NULL,0,NULL);
227: /* loop over local fine grid nodes setting interpolation for those*/
228: for (i=i_start; i<i_start+m_f; i++) {
229: /* convert to local "natural" numbering and then to PETSc global numbering */
230: row = idx_f[(i-i_start_ghost)];
232: i_c = (i/ratio); /* coarse grid node to left of fine grid node */
234: /*
235: Only include those interpolation points that are truly
236: nonzero. Note this is very important for final grid lines
237: in x direction; since they have no right neighbor
238: */
239: x = ((PetscReal)(i - i_c*ratio))/((PetscReal)ratio);
240: nc = 0;
241: /* one left and below; or we are right on it */
242: col = (i_c-i_start_ghost_c);
243: cols[nc] = idx_c[col];
244: v[nc++] = -x + 1.0;
245: /* one right? */
246: if (i_c*ratio != i) {
247: cols[nc] = idx_c[col+1];
248: v[nc++] = x;
249: }
250: MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
251: }
252: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
253: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
254: MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
255: MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
256: MatCreateMAIJ(mat,dof,A);
257: MatDestroy(&mat);
258: PetscLogFlops(5.0*m_f);
259: return(0);
260: }
264: PetscErrorCode DMCreateInterpolation_DA_2D_Q1(DM dac,DM daf,Mat *A)
265: {
266: PetscErrorCode ierr;
267: PetscInt i,j,i_start,j_start,m_f,n_f,Mx,My,dof;
268: const PetscInt *idx_c,*idx_f;
269: ISLocalToGlobalMapping ltog_f,ltog_c;
270: PetscInt m_ghost,n_ghost,m_ghost_c,n_ghost_c,*dnz,*onz;
271: PetscInt row,col,i_start_ghost,j_start_ghost,cols[4],mx,m_c,my,nc,ratioi,ratioj;
272: PetscInt i_c,j_c,i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c,col_shift,col_scale;
273: PetscMPIInt size_c,size_f,rank_f;
274: PetscScalar v[4],x,y;
275: Mat mat;
276: DMBoundaryType bx,by;
279: DMDAGetInfo(dac,0,&Mx,&My,0,0,0,0,0,0,&bx,&by,0,0);
280: DMDAGetInfo(daf,0,&mx,&my,0,0,0,0,&dof,0,0,0,0,0);
281: if (bx == DM_BOUNDARY_PERIODIC) {
282: ratioi = mx/Mx;
283: if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx must be integer: mx %D Mx %D",mx,Mx);
284: } else {
285: ratioi = (mx-1)/(Mx-1);
286: if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
287: }
288: if (by == DM_BOUNDARY_PERIODIC) {
289: ratioj = my/My;
290: if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My must be integer: my %D My %D",my,My);
291: } else {
292: ratioj = (my-1)/(My-1);
293: if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
294: }
297: DMDAGetCorners(daf,&i_start,&j_start,0,&m_f,&n_f,0);
298: DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,0,&m_ghost,&n_ghost,0);
299: DMGetLocalToGlobalMapping(daf,<og_f);
300: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
302: DMDAGetCorners(dac,&i_start_c,&j_start_c,0,&m_c,&n_c,0);
303: DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,0,&m_ghost_c,&n_ghost_c,0);
304: DMGetLocalToGlobalMapping(dac,<og_c);
305: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
307: /*
308: Used for handling a coarse DMDA that lives on 1/4 the processors of the fine DMDA.
309: The coarse vector is then duplicated 4 times (each time it lives on 1/4 of the
310: processors). It's effective length is hence 4 times its normal length, this is
311: why the col_scale is multiplied by the interpolation matrix column sizes.
312: sol_shift allows each set of 1/4 processors do its own interpolation using ITS
313: copy of the coarse vector. A bit of a hack but you do better.
315: In the standard case when size_f == size_c col_scale == 1 and col_shift == 0
316: */
317: MPI_Comm_size(PetscObjectComm((PetscObject)dac),&size_c);
318: MPI_Comm_size(PetscObjectComm((PetscObject)daf),&size_f);
319: MPI_Comm_rank(PetscObjectComm((PetscObject)daf),&rank_f);
320: col_scale = size_f/size_c;
321: col_shift = Mx*My*(rank_f/size_c);
323: MatPreallocateInitialize(PetscObjectComm((PetscObject)daf),m_f*n_f,col_scale*m_c*n_c,dnz,onz);
324: for (j=j_start; j<j_start+n_f; j++) {
325: for (i=i_start; i<i_start+m_f; i++) {
326: /* convert to local "natural" numbering and then to PETSc global numbering */
327: row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
329: i_c = (i/ratioi); /* coarse grid node to left of fine grid node */
330: j_c = (j/ratioj); /* coarse grid node below fine grid node */
332: if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
333: j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
334: if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
335: i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);
337: /*
338: Only include those interpolation points that are truly
339: nonzero. Note this is very important for final grid lines
340: in x and y directions; since they have no right/top neighbors
341: */
342: nc = 0;
343: /* one left and below; or we are right on it */
344: col = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
345: cols[nc++] = col_shift + idx_c[col];
346: /* one right and below */
347: if (i_c*ratioi != i) cols[nc++] = col_shift + idx_c[col+1];
348: /* one left and above */
349: if (j_c*ratioj != j) cols[nc++] = col_shift + idx_c[col+m_ghost_c];
350: /* one right and above */
351: if (i_c*ratioi != i && j_c*ratioj != j) cols[nc++] = col_shift + idx_c[col+(m_ghost_c+1)];
352: MatPreallocateSet(row,nc,cols,dnz,onz);
353: }
354: }
355: MatCreate(PetscObjectComm((PetscObject)daf),&mat);
356: MatSetSizes(mat,m_f*n_f,col_scale*m_c*n_c,mx*my,col_scale*Mx*My);
357: MatSetType(mat,MATAIJ);
358: MatSeqAIJSetPreallocation(mat,0,dnz);
359: MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
360: MatPreallocateFinalize(dnz,onz);
362: /* loop over local fine grid nodes setting interpolation for those*/
363: if (!NEWVERSION) {
365: for (j=j_start; j<j_start+n_f; j++) {
366: for (i=i_start; i<i_start+m_f; i++) {
367: /* convert to local "natural" numbering and then to PETSc global numbering */
368: row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
370: i_c = (i/ratioi); /* coarse grid node to left of fine grid node */
371: j_c = (j/ratioj); /* coarse grid node below fine grid node */
373: /*
374: Only include those interpolation points that are truly
375: nonzero. Note this is very important for final grid lines
376: in x and y directions; since they have no right/top neighbors
377: */
378: x = ((PetscReal)(i - i_c*ratioi))/((PetscReal)ratioi);
379: y = ((PetscReal)(j - j_c*ratioj))/((PetscReal)ratioj);
381: nc = 0;
382: /* one left and below; or we are right on it */
383: col = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
384: cols[nc] = col_shift + idx_c[col];
385: v[nc++] = x*y - x - y + 1.0;
386: /* one right and below */
387: if (i_c*ratioi != i) {
388: cols[nc] = col_shift + idx_c[col+1];
389: v[nc++] = -x*y + x;
390: }
391: /* one left and above */
392: if (j_c*ratioj != j) {
393: cols[nc] = col_shift + idx_c[col+m_ghost_c];
394: v[nc++] = -x*y + y;
395: }
396: /* one right and above */
397: if (j_c*ratioj != j && i_c*ratioi != i) {
398: cols[nc] = col_shift + idx_c[col+(m_ghost_c+1)];
399: v[nc++] = x*y;
400: }
401: MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
402: }
403: }
405: } else {
406: PetscScalar Ni[4];
407: PetscScalar *xi,*eta;
408: PetscInt li,nxi,lj,neta;
410: /* compute local coordinate arrays */
411: nxi = ratioi + 1;
412: neta = ratioj + 1;
413: PetscMalloc1(nxi,&xi);
414: PetscMalloc1(neta,&eta);
415: for (li=0; li<nxi; li++) {
416: xi[li] = -1.0 + (PetscScalar)li*(2.0/(PetscScalar)(nxi-1));
417: }
418: for (lj=0; lj<neta; lj++) {
419: eta[lj] = -1.0 + (PetscScalar)lj*(2.0/(PetscScalar)(neta-1));
420: }
422: /* loop over local fine grid nodes setting interpolation for those*/
423: for (j=j_start; j<j_start+n_f; j++) {
424: for (i=i_start; i<i_start+m_f; i++) {
425: /* convert to local "natural" numbering and then to PETSc global numbering */
426: row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
428: i_c = (i/ratioi); /* coarse grid node to left of fine grid node */
429: j_c = (j/ratioj); /* coarse grid node below fine grid node */
431: /* remainders */
432: li = i - ratioi * (i/ratioi);
433: if (i==mx-1) li = nxi-1;
434: lj = j - ratioj * (j/ratioj);
435: if (j==my-1) lj = neta-1;
437: /* corners */
438: col = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
439: cols[0] = col_shift + idx_c[col]; /* left, below */
440: Ni[0] = 1.0;
441: if ((li==0) || (li==nxi-1)) {
442: if ((lj==0) || (lj==neta-1)) {
443: MatSetValue(mat,row,cols[0],Ni[0],INSERT_VALUES);
444: continue;
445: }
446: }
448: /* edges + interior */
449: /* remainders */
450: if (i==mx-1) i_c--;
451: if (j==my-1) j_c--;
453: col = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
454: cols[0] = col_shift + idx_c[col]; /* left, below */
455: cols[1] = col_shift + idx_c[col+1]; /* right, below */
456: cols[2] = col_shift + idx_c[col+m_ghost_c]; /* left, above */
457: cols[3] = col_shift + idx_c[col+(m_ghost_c+1)]; /* right, above */
459: Ni[0] = 0.25*(1.0-xi[li])*(1.0-eta[lj]);
460: Ni[1] = 0.25*(1.0+xi[li])*(1.0-eta[lj]);
461: Ni[2] = 0.25*(1.0-xi[li])*(1.0+eta[lj]);
462: Ni[3] = 0.25*(1.0+xi[li])*(1.0+eta[lj]);
464: nc = 0;
465: if (PetscAbsScalar(Ni[0])<1.0e-32) cols[0]=-1;
466: if (PetscAbsScalar(Ni[1])<1.0e-32) cols[1]=-1;
467: if (PetscAbsScalar(Ni[2])<1.0e-32) cols[2]=-1;
468: if (PetscAbsScalar(Ni[3])<1.0e-32) cols[3]=-1;
470: MatSetValues(mat,1,&row,4,cols,Ni,INSERT_VALUES);
471: }
472: }
473: PetscFree(xi);
474: PetscFree(eta);
475: }
476: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
477: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
478: MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
479: MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
480: MatCreateMAIJ(mat,dof,A);
481: MatDestroy(&mat);
482: return(0);
483: }
485: /*
486: Contributed by Andrei Draganescu <aidraga@sandia.gov>
487: */
490: PetscErrorCode DMCreateInterpolation_DA_2D_Q0(DM dac,DM daf,Mat *A)
491: {
492: PetscErrorCode ierr;
493: PetscInt i,j,i_start,j_start,m_f,n_f,Mx,My,dof;
494: const PetscInt *idx_c,*idx_f;
495: ISLocalToGlobalMapping ltog_f,ltog_c;
496: PetscInt m_ghost,n_ghost,m_ghost_c,n_ghost_c,*dnz,*onz;
497: PetscInt row,col,i_start_ghost,j_start_ghost,cols[4],mx,m_c,my,nc,ratioi,ratioj;
498: PetscInt i_c,j_c,i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c,col_shift,col_scale;
499: PetscMPIInt size_c,size_f,rank_f;
500: PetscScalar v[4];
501: Mat mat;
502: DMBoundaryType bx,by;
505: DMDAGetInfo(dac,0,&Mx,&My,0,0,0,0,0,0,&bx,&by,0,0);
506: DMDAGetInfo(daf,0,&mx,&my,0,0,0,0,&dof,0,0,0,0,0);
507: ratioi = mx/Mx;
508: ratioj = my/My;
509: if (ratioi*Mx != mx) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in x");
510: if (ratioj*My != my) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in y");
511: if (ratioi != 2) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in x must be 2");
512: if (ratioj != 2) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in y must be 2");
514: DMDAGetCorners(daf,&i_start,&j_start,0,&m_f,&n_f,0);
515: DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,0,&m_ghost,&n_ghost,0);
516: DMGetLocalToGlobalMapping(daf,<og_f);
517: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
519: DMDAGetCorners(dac,&i_start_c,&j_start_c,0,&m_c,&n_c,0);
520: DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,0,&m_ghost_c,&n_ghost_c,0);
521: DMGetLocalToGlobalMapping(dac,<og_c);
522: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
524: /*
525: Used for handling a coarse DMDA that lives on 1/4 the processors of the fine DMDA.
526: The coarse vector is then duplicated 4 times (each time it lives on 1/4 of the
527: processors). It's effective length is hence 4 times its normal length, this is
528: why the col_scale is multiplied by the interpolation matrix column sizes.
529: sol_shift allows each set of 1/4 processors do its own interpolation using ITS
530: copy of the coarse vector. A bit of a hack but you do better.
532: In the standard case when size_f == size_c col_scale == 1 and col_shift == 0
533: */
534: MPI_Comm_size(PetscObjectComm((PetscObject)dac),&size_c);
535: MPI_Comm_size(PetscObjectComm((PetscObject)daf),&size_f);
536: MPI_Comm_rank(PetscObjectComm((PetscObject)daf),&rank_f);
537: col_scale = size_f/size_c;
538: col_shift = Mx*My*(rank_f/size_c);
540: MatPreallocateInitialize(PetscObjectComm((PetscObject)daf),m_f*n_f,col_scale*m_c*n_c,dnz,onz);
541: for (j=j_start; j<j_start+n_f; j++) {
542: for (i=i_start; i<i_start+m_f; i++) {
543: /* convert to local "natural" numbering and then to PETSc global numbering */
544: row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
546: i_c = (i/ratioi); /* coarse grid node to left of fine grid node */
547: j_c = (j/ratioj); /* coarse grid node below fine grid node */
549: if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
550: j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
551: if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
552: i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);
554: /*
555: Only include those interpolation points that are truly
556: nonzero. Note this is very important for final grid lines
557: in x and y directions; since they have no right/top neighbors
558: */
559: nc = 0;
560: /* one left and below; or we are right on it */
561: col = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
562: cols[nc++] = col_shift + idx_c[col];
563: MatPreallocateSet(row,nc,cols,dnz,onz);
564: }
565: }
566: MatCreate(PetscObjectComm((PetscObject)daf),&mat);
567: MatSetSizes(mat,m_f*n_f,col_scale*m_c*n_c,mx*my,col_scale*Mx*My);
568: MatSetType(mat,MATAIJ);
569: MatSeqAIJSetPreallocation(mat,0,dnz);
570: MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
571: MatPreallocateFinalize(dnz,onz);
573: /* loop over local fine grid nodes setting interpolation for those*/
574: for (j=j_start; j<j_start+n_f; j++) {
575: for (i=i_start; i<i_start+m_f; i++) {
576: /* convert to local "natural" numbering and then to PETSc global numbering */
577: row = idx_f[(m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
579: i_c = (i/ratioi); /* coarse grid node to left of fine grid node */
580: j_c = (j/ratioj); /* coarse grid node below fine grid node */
581: nc = 0;
582: /* one left and below; or we are right on it */
583: col = (m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
584: cols[nc] = col_shift + idx_c[col];
585: v[nc++] = 1.0;
587: MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
588: }
589: }
590: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
591: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
592: MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
593: MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
594: MatCreateMAIJ(mat,dof,A);
595: MatDestroy(&mat);
596: PetscLogFlops(13.0*m_f*n_f);
597: return(0);
598: }
600: /*
601: Contributed by Jianming Yang <jianming-yang@uiowa.edu>
602: */
605: PetscErrorCode DMCreateInterpolation_DA_3D_Q0(DM dac,DM daf,Mat *A)
606: {
607: PetscErrorCode ierr;
608: PetscInt i,j,l,i_start,j_start,l_start,m_f,n_f,p_f,Mx,My,Mz,dof;
609: const PetscInt *idx_c,*idx_f;
610: ISLocalToGlobalMapping ltog_f,ltog_c;
611: PetscInt m_ghost,n_ghost,p_ghost,m_ghost_c,n_ghost_c,p_ghost_c,nc,*dnz,*onz;
612: PetscInt row,col,i_start_ghost,j_start_ghost,l_start_ghost,cols[8],mx,m_c,my,n_c,mz,p_c,ratioi,ratioj,ratiol;
613: PetscInt i_c,j_c,l_c,i_start_c,j_start_c,l_start_c,i_start_ghost_c,j_start_ghost_c,l_start_ghost_c,col_shift,col_scale;
614: PetscMPIInt size_c,size_f,rank_f;
615: PetscScalar v[8];
616: Mat mat;
617: DMBoundaryType bx,by,bz;
620: DMDAGetInfo(dac,0,&Mx,&My,&Mz,0,0,0,0,0,&bx,&by,&bz,0);
621: DMDAGetInfo(daf,0,&mx,&my,&mz,0,0,0,&dof,0,0,0,0,0);
622: ratioi = mx/Mx;
623: ratioj = my/My;
624: ratiol = mz/Mz;
625: if (ratioi*Mx != mx) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in x");
626: if (ratioj*My != my) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in y");
627: if (ratiol*Mz != mz) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Fine grid points must be multiple of coarse grid points in z");
628: if (ratioi != 2 && ratioi != 1) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in x must be 1 or 2");
629: if (ratioj != 2 && ratioj != 1) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in y must be 1 or 2");
630: if (ratiol != 2 && ratiol != 1) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_WRONG,"Coarsening factor in z must be 1 or 2");
632: DMDAGetCorners(daf,&i_start,&j_start,&l_start,&m_f,&n_f,&p_f);
633: DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&l_start_ghost,&m_ghost,&n_ghost,&p_ghost);
634: DMGetLocalToGlobalMapping(daf,<og_f);
635: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
637: DMDAGetCorners(dac,&i_start_c,&j_start_c,&l_start_c,&m_c,&n_c,&p_c);
638: DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&l_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);
639: DMGetLocalToGlobalMapping(dac,<og_c);
640: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
642: /*
643: Used for handling a coarse DMDA that lives on 1/4 the processors of the fine DMDA.
644: The coarse vector is then duplicated 4 times (each time it lives on 1/4 of the
645: processors). It's effective length is hence 4 times its normal length, this is
646: why the col_scale is multiplied by the interpolation matrix column sizes.
647: sol_shift allows each set of 1/4 processors do its own interpolation using ITS
648: copy of the coarse vector. A bit of a hack but you do better.
650: In the standard case when size_f == size_c col_scale == 1 and col_shift == 0
651: */
652: MPI_Comm_size(PetscObjectComm((PetscObject)dac),&size_c);
653: MPI_Comm_size(PetscObjectComm((PetscObject)daf),&size_f);
654: MPI_Comm_rank(PetscObjectComm((PetscObject)daf),&rank_f);
655: col_scale = size_f/size_c;
656: col_shift = Mx*My*Mz*(rank_f/size_c);
658: MatPreallocateInitialize(PetscObjectComm((PetscObject)daf),m_f*n_f*p_f,col_scale*m_c*n_c*p_c,dnz,onz);
659: for (l=l_start; l<l_start+p_f; l++) {
660: for (j=j_start; j<j_start+n_f; j++) {
661: for (i=i_start; i<i_start+m_f; i++) {
662: /* convert to local "natural" numbering and then to PETSc global numbering */
663: row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
665: i_c = (i/ratioi); /* coarse grid node to left of fine grid node */
666: j_c = (j/ratioj); /* coarse grid node below fine grid node */
667: l_c = (l/ratiol);
669: if (l_c < l_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
670: l_start %D l_c %D l_start_ghost_c %D",l_start,l_c,l_start_ghost_c);
671: if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
672: j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
673: if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
674: i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);
676: /*
677: Only include those interpolation points that are truly
678: nonzero. Note this is very important for final grid lines
679: in x and y directions; since they have no right/top neighbors
680: */
681: nc = 0;
682: /* one left and below; or we are right on it */
683: col = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
684: cols[nc++] = col_shift + idx_c[col];
685: MatPreallocateSet(row,nc,cols,dnz,onz);
686: }
687: }
688: }
689: MatCreate(PetscObjectComm((PetscObject)daf),&mat);
690: MatSetSizes(mat,m_f*n_f*p_f,col_scale*m_c*n_c*p_c,mx*my*mz,col_scale*Mx*My*Mz);
691: MatSetType(mat,MATAIJ);
692: MatSeqAIJSetPreallocation(mat,0,dnz);
693: MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
694: MatPreallocateFinalize(dnz,onz);
696: /* loop over local fine grid nodes setting interpolation for those*/
697: for (l=l_start; l<l_start+p_f; l++) {
698: for (j=j_start; j<j_start+n_f; j++) {
699: for (i=i_start; i<i_start+m_f; i++) {
700: /* convert to local "natural" numbering and then to PETSc global numbering */
701: row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
703: i_c = (i/ratioi); /* coarse grid node to left of fine grid node */
704: j_c = (j/ratioj); /* coarse grid node below fine grid node */
705: l_c = (l/ratiol);
706: nc = 0;
707: /* one left and below; or we are right on it */
708: col = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
709: cols[nc] = col_shift + idx_c[col];
710: v[nc++] = 1.0;
712: MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
713: }
714: }
715: }
716: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
717: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
718: MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
719: MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
720: MatCreateMAIJ(mat,dof,A);
721: MatDestroy(&mat);
722: PetscLogFlops(13.0*m_f*n_f*p_f);
723: return(0);
724: }
728: PetscErrorCode DMCreateInterpolation_DA_3D_Q1(DM dac,DM daf,Mat *A)
729: {
730: PetscErrorCode ierr;
731: PetscInt i,j,i_start,j_start,m_f,n_f,Mx,My,dof,l;
732: const PetscInt *idx_c,*idx_f;
733: ISLocalToGlobalMapping ltog_f,ltog_c;
734: PetscInt m_ghost,n_ghost,m_ghost_c,n_ghost_c,Mz,mz;
735: PetscInt row,col,i_start_ghost,j_start_ghost,cols[8],mx,m_c,my,nc,ratioi,ratioj,ratiok;
736: PetscInt i_c,j_c,i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c;
737: PetscInt l_start,p_f,l_start_ghost,p_ghost,l_start_c,p_c;
738: PetscInt l_start_ghost_c,p_ghost_c,l_c,*dnz,*onz;
739: PetscScalar v[8],x,y,z;
740: Mat mat;
741: DMBoundaryType bx,by,bz;
744: DMDAGetInfo(dac,0,&Mx,&My,&Mz,0,0,0,0,0,&bx,&by,&bz,0);
745: DMDAGetInfo(daf,0,&mx,&my,&mz,0,0,0,&dof,0,0,0,0,0);
746: if (mx == Mx) {
747: ratioi = 1;
748: } else if (bx == DM_BOUNDARY_PERIODIC) {
749: ratioi = mx/Mx;
750: if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx must be integer: mx %D Mx %D",mx,Mx);
751: } else {
752: ratioi = (mx-1)/(Mx-1);
753: if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
754: }
755: if (my == My) {
756: ratioj = 1;
757: } else if (by == DM_BOUNDARY_PERIODIC) {
758: ratioj = my/My;
759: if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My must be integer: my %D My %D",my,My);
760: } else {
761: ratioj = (my-1)/(My-1);
762: if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
763: }
764: if (mz == Mz) {
765: ratiok = 1;
766: } else if (bz == DM_BOUNDARY_PERIODIC) {
767: ratiok = mz/Mz;
768: if (ratiok*Mz != mz) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mz/Mz must be integer: mz %D Mz %D",mz,Mz);
769: } else {
770: ratiok = (mz-1)/(Mz-1);
771: if (ratiok*(Mz-1) != mz-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mz - 1)/(Mz - 1) must be integer: mz %D Mz %D",mz,Mz);
772: }
774: DMDAGetCorners(daf,&i_start,&j_start,&l_start,&m_f,&n_f,&p_f);
775: DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&l_start_ghost,&m_ghost,&n_ghost,&p_ghost);
776: DMGetLocalToGlobalMapping(daf,<og_f);
777: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
779: DMDAGetCorners(dac,&i_start_c,&j_start_c,&l_start_c,&m_c,&n_c,&p_c);
780: DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&l_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);
781: DMGetLocalToGlobalMapping(dac,<og_c);
782: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
784: /* create interpolation matrix, determining exact preallocation */
785: MatPreallocateInitialize(PetscObjectComm((PetscObject)dac),m_f*n_f*p_f,m_c*n_c*p_c,dnz,onz);
786: /* loop over local fine grid nodes counting interpolating points */
787: for (l=l_start; l<l_start+p_f; l++) {
788: for (j=j_start; j<j_start+n_f; j++) {
789: for (i=i_start; i<i_start+m_f; i++) {
790: /* convert to local "natural" numbering and then to PETSc global numbering */
791: row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
792: i_c = (i/ratioi);
793: j_c = (j/ratioj);
794: l_c = (l/ratiok);
795: if (l_c < l_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
796: l_start %D l_c %D l_start_ghost_c %D",l_start,l_c,l_start_ghost_c);
797: if (j_c < j_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
798: j_start %D j_c %D j_start_ghost_c %D",j_start,j_c,j_start_ghost_c);
799: if (i_c < i_start_ghost_c) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
800: i_start %D i_c %D i_start_ghost_c %D",i_start,i_c,i_start_ghost_c);
802: /*
803: Only include those interpolation points that are truly
804: nonzero. Note this is very important for final grid lines
805: in x and y directions; since they have no right/top neighbors
806: */
807: nc = 0;
808: col = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
809: cols[nc++] = idx_c[col];
810: if (i_c*ratioi != i) {
811: cols[nc++] = idx_c[col+1];
812: }
813: if (j_c*ratioj != j) {
814: cols[nc++] = idx_c[col+m_ghost_c];
815: }
816: if (l_c*ratiok != l) {
817: cols[nc++] = idx_c[col+m_ghost_c*n_ghost_c];
818: }
819: if (j_c*ratioj != j && i_c*ratioi != i) {
820: cols[nc++] = idx_c[col+(m_ghost_c+1)];
821: }
822: if (j_c*ratioj != j && l_c*ratiok != l) {
823: cols[nc++] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c)];
824: }
825: if (i_c*ratioi != i && l_c*ratiok != l) {
826: cols[nc++] = idx_c[col+(m_ghost_c*n_ghost_c+1)];
827: }
828: if (i_c*ratioi != i && l_c*ratiok != l && j_c*ratioj != j) {
829: cols[nc++] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c+1)];
830: }
831: MatPreallocateSet(row,nc,cols,dnz,onz);
832: }
833: }
834: }
835: MatCreate(PetscObjectComm((PetscObject)dac),&mat);
836: MatSetSizes(mat,m_f*n_f*p_f,m_c*n_c*p_c,mx*my*mz,Mx*My*Mz);
837: MatSetType(mat,MATAIJ);
838: MatSeqAIJSetPreallocation(mat,0,dnz);
839: MatMPIAIJSetPreallocation(mat,0,dnz,0,onz);
840: MatPreallocateFinalize(dnz,onz);
842: /* loop over local fine grid nodes setting interpolation for those*/
843: if (!NEWVERSION) {
845: for (l=l_start; l<l_start+p_f; l++) {
846: for (j=j_start; j<j_start+n_f; j++) {
847: for (i=i_start; i<i_start+m_f; i++) {
848: /* convert to local "natural" numbering and then to PETSc global numbering */
849: row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
851: i_c = (i/ratioi);
852: j_c = (j/ratioj);
853: l_c = (l/ratiok);
855: /*
856: Only include those interpolation points that are truly
857: nonzero. Note this is very important for final grid lines
858: in x and y directions; since they have no right/top neighbors
859: */
860: x = ((PetscReal)(i - i_c*ratioi))/((PetscReal)ratioi);
861: y = ((PetscReal)(j - j_c*ratioj))/((PetscReal)ratioj);
862: z = ((PetscReal)(l - l_c*ratiok))/((PetscReal)ratiok);
864: nc = 0;
865: /* one left and below; or we are right on it */
866: col = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c)+m_ghost_c*(j_c-j_start_ghost_c)+(i_c-i_start_ghost_c));
868: cols[nc] = idx_c[col];
869: v[nc++] = .125*(1. - (2.0*x-1.))*(1. - (2.0*y-1.))*(1. - (2.0*z-1.));
871: if (i_c*ratioi != i) {
872: cols[nc] = idx_c[col+1];
873: v[nc++] = .125*(1. + (2.0*x-1.))*(1. - (2.0*y-1.))*(1. - (2.0*z-1.));
874: }
876: if (j_c*ratioj != j) {
877: cols[nc] = idx_c[col+m_ghost_c];
878: v[nc++] = .125*(1. - (2.0*x-1.))*(1. + (2.0*y-1.))*(1. - (2.0*z-1.));
879: }
881: if (l_c*ratiok != l) {
882: cols[nc] = idx_c[col+m_ghost_c*n_ghost_c];
883: v[nc++] = .125*(1. - (2.0*x-1.))*(1. - (2.0*y-1.))*(1. + (2.0*z-1.));
884: }
886: if (j_c*ratioj != j && i_c*ratioi != i) {
887: cols[nc] = idx_c[col+(m_ghost_c+1)];
888: v[nc++] = .125*(1. + (2.0*x-1.))*(1. + (2.0*y-1.))*(1. - (2.0*z-1.));
889: }
891: if (j_c*ratioj != j && l_c*ratiok != l) {
892: cols[nc] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c)];
893: v[nc++] = .125*(1. - (2.0*x-1.))*(1. + (2.0*y-1.))*(1. + (2.0*z-1.));
894: }
896: if (i_c*ratioi != i && l_c*ratiok != l) {
897: cols[nc] = idx_c[col+(m_ghost_c*n_ghost_c+1)];
898: v[nc++] = .125*(1. + (2.0*x-1.))*(1. - (2.0*y-1.))*(1. + (2.0*z-1.));
899: }
901: if (i_c*ratioi != i && l_c*ratiok != l && j_c*ratioj != j) {
902: cols[nc] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c+1)];
903: v[nc++] = .125*(1. + (2.0*x-1.))*(1. + (2.0*y-1.))*(1. + (2.0*z-1.));
904: }
905: MatSetValues(mat,1,&row,nc,cols,v,INSERT_VALUES);
906: }
907: }
908: }
910: } else {
911: PetscScalar *xi,*eta,*zeta;
912: PetscInt li,nxi,lj,neta,lk,nzeta,n;
913: PetscScalar Ni[8];
915: /* compute local coordinate arrays */
916: nxi = ratioi + 1;
917: neta = ratioj + 1;
918: nzeta = ratiok + 1;
919: PetscMalloc1(nxi,&xi);
920: PetscMalloc1(neta,&eta);
921: PetscMalloc1(nzeta,&zeta);
922: for (li=0; li<nxi; li++) xi[li] = -1.0 + (PetscScalar)li*(2.0/(PetscScalar)(nxi-1));
923: for (lj=0; lj<neta; lj++) eta[lj] = -1.0 + (PetscScalar)lj*(2.0/(PetscScalar)(neta-1));
924: for (lk=0; lk<nzeta; lk++) zeta[lk] = -1.0 + (PetscScalar)lk*(2.0/(PetscScalar)(nzeta-1));
926: for (l=l_start; l<l_start+p_f; l++) {
927: for (j=j_start; j<j_start+n_f; j++) {
928: for (i=i_start; i<i_start+m_f; i++) {
929: /* convert to local "natural" numbering and then to PETSc global numbering */
930: row = idx_f[(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))];
932: i_c = (i/ratioi);
933: j_c = (j/ratioj);
934: l_c = (l/ratiok);
936: /* remainders */
937: li = i - ratioi * (i/ratioi);
938: if (i==mx-1) li = nxi-1;
939: lj = j - ratioj * (j/ratioj);
940: if (j==my-1) lj = neta-1;
941: lk = l - ratiok * (l/ratiok);
942: if (l==mz-1) lk = nzeta-1;
944: /* corners */
945: col = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c)+m_ghost_c*(j_c-j_start_ghost_c)+(i_c-i_start_ghost_c));
946: cols[0] = idx_c[col];
947: Ni[0] = 1.0;
948: if ((li==0) || (li==nxi-1)) {
949: if ((lj==0) || (lj==neta-1)) {
950: if ((lk==0) || (lk==nzeta-1)) {
951: MatSetValue(mat,row,cols[0],Ni[0],INSERT_VALUES);
952: continue;
953: }
954: }
955: }
957: /* edges + interior */
958: /* remainders */
959: if (i==mx-1) i_c--;
960: if (j==my-1) j_c--;
961: if (l==mz-1) l_c--;
963: col = (m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c));
964: cols[0] = idx_c[col]; /* one left and below; or we are right on it */
965: cols[1] = idx_c[col+1]; /* one right and below */
966: cols[2] = idx_c[col+m_ghost_c]; /* one left and above */
967: cols[3] = idx_c[col+(m_ghost_c+1)]; /* one right and above */
969: cols[4] = idx_c[col+m_ghost_c*n_ghost_c]; /* one left and below and front; or we are right on it */
970: cols[5] = idx_c[col+(m_ghost_c*n_ghost_c+1)]; /* one right and below, and front */
971: cols[6] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c)]; /* one left and above and front*/
972: cols[7] = idx_c[col+(m_ghost_c*n_ghost_c+m_ghost_c+1)]; /* one right and above and front */
974: Ni[0] = 0.125*(1.0-xi[li])*(1.0-eta[lj])*(1.0-zeta[lk]);
975: Ni[1] = 0.125*(1.0+xi[li])*(1.0-eta[lj])*(1.0-zeta[lk]);
976: Ni[2] = 0.125*(1.0-xi[li])*(1.0+eta[lj])*(1.0-zeta[lk]);
977: Ni[3] = 0.125*(1.0+xi[li])*(1.0+eta[lj])*(1.0-zeta[lk]);
979: Ni[4] = 0.125*(1.0-xi[li])*(1.0-eta[lj])*(1.0+zeta[lk]);
980: Ni[5] = 0.125*(1.0+xi[li])*(1.0-eta[lj])*(1.0+zeta[lk]);
981: Ni[6] = 0.125*(1.0-xi[li])*(1.0+eta[lj])*(1.0+zeta[lk]);
982: Ni[7] = 0.125*(1.0+xi[li])*(1.0+eta[lj])*(1.0+zeta[lk]);
984: for (n=0; n<8; n++) {
985: if (PetscAbsScalar(Ni[n])<1.0e-32) cols[n]=-1;
986: }
987: MatSetValues(mat,1,&row,8,cols,Ni,INSERT_VALUES);
989: }
990: }
991: }
992: PetscFree(xi);
993: PetscFree(eta);
994: PetscFree(zeta);
995: }
996: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
997: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
998: MatAssemblyBegin(mat,MAT_FINAL_ASSEMBLY);
999: MatAssemblyEnd(mat,MAT_FINAL_ASSEMBLY);
1001: MatCreateMAIJ(mat,dof,A);
1002: MatDestroy(&mat);
1003: return(0);
1004: }
1008: PetscErrorCode DMCreateInterpolation_DA(DM dac,DM daf,Mat *A,Vec *scale)
1009: {
1010: PetscErrorCode ierr;
1011: PetscInt dimc,Mc,Nc,Pc,mc,nc,pc,dofc,sc,dimf,Mf,Nf,Pf,mf,nf,pf,doff,sf;
1012: DMBoundaryType bxc,byc,bzc,bxf,byf,bzf;
1013: DMDAStencilType stc,stf;
1014: DM_DA *ddc = (DM_DA*)dac->data;
1022: DMDAGetInfo(dac,&dimc,&Mc,&Nc,&Pc,&mc,&nc,&pc,&dofc,&sc,&bxc,&byc,&bzc,&stc);
1023: DMDAGetInfo(daf,&dimf,&Mf,&Nf,&Pf,&mf,&nf,&pf,&doff,&sf,&bxf,&byf,&bzf,&stf);
1024: if (dimc != dimf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Dimensions of DMDA do not match %D %D",dimc,dimf);
1025: if (dofc != doff) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"DOF of DMDA do not match %D %D",dofc,doff);
1026: if (sc != sf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil width of DMDA do not match %D %D",sc,sf);
1027: if (bxc != bxf || byc != byf || bzc != bzf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Boundary type different in two DMDAs");
1028: if (stc != stf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil type different in two DMDAs");
1029: if (Mc < 2 && Mf > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in x direction");
1030: if (dimc > 1 && Nc < 2 && Nf > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in y direction");
1031: if (dimc > 2 && Pc < 2 && Pf > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in z direction");
1033: if (ddc->interptype == DMDA_Q1) {
1034: if (dimc == 1) {
1035: DMCreateInterpolation_DA_1D_Q1(dac,daf,A);
1036: } else if (dimc == 2) {
1037: DMCreateInterpolation_DA_2D_Q1(dac,daf,A);
1038: } else if (dimc == 3) {
1039: DMCreateInterpolation_DA_3D_Q1(dac,daf,A);
1040: } else SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_SUP,"No support for this DMDA dimension %D for interpolation type %d",dimc,(int)ddc->interptype);
1041: } else if (ddc->interptype == DMDA_Q0) {
1042: if (dimc == 1) {
1043: DMCreateInterpolation_DA_1D_Q0(dac,daf,A);
1044: } else if (dimc == 2) {
1045: DMCreateInterpolation_DA_2D_Q0(dac,daf,A);
1046: } else if (dimc == 3) {
1047: DMCreateInterpolation_DA_3D_Q0(dac,daf,A);
1048: } else SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_SUP,"No support for this DMDA dimension %D for interpolation type %d",dimc,(int)ddc->interptype);
1049: }
1050: if (scale) {
1051: DMCreateInterpolationScale((DM)dac,(DM)daf,*A,scale);
1052: }
1053: return(0);
1054: }
1058: PetscErrorCode DMCreateInjection_DA_1D(DM dac,DM daf,VecScatter *inject)
1059: {
1060: PetscErrorCode ierr;
1061: PetscInt i,i_start,m_f,Mx,dof;
1062: const PetscInt *idx_f;
1063: ISLocalToGlobalMapping ltog_f;
1064: PetscInt m_ghost,m_ghost_c;
1065: PetscInt row,i_start_ghost,mx,m_c,nc,ratioi;
1066: PetscInt i_start_c,i_start_ghost_c;
1067: PetscInt *cols;
1068: DMBoundaryType bx;
1069: Vec vecf,vecc;
1070: IS isf;
1073: DMDAGetInfo(dac,0,&Mx,0,0,0,0,0,0,0,&bx,0,0,0);
1074: DMDAGetInfo(daf,0,&mx,0,0,0,0,0,&dof,0,0,0,0,0);
1075: if (bx == DM_BOUNDARY_PERIODIC) {
1076: ratioi = mx/Mx;
1077: if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx must be integer: mx %D Mx %D",mx,Mx);
1078: } else {
1079: ratioi = (mx-1)/(Mx-1);
1080: if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
1081: }
1083: DMDAGetCorners(daf,&i_start,0,0,&m_f,0,0);
1084: DMDAGetGhostCorners(daf,&i_start_ghost,0,0,&m_ghost,0,0);
1085: DMGetLocalToGlobalMapping(daf,<og_f);
1086: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
1088: DMDAGetCorners(dac,&i_start_c,0,0,&m_c,0,0);
1089: DMDAGetGhostCorners(dac,&i_start_ghost_c,0,0,&m_ghost_c,0,0);
1092: /* loop over local fine grid nodes setting interpolation for those*/
1093: nc = 0;
1094: PetscMalloc1(m_f,&cols);
1097: for (i=i_start_c; i<i_start_c+m_c; i++) {
1098: PetscInt i_f = i*ratioi;
1100: if (i_f < i_start_ghost || i_f >= i_start_ghost+m_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\ni_c %D i_f %D fine ghost range [%D,%D]",i,i_f,i_start_ghost,i_start_ghost+m_ghost);
1102: row = idx_f[(i_f-i_start_ghost)];
1103: cols[nc++] = row;
1104: }
1106: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
1107: ISCreateBlock(PetscObjectComm((PetscObject)daf),dof,nc,cols,PETSC_OWN_POINTER,&isf);
1108: DMGetGlobalVector(dac,&vecc);
1109: DMGetGlobalVector(daf,&vecf);
1110: VecScatterCreate(vecf,isf,vecc,NULL,inject);
1111: DMRestoreGlobalVector(dac,&vecc);
1112: DMRestoreGlobalVector(daf,&vecf);
1113: ISDestroy(&isf);
1114: return(0);
1115: }
1119: PetscErrorCode DMCreateInjection_DA_2D(DM dac,DM daf,VecScatter *inject)
1120: {
1121: PetscErrorCode ierr;
1122: PetscInt i,j,i_start,j_start,m_f,n_f,Mx,My,dof;
1123: const PetscInt *idx_c,*idx_f;
1124: ISLocalToGlobalMapping ltog_f,ltog_c;
1125: PetscInt m_ghost,n_ghost,m_ghost_c,n_ghost_c;
1126: PetscInt row,i_start_ghost,j_start_ghost,mx,m_c,my,nc,ratioi,ratioj;
1127: PetscInt i_start_c,j_start_c,n_c,i_start_ghost_c,j_start_ghost_c;
1128: PetscInt *cols;
1129: DMBoundaryType bx,by;
1130: Vec vecf,vecc;
1131: IS isf;
1134: DMDAGetInfo(dac,0,&Mx,&My,0,0,0,0,0,0,&bx,&by,0,0);
1135: DMDAGetInfo(daf,0,&mx,&my,0,0,0,0,&dof,0,0,0,0,0);
1136: if (bx == DM_BOUNDARY_PERIODIC) {
1137: ratioi = mx/Mx;
1138: if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx must be integer: mx %D Mx %D",mx,Mx);
1139: } else {
1140: ratioi = (mx-1)/(Mx-1);
1141: if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
1142: }
1143: if (by == DM_BOUNDARY_PERIODIC) {
1144: ratioj = my/My;
1145: if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My must be integer: my %D My %D",my,My);
1146: } else {
1147: ratioj = (my-1)/(My-1);
1148: if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
1149: }
1151: DMDAGetCorners(daf,&i_start,&j_start,0,&m_f,&n_f,0);
1152: DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,0,&m_ghost,&n_ghost,0);
1153: DMGetLocalToGlobalMapping(daf,<og_f);
1154: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
1156: DMDAGetCorners(dac,&i_start_c,&j_start_c,0,&m_c,&n_c,0);
1157: DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,0,&m_ghost_c,&n_ghost_c,0);
1158: DMGetLocalToGlobalMapping(dac,<og_c);
1159: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
1161: /* loop over local fine grid nodes setting interpolation for those*/
1162: nc = 0;
1163: PetscMalloc1(n_f*m_f,&cols);
1164: for (j=j_start_c; j<j_start_c+n_c; j++) {
1165: for (i=i_start_c; i<i_start_c+m_c; i++) {
1166: PetscInt i_f = i*ratioi,j_f = j*ratioj;
1167: if (j_f < j_start_ghost || j_f >= j_start_ghost+n_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
1168: j_c %D j_f %D fine ghost range [%D,%D]",j,j_f,j_start_ghost,j_start_ghost+n_ghost);
1169: if (i_f < i_start_ghost || i_f >= i_start_ghost+m_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA\n\
1170: i_c %D i_f %D fine ghost range [%D,%D]",i,i_f,i_start_ghost,i_start_ghost+m_ghost);
1171: row = idx_f[(m_ghost*(j_f-j_start_ghost) + (i_f-i_start_ghost))];
1172: cols[nc++] = row;
1173: }
1174: }
1175: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
1176: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
1178: ISCreateBlock(PetscObjectComm((PetscObject)daf),dof,nc,cols,PETSC_OWN_POINTER,&isf);
1179: DMGetGlobalVector(dac,&vecc);
1180: DMGetGlobalVector(daf,&vecf);
1181: VecScatterCreate(vecf,isf,vecc,NULL,inject);
1182: DMRestoreGlobalVector(dac,&vecc);
1183: DMRestoreGlobalVector(daf,&vecf);
1184: ISDestroy(&isf);
1185: return(0);
1186: }
1190: PetscErrorCode DMCreateInjection_DA_3D(DM dac,DM daf,VecScatter *inject)
1191: {
1192: PetscErrorCode ierr;
1193: PetscInt i,j,k,i_start,j_start,k_start,m_f,n_f,p_f,Mx,My,Mz;
1194: PetscInt m_ghost,n_ghost,p_ghost,m_ghost_c,n_ghost_c,p_ghost_c;
1195: PetscInt i_start_ghost,j_start_ghost,k_start_ghost;
1196: PetscInt mx,my,mz,ratioi,ratioj,ratiok;
1197: PetscInt i_start_c,j_start_c,k_start_c;
1198: PetscInt m_c,n_c,p_c;
1199: PetscInt i_start_ghost_c,j_start_ghost_c,k_start_ghost_c;
1200: PetscInt row,nc,dof;
1201: const PetscInt *idx_c,*idx_f;
1202: ISLocalToGlobalMapping ltog_f,ltog_c;
1203: PetscInt *cols;
1204: DMBoundaryType bx,by,bz;
1205: Vec vecf,vecc;
1206: IS isf;
1209: DMDAGetInfo(dac,0,&Mx,&My,&Mz,0,0,0,0,0,&bx,&by,&bz,0);
1210: DMDAGetInfo(daf,0,&mx,&my,&mz,0,0,0,&dof,0,0,0,0,0);
1212: if (bx == DM_BOUNDARY_PERIODIC) {
1213: ratioi = mx/Mx;
1214: if (ratioi*Mx != mx) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mx/Mx must be integer: mx %D Mx %D",mx,Mx);
1215: } else {
1216: ratioi = (mx-1)/(Mx-1);
1217: if (ratioi*(Mx-1) != mx-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mx - 1)/(Mx - 1) must be integer: mx %D Mx %D",mx,Mx);
1218: }
1219: if (by == DM_BOUNDARY_PERIODIC) {
1220: ratioj = my/My;
1221: if (ratioj*My != my) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: my/My must be integer: my %D My %D",my,My);
1222: } else {
1223: ratioj = (my-1)/(My-1);
1224: if (ratioj*(My-1) != my-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (my - 1)/(My - 1) must be integer: my %D My %D",my,My);
1225: }
1226: if (bz == DM_BOUNDARY_PERIODIC) {
1227: ratiok = mz/Mz;
1228: if (ratiok*Mz != mz) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: mz/Mz must be integer: mz %D My %D",mz,Mz);
1229: } else {
1230: ratiok = (mz-1)/(Mz-1);
1231: if (ratiok*(Mz-1) != mz-1) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Ratio between levels: (mz - 1)/(Mz - 1) must be integer: mz %D Mz %D",mz,Mz);
1232: }
1234: DMDAGetCorners(daf,&i_start,&j_start,&k_start,&m_f,&n_f,&p_f);
1235: DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&k_start_ghost,&m_ghost,&n_ghost,&p_ghost);
1236: DMGetLocalToGlobalMapping(daf,<og_f);
1237: ISLocalToGlobalMappingGetBlockIndices(ltog_f,&idx_f);
1239: DMDAGetCorners(dac,&i_start_c,&j_start_c,&k_start_c,&m_c,&n_c,&p_c);
1240: DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&k_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);
1241: DMGetLocalToGlobalMapping(dac,<og_c);
1242: ISLocalToGlobalMappingGetBlockIndices(ltog_c,&idx_c);
1245: /* loop over local fine grid nodes setting interpolation for those*/
1246: nc = 0;
1247: PetscMalloc1(n_f*m_f*p_f,&cols);
1248: for (k=k_start_c; k<k_start_c+p_c; k++) {
1249: for (j=j_start_c; j<j_start_c+n_c; j++) {
1250: for (i=i_start_c; i<i_start_c+m_c; i++) {
1251: PetscInt i_f = i*ratioi,j_f = j*ratioj,k_f = k*ratiok;
1252: if (k_f < k_start_ghost || k_f >= k_start_ghost+p_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA "
1253: "k_c %D k_f %D fine ghost range [%D,%D]",k,k_f,k_start_ghost,k_start_ghost+p_ghost);
1254: if (j_f < j_start_ghost || j_f >= j_start_ghost+n_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA "
1255: "j_c %D j_f %D fine ghost range [%D,%D]",j,j_f,j_start_ghost,j_start_ghost+n_ghost);
1256: if (i_f < i_start_ghost || i_f >= i_start_ghost+m_ghost) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Processor's coarse DMDA must lie over fine DMDA "
1257: "i_c %D i_f %D fine ghost range [%D,%D]",i,i_f,i_start_ghost,i_start_ghost+m_ghost);
1258: row = idx_f[(m_ghost*n_ghost*(k_f-k_start_ghost) + m_ghost*(j_f-j_start_ghost) + (i_f-i_start_ghost))];
1259: cols[nc++] = row;
1260: }
1261: }
1262: }
1263: ISLocalToGlobalMappingRestoreBlockIndices(ltog_f,&idx_f);
1264: ISLocalToGlobalMappingRestoreBlockIndices(ltog_c,&idx_c);
1266: ISCreateBlock(PetscObjectComm((PetscObject)daf),dof,nc,cols,PETSC_OWN_POINTER,&isf);
1267: DMGetGlobalVector(dac,&vecc);
1268: DMGetGlobalVector(daf,&vecf);
1269: VecScatterCreate(vecf,isf,vecc,NULL,inject);
1270: DMRestoreGlobalVector(dac,&vecc);
1271: DMRestoreGlobalVector(daf,&vecf);
1272: ISDestroy(&isf);
1273: return(0);
1274: }
1278: PetscErrorCode DMCreateInjection_DA(DM dac,DM daf,Mat *mat)
1279: {
1280: PetscErrorCode ierr;
1281: PetscInt dimc,Mc,Nc,Pc,mc,nc,pc,dofc,sc,dimf,Mf,Nf,Pf,mf,nf,pf,doff,sf;
1282: DMBoundaryType bxc,byc,bzc,bxf,byf,bzf;
1283: DMDAStencilType stc,stf;
1284: VecScatter inject = NULL;
1291: DMDAGetInfo(dac,&dimc,&Mc,&Nc,&Pc,&mc,&nc,&pc,&dofc,&sc,&bxc,&byc,&bzc,&stc);
1292: DMDAGetInfo(daf,&dimf,&Mf,&Nf,&Pf,&mf,&nf,&pf,&doff,&sf,&bxf,&byf,&bzf,&stf);
1293: if (dimc != dimf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Dimensions of DMDA do not match %D %D",dimc,dimf);
1294: if (dofc != doff) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"DOF of DMDA do not match %D %D",dofc,doff);
1295: if (sc != sf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil width of DMDA do not match %D %D",sc,sf);
1296: if (bxc != bxf || byc != byf || bzc != bzf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Boundary type different in two DMDAs");
1297: if (stc != stf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil type different in two DMDAs");
1298: if (Mc < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in x direction");
1299: if (dimc > 1 && Nc < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in y direction");
1300: if (dimc > 2 && Pc < 2) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Coarse grid requires at least 2 points in z direction");
1302: if (dimc == 1) {
1303: DMCreateInjection_DA_1D(dac,daf,&inject);
1304: } else if (dimc == 2) {
1305: DMCreateInjection_DA_2D(dac,daf,&inject);
1306: } else if (dimc == 3) {
1307: DMCreateInjection_DA_3D(dac,daf,&inject);
1308: }
1309: MatCreateScatter(PetscObjectComm((PetscObject)inject), inject, mat);
1310: VecScatterDestroy(&inject);
1311: return(0);
1312: }
1316: PetscErrorCode DMCreateAggregates_DA(DM dac,DM daf,Mat *rest)
1317: {
1318: PetscErrorCode ierr;
1319: PetscInt dimc,Mc,Nc,Pc,mc,nc,pc,dofc,sc;
1320: PetscInt dimf,Mf,Nf,Pf,mf,nf,pf,doff,sf;
1321: DMBoundaryType bxc,byc,bzc,bxf,byf,bzf;
1322: DMDAStencilType stc,stf;
1323: PetscInt i,j,l;
1324: PetscInt i_start,j_start,l_start, m_f,n_f,p_f;
1325: PetscInt i_start_ghost,j_start_ghost,l_start_ghost,m_ghost,n_ghost,p_ghost;
1326: const PetscInt *idx_f;
1327: PetscInt i_c,j_c,l_c;
1328: PetscInt i_start_c,j_start_c,l_start_c, m_c,n_c,p_c;
1329: PetscInt i_start_ghost_c,j_start_ghost_c,l_start_ghost_c,m_ghost_c,n_ghost_c,p_ghost_c;
1330: const PetscInt *idx_c;
1331: PetscInt d;
1332: PetscInt a;
1333: PetscInt max_agg_size;
1334: PetscInt *fine_nodes;
1335: PetscScalar *one_vec;
1336: PetscInt fn_idx;
1337: ISLocalToGlobalMapping ltogmf,ltogmc;
1344: DMDAGetInfo(dac,&dimc,&Mc,&Nc,&Pc,&mc,&nc,&pc,&dofc,&sc,&bxc,&byc,&bzc,&stc);
1345: DMDAGetInfo(daf,&dimf,&Mf,&Nf,&Pf,&mf,&nf,&pf,&doff,&sf,&bxf,&byf,&bzf,&stf);
1346: if (dimc != dimf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Dimensions of DMDA do not match %D %D",dimc,dimf);
1347: if (dofc != doff) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"DOF of DMDA do not match %D %D",dofc,doff);
1348: if (sc != sf) SETERRQ2(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil width of DMDA do not match %D %D",sc,sf);
1349: if (bxc != bxf || byc != byf || bzc != bzf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Boundary type different in two DMDAs");
1350: if (stc != stf) SETERRQ(PetscObjectComm((PetscObject)daf),PETSC_ERR_ARG_INCOMP,"Stencil type different in two DMDAs");
1352: if (Mf < Mc) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Coarse grid has more points than fine grid, Mc %D, Mf %D", Mc, Mf);
1353: if (Nf < Nc) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Coarse grid has more points than fine grid, Nc %D, Nf %D", Nc, Nf);
1354: if (Pf < Pc) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Coarse grid has more points than fine grid, Pc %D, Pf %D", Pc, Pf);
1356: if (Pc < 0) Pc = 1;
1357: if (Pf < 0) Pf = 1;
1358: if (Nc < 0) Nc = 1;
1359: if (Nf < 0) Nf = 1;
1361: DMDAGetCorners(daf,&i_start,&j_start,&l_start,&m_f,&n_f,&p_f);
1362: DMDAGetGhostCorners(daf,&i_start_ghost,&j_start_ghost,&l_start_ghost,&m_ghost,&n_ghost,&p_ghost);
1364: DMGetLocalToGlobalMapping(daf,<ogmf);
1365: ISLocalToGlobalMappingGetIndices(ltogmf,&idx_f);
1367: DMDAGetCorners(dac,&i_start_c,&j_start_c,&l_start_c,&m_c,&n_c,&p_c);
1368: DMDAGetGhostCorners(dac,&i_start_ghost_c,&j_start_ghost_c,&l_start_ghost_c,&m_ghost_c,&n_ghost_c,&p_ghost_c);
1370: DMGetLocalToGlobalMapping(dac,<ogmc);
1371: ISLocalToGlobalMappingGetIndices(ltogmc,&idx_c);
1373: /*
1374: Basic idea is as follows. Here's a 2D example, suppose r_x, r_y are the ratios
1375: for dimension 1 and 2 respectively.
1376: Let (i,j) be a coarse grid node. All the fine grid nodes between r_x*i and r_x*(i+1)
1377: and r_y*j and r_y*(j+1) will be grouped into the same coarse grid agregate.
1378: Each specific dof on the fine grid is mapped to one dof on the coarse grid.
1379: */
1381: max_agg_size = (Mf/Mc+1)*(Nf/Nc+1)*(Pf/Pc+1);
1383: /* create the matrix that will contain the restriction operator */
1384: MatCreateAIJ(PetscObjectComm((PetscObject)daf), m_c*n_c*p_c*dofc, m_f*n_f*p_f*doff, Mc*Nc*Pc*dofc, Mf*Nf*Pf*doff,
1385: max_agg_size, NULL, max_agg_size, NULL, rest);
1387: /* store nodes in the fine grid here */
1388: PetscMalloc2(max_agg_size, &one_vec,max_agg_size, &fine_nodes);
1389: for (i=0; i<max_agg_size; i++) one_vec[i] = 1.0;
1391: /* loop over all coarse nodes */
1392: for (l_c=l_start_c; l_c<l_start_c+p_c; l_c++) {
1393: for (j_c=j_start_c; j_c<j_start_c+n_c; j_c++) {
1394: for (i_c=i_start_c; i_c<i_start_c+m_c; i_c++) {
1395: for (d=0; d<dofc; d++) {
1396: /* convert to local "natural" numbering and then to PETSc global numbering */
1397: a = idx_c[dofc*(m_ghost_c*n_ghost_c*(l_c-l_start_ghost_c) + m_ghost_c*(j_c-j_start_ghost_c) + (i_c-i_start_ghost_c))] + d;
1399: fn_idx = 0;
1400: /* Corresponding fine points are all points (i_f, j_f, l_f) such that
1401: i_c*Mf/Mc <= i_f < (i_c+1)*Mf/Mc
1402: (same for other dimensions)
1403: */
1404: for (l=l_c*Pf/Pc; l<PetscMin((l_c+1)*Pf/Pc,Pf); l++) {
1405: for (j=j_c*Nf/Nc; j<PetscMin((j_c+1)*Nf/Nc,Nf); j++) {
1406: for (i=i_c*Mf/Mc; i<PetscMin((i_c+1)*Mf/Mc,Mf); i++) {
1407: fine_nodes[fn_idx] = idx_f[doff*(m_ghost*n_ghost*(l-l_start_ghost) + m_ghost*(j-j_start_ghost) + (i-i_start_ghost))] + d;
1408: fn_idx++;
1409: }
1410: }
1411: }
1412: /* add all these points to one aggregate */
1413: MatSetValues(*rest, 1, &a, fn_idx, fine_nodes, one_vec, INSERT_VALUES);
1414: }
1415: }
1416: }
1417: }
1418: ISLocalToGlobalMappingRestoreIndices(ltogmf,&idx_f);
1419: ISLocalToGlobalMappingRestoreIndices(ltogmc,&idx_c);
1420: PetscFree2(one_vec,fine_nodes);
1421: MatAssemblyBegin(*rest, MAT_FINAL_ASSEMBLY);
1422: MatAssemblyEnd(*rest, MAT_FINAL_ASSEMBLY);
1423: return(0);
1424: }