Actual source code: taosolver.c
petsc-3.6.4 2016-04-12
1: #define TAO_DLL
3: #include <petsc/private/taoimpl.h> /*I "petsctao.h" I*/
5: PetscBool TaoRegisterAllCalled = PETSC_FALSE;
6: PetscFunctionList TaoList = NULL;
8: PetscClassId TAO_CLASSID;
9: PetscLogEvent Tao_Solve, Tao_ObjectiveEval, Tao_GradientEval, Tao_ObjGradientEval, Tao_HessianEval, Tao_ConstraintsEval, Tao_JacobianEval;
11: const char *TaoSubSetTypes[] = { "subvec","mask","matrixfree","TaoSubSetType","TAO_SUBSET_",0};
15: /*@
16: TaoCreate - Creates a TAO solver
18: Collective on MPI_Comm
20: Input Parameter:
21: . comm - MPI communicator
23: Output Parameter:
24: . newtao - the new Tao context
26: Available methods include:
27: + nls - Newton's method with line search for unconstrained minimization
28: . ntr - Newton's method with trust region for unconstrained minimization
29: . ntl - Newton's method with trust region, line search for unconstrained minimization
30: . lmvm - Limited memory variable metric method for unconstrained minimization
31: . cg - Nonlinear conjugate gradient method for unconstrained minimization
32: . nm - Nelder-Mead algorithm for derivate-free unconstrained minimization
33: . tron - Newton Trust Region method for bound constrained minimization
34: . gpcg - Newton Trust Region method for quadratic bound constrained minimization
35: . blmvm - Limited memory variable metric method for bound constrained minimization
36: . lcl - Linearly constrained Lagrangian method for pde-constrained minimization
37: - pounders - Model-based algorithm for nonlinear least squares
39: Options Database Keys:
40: . -tao_type - select which method TAO should use
42: Level: beginner
44: .seealso: TaoSolve(), TaoDestroy()
45: @*/
46: PetscErrorCode TaoCreate(MPI_Comm comm, Tao *newtao)
47: {
49: Tao tao;
53: *newtao = NULL;
55: TaoInitializePackage();
56: TaoLineSearchInitializePackage();
58: PetscHeaderCreate(tao,TAO_CLASSID,"Tao","Optimization solver","Tao",comm,TaoDestroy,TaoView);
59: tao->ops->computeobjective=0;
60: tao->ops->computeobjectiveandgradient=0;
61: tao->ops->computegradient=0;
62: tao->ops->computehessian=0;
63: tao->ops->computeseparableobjective=0;
64: tao->ops->computeconstraints=0;
65: tao->ops->computejacobian=0;
66: tao->ops->computejacobianequality=0;
67: tao->ops->computejacobianinequality=0;
68: tao->ops->computeequalityconstraints=0;
69: tao->ops->computeinequalityconstraints=0;
70: tao->ops->convergencetest=TaoDefaultConvergenceTest;
71: tao->ops->convergencedestroy=0;
72: tao->ops->computedual=0;
73: tao->ops->setup=0;
74: tao->ops->solve=0;
75: tao->ops->view=0;
76: tao->ops->setfromoptions=0;
77: tao->ops->destroy=0;
79: tao->solution=NULL;
80: tao->gradient=NULL;
81: tao->sep_objective = NULL;
82: tao->constraints=NULL;
83: tao->constraints_equality=NULL;
84: tao->constraints_inequality=NULL;
85: tao->stepdirection=NULL;
86: tao->niter=0;
87: tao->ntotalits=0;
88: tao->XL = NULL;
89: tao->XU = NULL;
90: tao->IL = NULL;
91: tao->IU = NULL;
92: tao->DI = NULL;
93: tao->DE = NULL;
94: tao->hessian = NULL;
95: tao->hessian_pre = NULL;
96: tao->jacobian = NULL;
97: tao->jacobian_pre = NULL;
98: tao->jacobian_state = NULL;
99: tao->jacobian_state_pre = NULL;
100: tao->jacobian_state_inv = NULL;
101: tao->jacobian_design = NULL;
102: tao->jacobian_design_pre = NULL;
103: tao->jacobian_equality = NULL;
104: tao->jacobian_equality_pre = NULL;
105: tao->jacobian_inequality = NULL;
106: tao->jacobian_inequality_pre = NULL;
107: tao->state_is = NULL;
108: tao->design_is = NULL;
110: tao->max_it = 10000;
111: tao->max_funcs = 10000;
112: #if defined(PETSC_USE_REAL_SINGLE)
113: tao->fatol = 1e-5;
114: tao->frtol = 1e-5;
115: tao->gatol = 1e-5;
116: tao->grtol = 1e-5;
117: #else
118: tao->fatol = 1e-8;
119: tao->frtol = 1e-8;
120: tao->gatol = 1e-8;
121: tao->grtol = 1e-8;
122: #endif
123: tao->crtol = 0.0;
124: tao->catol = 0.0;
125: tao->steptol = 0.0;
126: tao->gttol = 0.0;
127: tao->trust0 = PETSC_INFINITY;
128: tao->fmin = PETSC_NINFINITY;
129: tao->hist_malloc = PETSC_FALSE;
130: tao->hist_reset = PETSC_TRUE;
131: tao->hist_max = 0;
132: tao->hist_len = 0;
133: tao->hist_obj = NULL;
134: tao->hist_resid = NULL;
135: tao->hist_cnorm = NULL;
136: tao->hist_lits = NULL;
138: tao->numbermonitors=0;
139: tao->viewsolution=PETSC_FALSE;
140: tao->viewhessian=PETSC_FALSE;
141: tao->viewgradient=PETSC_FALSE;
142: tao->viewjacobian=PETSC_FALSE;
143: tao->viewconstraints = PETSC_FALSE;
145: /* These flags prevents algorithms from overriding user options */
146: tao->max_it_changed =PETSC_FALSE;
147: tao->max_funcs_changed=PETSC_FALSE;
148: tao->fatol_changed =PETSC_FALSE;
149: tao->frtol_changed =PETSC_FALSE;
150: tao->gatol_changed =PETSC_FALSE;
151: tao->grtol_changed =PETSC_FALSE;
152: tao->gttol_changed =PETSC_FALSE;
153: tao->steptol_changed =PETSC_FALSE;
154: tao->trust0_changed =PETSC_FALSE;
155: tao->fmin_changed =PETSC_FALSE;
156: tao->catol_changed =PETSC_FALSE;
157: tao->crtol_changed =PETSC_FALSE;
158: TaoResetStatistics(tao);
159: *newtao = tao;
160: return(0);
161: }
165: /*@
166: TaoSolve - Solves an optimization problem min F(x) s.t. l <= x <= u
168: Collective on Tao
170: Input Parameters:
171: . tao - the Tao context
173: Notes:
174: The user must set up the Tao with calls to TaoSetInitialVector(),
175: TaoSetObjectiveRoutine(),
176: TaoSetGradientRoutine(), and (if using 2nd order method) TaoSetHessianRoutine().
178: Level: beginner
180: .seealso: TaoCreate(), TaoSetObjectiveRoutine(), TaoSetGradientRoutine(), TaoSetHessianRoutine()
181: @*/
182: PetscErrorCode TaoSolve(Tao tao)
183: {
184: PetscErrorCode ierr;
185: static PetscBool set = PETSC_FALSE;
189: PetscCitationsRegister("@TechReport{tao-user-ref,\n"
190: "title = {Toolkit for Advanced Optimization (TAO) Users Manual},\n"
191: "author = {Todd Munson and Jason Sarich and Stefan Wild and Steve Benson and Lois Curfman McInnes},\n"
192: "Institution = {Argonne National Laboratory},\n"
193: "Year = 2014,\n"
194: "Number = {ANL/MCS-TM-322 - Revision 3.5},\n"
195: "url = {http://www.mcs.anl.gov/tao}\n}\n",&set);
197: TaoSetUp(tao);
198: TaoResetStatistics(tao);
199: if (tao->linesearch) {
200: TaoLineSearchReset(tao->linesearch);
201: }
203: PetscLogEventBegin(Tao_Solve,tao,0,0,0);
204: if (tao->ops->solve){ (*tao->ops->solve)(tao); }
205: PetscLogEventEnd(Tao_Solve,tao,0,0,0);
207: tao->ntotalits += tao->niter;
208: TaoViewFromOptions(tao,NULL,"-tao_view");
210: if (tao->printreason) {
211: if (tao->reason > 0) {
212: PetscPrintf(((PetscObject)tao)->comm,"TAO solve converged due to %s iterations %D\n",TaoConvergedReasons[tao->reason],tao->niter);
213: } else {
214: PetscPrintf(((PetscObject)tao)->comm,"TAO solve did not converge due to %s iteration %D\n",TaoConvergedReasons[tao->reason],tao->niter);
215: }
216: }
217: return(0);
218: }
222: /*@
223: TaoSetUp - Sets up the internal data structures for the later use
224: of a Tao solver
226: Collective on tao
228: Input Parameters:
229: . tao - the TAO context
231: Notes:
232: The user will not need to explicitly call TaoSetUp(), as it will
233: automatically be called in TaoSolve(). However, if the user
234: desires to call it explicitly, it should come after TaoCreate()
235: and any TaoSetSomething() routines, but before TaoSolve().
237: Level: advanced
239: .seealso: TaoCreate(), TaoSolve()
240: @*/
241: PetscErrorCode TaoSetUp(Tao tao)
242: {
247: if (tao->setupcalled) return(0);
249: if (!tao->solution) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TaoSetInitialVector");
250: if (tao->ops->setup) {
251: (*tao->ops->setup)(tao);
252: }
253: tao->setupcalled = PETSC_TRUE;
254: return(0);
255: }
259: /*@
260: TaoDestroy - Destroys the TAO context that was created with
261: TaoCreate()
263: Collective on Tao
265: Input Parameter:
266: . tao - the Tao context
268: Level: beginner
270: .seealso: TaoCreate(), TaoSolve()
271: @*/
272: PetscErrorCode TaoDestroy(Tao *tao)
273: {
277: if (!*tao) return(0);
279: if (--((PetscObject)*tao)->refct > 0) {*tao=0;return(0);}
281: if ((*tao)->ops->destroy) {
282: (*((*tao))->ops->destroy)(*tao);
283: }
284: KSPDestroy(&(*tao)->ksp);
285: TaoLineSearchDestroy(&(*tao)->linesearch);
287: if ((*tao)->ops->convergencedestroy) {
288: (*(*tao)->ops->convergencedestroy)((*tao)->cnvP);
289: if ((*tao)->jacobian_state_inv) {
290: MatDestroy(&(*tao)->jacobian_state_inv);
291: }
292: }
293: VecDestroy(&(*tao)->solution);
294: VecDestroy(&(*tao)->gradient);
296: VecDestroy(&(*tao)->XL);
297: VecDestroy(&(*tao)->XU);
298: VecDestroy(&(*tao)->IL);
299: VecDestroy(&(*tao)->IU);
300: VecDestroy(&(*tao)->DE);
301: VecDestroy(&(*tao)->DI);
302: VecDestroy(&(*tao)->constraints_equality);
303: VecDestroy(&(*tao)->constraints_inequality);
304: VecDestroy(&(*tao)->stepdirection);
305: MatDestroy(&(*tao)->hessian_pre);
306: MatDestroy(&(*tao)->hessian);
307: MatDestroy(&(*tao)->jacobian_pre);
308: MatDestroy(&(*tao)->jacobian);
309: MatDestroy(&(*tao)->jacobian_state_pre);
310: MatDestroy(&(*tao)->jacobian_state);
311: MatDestroy(&(*tao)->jacobian_state_inv);
312: MatDestroy(&(*tao)->jacobian_design);
313: MatDestroy(&(*tao)->jacobian_equality);
314: MatDestroy(&(*tao)->jacobian_equality_pre);
315: MatDestroy(&(*tao)->jacobian_inequality);
316: MatDestroy(&(*tao)->jacobian_inequality_pre);
317: ISDestroy(&(*tao)->state_is);
318: ISDestroy(&(*tao)->design_is);
319: TaoCancelMonitors(*tao);
320: if ((*tao)->hist_malloc) {
321: PetscFree((*tao)->hist_obj);
322: PetscFree((*tao)->hist_resid);
323: PetscFree((*tao)->hist_cnorm);
324: PetscFree((*tao)->hist_lits);
325: }
326: PetscHeaderDestroy(tao);
327: return(0);
328: }
332: /*@
333: TaoSetFromOptions - Sets various Tao parameters from user
334: options.
336: Collective on Tao
338: Input Paremeter:
339: . tao - the Tao solver context
341: options Database Keys:
342: + -tao_type <type> - The algorithm that TAO uses (lmvm, nls, etc.)
343: . -tao_fatol <fatol> - absolute error tolerance in function value
344: . -tao_frtol <frtol> - relative error tolerance in function value
345: . -tao_gatol <gatol> - absolute error tolerance for ||gradient||
346: . -tao_grtol <grtol> - relative error tolerance for ||gradient||
347: . -tao_gttol <gttol> - reduction of ||gradient|| relative to initial gradient
348: . -tao_max_it <max> - sets maximum number of iterations
349: . -tao_max_funcs <max> - sets maximum number of function evaluations
350: . -tao_fmin <fmin> - stop if function value reaches fmin
351: . -tao_steptol <tol> - stop if trust region radius less than <tol>
352: . -tao_trust0 <t> - initial trust region radius
353: . -tao_monitor - prints function value and residual at each iteration
354: . -tao_smonitor - same as tao_monitor, but truncates very small values
355: . -tao_cmonitor - prints function value, residual, and constraint norm at each iteration
356: . -tao_view_solution - prints solution vector at each iteration
357: . -tao_view_separableobjective - prints separable objective vector at each iteration
358: . -tao_view_step - prints step direction vector at each iteration
359: . -tao_view_gradient - prints gradient vector at each iteration
360: . -tao_draw_solution - graphically view solution vector at each iteration
361: . -tao_draw_step - graphically view step vector at each iteration
362: . -tao_draw_gradient - graphically view gradient at each iteration
363: . -tao_fd_gradient - use gradient computed with finite differences
364: . -tao_cancelmonitors - cancels all monitors (except those set with command line)
365: . -tao_view - prints information about the Tao after solving
366: - -tao_converged_reason - prints the reason TAO stopped iterating
368: Notes:
369: To see all options, run your program with the -help option or consult the
370: user's manual. Should be called after TaoCreate() but before TaoSolve()
372: Level: beginner
373: @*/
374: PetscErrorCode TaoSetFromOptions(Tao tao)
375: {
377: const TaoType default_type = TAOLMVM;
378: const char *prefix;
379: char type[256], monfilename[PETSC_MAX_PATH_LEN];
380: PetscViewer monviewer;
381: PetscBool flg;
382: MPI_Comm comm;
386: PetscObjectGetComm((PetscObject)tao,&comm);
387: TaoGetOptionsPrefix(tao,&prefix);
388: /* So no warnings are given about unused options */
389: PetscOptionsHasName(prefix,"-tao_ls_type",&flg);
391: PetscObjectOptionsBegin((PetscObject)tao);
392: {
393: TaoRegisterAll();
394: if (((PetscObject)tao)->type_name) {
395: default_type = ((PetscObject)tao)->type_name;
396: }
397: /* Check for type from options */
398: PetscOptionsFList("-tao_type","Tao Solver type","TaoSetType",TaoList,default_type,type,256,&flg);
399: if (flg) {
400: TaoSetType(tao,type);
401: } else if (!((PetscObject)tao)->type_name) {
402: TaoSetType(tao,default_type);
403: }
405: PetscOptionsReal("-tao_fatol","Stop if solution within","TaoSetTolerances",tao->fatol,&tao->fatol,&flg);
406: if (flg) tao->fatol_changed=PETSC_TRUE;
407: PetscOptionsReal("-tao_frtol","Stop if relative solution within","TaoSetTolerances",tao->frtol,&tao->frtol,&flg);
408: if (flg) tao->frtol_changed=PETSC_TRUE;
409: PetscOptionsReal("-tao_catol","Stop if constraints violations within","TaoSetConstraintTolerances",tao->catol,&tao->catol,&flg);
410: if (flg) tao->catol_changed=PETSC_TRUE;
411: PetscOptionsReal("-tao_crtol","Stop if relative contraint violations within","TaoSetConstraintTolerances",tao->crtol,&tao->crtol,&flg);
412: if (flg) tao->crtol_changed=PETSC_TRUE;
413: PetscOptionsReal("-tao_gatol","Stop if norm of gradient less than","TaoSetTolerances",tao->gatol,&tao->gatol,&flg);
414: if (flg) tao->gatol_changed=PETSC_TRUE;
415: PetscOptionsReal("-tao_grtol","Stop if norm of gradient divided by the function value is less than","TaoSetTolerances",tao->grtol,&tao->grtol,&flg);
416: if (flg) tao->grtol_changed=PETSC_TRUE;
417: PetscOptionsReal("-tao_gttol","Stop if the norm of the gradient is less than the norm of the initial gradient times tol","TaoSetTolerances",tao->gttol,&tao->gttol,&flg);
418: if (flg) tao->gttol_changed=PETSC_TRUE;
419: PetscOptionsInt("-tao_max_it","Stop if iteration number exceeds","TaoSetMaximumIterations",tao->max_it,&tao->max_it,&flg);
420: if (flg) tao->max_it_changed=PETSC_TRUE;
421: PetscOptionsInt("-tao_max_funcs","Stop if number of function evaluations exceeds","TaoSetMaximumFunctionEvaluations",tao->max_funcs,&tao->max_funcs,&flg);
422: if (flg) tao->max_funcs_changed=PETSC_TRUE;
423: PetscOptionsReal("-tao_fmin","Stop if function less than","TaoSetFunctionLowerBound",tao->fmin,&tao->fmin,&flg);
424: if (flg) tao->fmin_changed=PETSC_TRUE;
425: PetscOptionsReal("-tao_steptol","Stop if step size or trust region radius less than","",tao->steptol,&tao->steptol,&flg);
426: if (flg) tao->steptol_changed=PETSC_TRUE;
427: PetscOptionsReal("-tao_trust0","Initial trust region radius","TaoSetTrustRegionRadius",tao->trust0,&tao->trust0,&flg);
428: if (flg) tao->trust0_changed=PETSC_TRUE;
429: PetscOptionsString("-tao_view_solution","view solution vector after each evaluation","TaoSetMonitor","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
430: if (flg) {
431: PetscViewerASCIIOpen(comm,monfilename,&monviewer);
432: TaoSetMonitor(tao,TaoSolutionMonitor,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
433: }
435: PetscOptionsBool("-tao_converged_reason","Print reason for TAO converged","TaoSolve",tao->printreason,&tao->printreason,NULL);
436: PetscOptionsString("-tao_view_gradient","view gradient vector after each evaluation","TaoSetMonitor","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
437: if (flg) {
438: PetscViewerASCIIOpen(comm,monfilename,&monviewer);
439: TaoSetMonitor(tao,TaoGradientMonitor,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
440: }
442: PetscOptionsString("-tao_view_stepdirection","view step direction vector after each iteration","TaoSetMonitor","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
443: if (flg) {
444: PetscViewerASCIIOpen(comm,monfilename,&monviewer);
445: TaoSetMonitor(tao,TaoStepDirectionMonitor,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
446: }
448: PetscOptionsString("-tao_view_separableobjective","view separable objective vector after each evaluation","TaoSetMonitor","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
449: if (flg) {
450: PetscViewerASCIIOpen(comm,monfilename,&monviewer);
451: TaoSetMonitor(tao,TaoSeparableObjectiveMonitor,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
452: }
454: PetscOptionsString("-tao_monitor","Use the default convergence monitor","TaoSetMonitor","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
455: if (flg) {
456: PetscViewerASCIIOpen(comm,monfilename,&monviewer);
457: TaoSetMonitor(tao,TaoDefaultMonitor,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
458: }
460: PetscOptionsString("-tao_smonitor","Use the short convergence monitor","TaoSetMonitor","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
461: if (flg) {
462: PetscViewerASCIIOpen(comm,monfilename,&monviewer);
463: TaoSetMonitor(tao,TaoDefaultSMonitor,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
464: }
466: PetscOptionsString("-tao_cmonitor","Use the default convergence monitor with constraint norm","TaoSetMonitor","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
467: if (flg) {
468: PetscViewerASCIIOpen(comm,monfilename,&monviewer);
469: TaoSetMonitor(tao,TaoDefaultCMonitor,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
470: }
473: flg = PETSC_FALSE;
474: PetscOptionsBool("-tao_cancelmonitors","cancel all monitors and call any registered destroy routines","TaoCancelMonitors",flg,&flg,NULL);
475: if (flg) {TaoCancelMonitors(tao);}
477: flg = PETSC_FALSE;
478: PetscOptionsBool("-tao_draw_solution","Plot solution vector at each iteration","TaoSetMonitor",flg,&flg,NULL);
479: if (flg) {
480: TaoSetMonitor(tao,TaoDrawSolutionMonitor,NULL,NULL);
481: }
483: flg = PETSC_FALSE;
484: PetscOptionsBool("-tao_draw_step","plots step direction at each iteration","TaoSetMonitor",flg,&flg,NULL);
485: if (flg) {
486: TaoSetMonitor(tao,TaoDrawStepMonitor,NULL,NULL);
487: }
489: flg = PETSC_FALSE;
490: PetscOptionsBool("-tao_draw_gradient","plots gradient at each iteration","TaoSetMonitor",flg,&flg,NULL);
491: if (flg) {
492: TaoSetMonitor(tao,TaoDrawGradientMonitor,NULL,NULL);
493: }
494: flg = PETSC_FALSE;
495: PetscOptionsBool("-tao_fd_gradient","compute gradient using finite differences","TaoDefaultComputeGradient",flg,&flg,NULL);
496: if (flg) {
497: TaoSetGradientRoutine(tao,TaoDefaultComputeGradient,NULL);
498: }
499: PetscOptionsEnum("-tao_subset_type","subset type", "", TaoSubSetTypes,(PetscEnum)tao->subset_type, (PetscEnum*)&tao->subset_type, 0);
501: if (tao->ops->setfromoptions) {
502: (*tao->ops->setfromoptions)(PetscOptionsObject,tao);
503: }
504: }
505: PetscOptionsEnd();
506: return(0);
507: }
511: /*@C
512: TaoView - Prints information about the Tao
514: Collective on Tao
516: InputParameters:
517: + tao - the Tao context
518: - viewer - visualization context
520: Options Database Key:
521: . -tao_view - Calls TaoView() at the end of TaoSolve()
523: Notes:
524: The available visualization contexts include
525: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
526: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
527: output where only the first processor opens
528: the file. All other processors send their
529: data to the first processor to print.
531: Level: beginner
533: .seealso: PetscViewerASCIIOpen()
534: @*/
535: PetscErrorCode TaoView(Tao tao, PetscViewer viewer)
536: {
537: PetscErrorCode ierr;
538: PetscBool isascii,isstring;
539: const TaoType type;
543: if (!viewer) {
544: PetscViewerASCIIGetStdout(((PetscObject)tao)->comm,&viewer);
545: }
549: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii);
550: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
551: if (isascii) {
552: PetscObjectPrintClassNamePrefixType((PetscObject)tao,viewer);
553: PetscViewerASCIIPushTab(viewer);
555: if (tao->ops->view) {
556: PetscViewerASCIIPushTab(viewer);
557: (*tao->ops->view)(tao,viewer);
558: PetscViewerASCIIPopTab(viewer);
559: }
560: if (tao->linesearch) {
561: PetscObjectPrintClassNamePrefixType((PetscObject)(tao->linesearch),viewer);
562: }
563: if (tao->ksp) {
564: PetscObjectPrintClassNamePrefixType((PetscObject)(tao->ksp),viewer);
565: PetscViewerASCIIPrintf(viewer,"total KSP iterations: %D\n",tao->ksp_tot_its);
566: }
567: if (tao->XL || tao->XU) {
568: PetscViewerASCIIPrintf(viewer,"Active Set subset type: %s\n",TaoSubSetTypes[tao->subset_type]);
569: }
571: ierr=PetscViewerASCIIPrintf(viewer,"convergence tolerances: fatol=%g,",(double)tao->fatol);
572: ierr=PetscViewerASCIIPrintf(viewer," frtol=%g\n",(double)tao->frtol);
574: ierr=PetscViewerASCIIPrintf(viewer,"convergence tolerances: gatol=%g,",(double)tao->gatol);
575: ierr=PetscViewerASCIIPrintf(viewer," steptol=%g,",(double)tao->steptol);
576: ierr=PetscViewerASCIIPrintf(viewer," gttol=%g\n",(double)tao->gttol);
578: PetscViewerASCIIPrintf(viewer,"Residual in Function/Gradient:=%g\n",(double)tao->residual);
580: if (tao->cnorm>0 || tao->catol>0 || tao->crtol>0){
581: ierr=PetscViewerASCIIPrintf(viewer,"convergence tolerances:");
582: ierr=PetscViewerASCIIPrintf(viewer," catol=%g,",(double)tao->catol);
583: ierr=PetscViewerASCIIPrintf(viewer," crtol=%g\n",(double)tao->crtol);
584: PetscViewerASCIIPrintf(viewer,"Residual in Constraints:=%g\n",(double)tao->cnorm);
585: }
587: if (tao->trust < tao->steptol){
588: ierr=PetscViewerASCIIPrintf(viewer,"convergence tolerances: steptol=%g\n",(double)tao->steptol);
589: ierr=PetscViewerASCIIPrintf(viewer,"Final trust region radius:=%g\n",(double)tao->trust);
590: }
592: if (tao->fmin>-1.e25){
593: ierr=PetscViewerASCIIPrintf(viewer,"convergence tolerances: function minimum=%g\n",(double)tao->fmin);
594: }
595: PetscViewerASCIIPrintf(viewer,"Objective value=%g\n",(double)tao->fc);
597: PetscViewerASCIIPrintf(viewer,"total number of iterations=%D, ",tao->niter);
598: PetscViewerASCIIPrintf(viewer," (max: %D)\n",tao->max_it);
600: if (tao->nfuncs>0){
601: PetscViewerASCIIPrintf(viewer,"total number of function evaluations=%D,",tao->nfuncs);
602: PetscViewerASCIIPrintf(viewer," max: %D\n",tao->max_funcs);
603: }
604: if (tao->ngrads>0){
605: PetscViewerASCIIPrintf(viewer,"total number of gradient evaluations=%D,",tao->ngrads);
606: PetscViewerASCIIPrintf(viewer," max: %D\n",tao->max_funcs);
607: }
608: if (tao->nfuncgrads>0){
609: PetscViewerASCIIPrintf(viewer,"total number of function/gradient evaluations=%D,",tao->nfuncgrads);
610: PetscViewerASCIIPrintf(viewer," (max: %D)\n",tao->max_funcs);
611: }
612: if (tao->nhess>0){
613: PetscViewerASCIIPrintf(viewer,"total number of Hessian evaluations=%D\n",tao->nhess);
614: }
615: /* if (tao->linear_its>0){
616: PetscViewerASCIIPrintf(viewer," total Krylov method iterations=%D\n",tao->linear_its);
617: }*/
618: if (tao->nconstraints>0){
619: PetscViewerASCIIPrintf(viewer,"total number of constraint function evaluations=%D\n",tao->nconstraints);
620: }
621: if (tao->njac>0){
622: PetscViewerASCIIPrintf(viewer,"total number of Jacobian evaluations=%D\n",tao->njac);
623: }
625: if (tao->reason>0){
626: PetscViewerASCIIPrintf(viewer, "Solution converged: ");
627: switch (tao->reason) {
628: case TAO_CONVERGED_FATOL:
629: PetscViewerASCIIPrintf(viewer,"estimated f(x)-f(X*) <= fatol\n");
630: break;
631: case TAO_CONVERGED_FRTOL:
632: PetscViewerASCIIPrintf(viewer,"estimated |f(x)-f(X*)|/|f(X*)| <= frtol\n");
633: break;
634: case TAO_CONVERGED_GATOL:
635: PetscViewerASCIIPrintf(viewer," ||g(X)|| <= gatol\n");
636: break;
637: case TAO_CONVERGED_GRTOL:
638: PetscViewerASCIIPrintf(viewer," ||g(X)||/|f(X)| <= grtol\n");
639: break;
640: case TAO_CONVERGED_GTTOL:
641: PetscViewerASCIIPrintf(viewer," ||g(X)||/||g(X0)|| <= gttol\n");
642: break;
643: case TAO_CONVERGED_STEPTOL:
644: PetscViewerASCIIPrintf(viewer," Steptol -- step size small\n");
645: break;
646: case TAO_CONVERGED_MINF:
647: PetscViewerASCIIPrintf(viewer," Minf -- f < fmin\n");
648: break;
649: case TAO_CONVERGED_USER:
650: PetscViewerASCIIPrintf(viewer," User Terminated\n");
651: break;
652: default:
653: PetscViewerASCIIPrintf(viewer,"\n");
654: break;
655: }
657: } else {
658: PetscViewerASCIIPrintf(viewer,"Solver terminated: %D",tao->reason);
659: switch (tao->reason) {
660: case TAO_DIVERGED_MAXITS:
661: PetscViewerASCIIPrintf(viewer," Maximum Iterations\n");
662: break;
663: case TAO_DIVERGED_NAN:
664: PetscViewerASCIIPrintf(viewer," NAN or Inf encountered\n");
665: break;
666: case TAO_DIVERGED_MAXFCN:
667: PetscViewerASCIIPrintf(viewer," Maximum Function Evaluations\n");
668: break;
669: case TAO_DIVERGED_LS_FAILURE:
670: PetscViewerASCIIPrintf(viewer," Line Search Failure\n");
671: break;
672: case TAO_DIVERGED_TR_REDUCTION:
673: PetscViewerASCIIPrintf(viewer," Trust Region too small\n");
674: break;
675: case TAO_DIVERGED_USER:
676: PetscViewerASCIIPrintf(viewer," User Terminated\n");
677: break;
678: default:
679: PetscViewerASCIIPrintf(viewer,"\n");
680: break;
681: }
682: }
683: PetscViewerASCIIPopTab(viewer);
684: } else if (isstring) {
685: TaoGetType(tao,&type);
686: PetscViewerStringSPrintf(viewer," %-3.3s",type);
687: }
688: return(0);
689: }
693: /*@
694: TaoSetTolerances - Sets parameters used in TAO convergence tests
696: Logically collective on Tao
698: Input Parameters:
699: + tao - the Tao context
700: . fatol - absolute convergence tolerance
701: . frtol - relative convergence tolerance
702: . gatol - stop if norm of gradient is less than this
703: . grtol - stop if relative norm of gradient is less than this
704: - gttol - stop if norm of gradient is reduced by this factor
706: Options Database Keys:
707: + -tao_fatol <fatol> - Sets fatol
708: . -tao_frtol <frtol> - Sets frtol
709: . -tao_gatol <gatol> - Sets gatol
710: . -tao_grtol <grtol> - Sets grtol
711: - -tao_gttol <gttol> - Sets gttol
713: Stopping Criteria:
714: $ f(X) - f(X*) (estimated) <= fatol
715: $ |f(X) - f(X*)| (estimated) / |f(X)| <= frtol
716: $ ||g(X)|| <= gatol
717: $ ||g(X)|| / |f(X)| <= grtol
718: $ ||g(X)|| / ||g(X0)|| <= gttol
720: Notes:
721: Use PETSC_DEFAULT to leave one or more tolerances unchanged.
723: Level: beginner
725: .seealso: TaoGetTolerances()
727: @*/
728: PetscErrorCode TaoSetTolerances(Tao tao, PetscReal fatol, PetscReal frtol, PetscReal gatol, PetscReal grtol, PetscReal gttol)
729: {
735: if (fatol != PETSC_DEFAULT) {
736: if (fatol<0) {
737: PetscInfo(tao,"Tried to set negative fatol -- ignored.\n");
738: } else {
739: tao->fatol = PetscMax(0,fatol);
740: tao->fatol_changed=PETSC_TRUE;
741: }
742: }
743: if (frtol != PETSC_DEFAULT) {
744: if (frtol<0) {
745: PetscInfo(tao,"Tried to set negative frtol -- ignored.\n");
746: } else {
747: tao->frtol = PetscMax(0,frtol);
748: tao->frtol_changed=PETSC_TRUE;
749: }
750: }
752: if (gatol != PETSC_DEFAULT) {
753: if (gatol<0) {
754: PetscInfo(tao,"Tried to set negative gatol -- ignored.\n");
755: } else {
756: tao->gatol = PetscMax(0,gatol);
757: tao->gatol_changed=PETSC_TRUE;
758: }
759: }
761: if (grtol != PETSC_DEFAULT) {
762: if (grtol<0) {
763: PetscInfo(tao,"Tried to set negative grtol -- ignored.\n");
764: } else {
765: tao->grtol = PetscMax(0,grtol);
766: tao->grtol_changed=PETSC_TRUE;
767: }
768: }
770: if (gttol != PETSC_DEFAULT) {
771: if (gttol<0) {
772: PetscInfo(tao,"Tried to set negative gttol -- ignored.\n");
773: } else {
774: tao->gttol = PetscMax(0,gttol);
775: tao->gttol_changed=PETSC_TRUE;
776: }
777: }
778: return(0);
779: }
783: /*@
784: TaoSetConstraintTolerances - Sets constraint tolerance parameters used in TAO convergence tests
786: Logically collective on Tao
788: Input Parameters:
789: + tao - the Tao context
790: . catol - absolute constraint tolerance, constraint norm must be less than catol for used for fatol, gatol convergence criteria
791: - crtol - relative contraint tolerance, constraint norm must be less than crtol for used for fatol, gatol, gttol convergence criteria
793: Options Database Keys:
794: + -tao_catol <catol> - Sets catol
795: - -tao_crtol <crtol> - Sets crtol
797: Notes:
798: Use PETSC_DEFAULT to leave any tolerance unchanged.
800: Level: intermediate
802: .seealso: TaoGetTolerances(), TaoGetConstraintTolerances(), TaoSetTolerances()
804: @*/
805: PetscErrorCode TaoSetConstraintTolerances(Tao tao, PetscReal catol, PetscReal crtol)
806: {
812: if (catol != PETSC_DEFAULT) {
813: if (catol<0) {
814: PetscInfo(tao,"Tried to set negative catol -- ignored.\n");
815: } else {
816: tao->catol = PetscMax(0,catol);
817: tao->catol_changed=PETSC_TRUE;
818: }
819: }
821: if (crtol != PETSC_DEFAULT) {
822: if (crtol<0) {
823: PetscInfo(tao,"Tried to set negative crtol -- ignored.\n");
824: } else {
825: tao->crtol = PetscMax(0,crtol);
826: tao->crtol_changed=PETSC_TRUE;
827: }
828: }
829: return(0);
830: }
834: /*@
835: TaoGetConstraintTolerances - Gets constraint tolerance parameters used in TAO convergence tests
837: Not ollective
839: Input Parameter:
840: . tao - the Tao context
842: Output Parameter:
843: + catol - absolute constraint tolerance, constraint norm must be less than catol for used for fatol, gatol convergence criteria
844: - crtol - relative contraint tolerance, constraint norm must be less than crtol for used for fatol, gatol, gttol convergence criteria
846: Level: intermediate
848: .seealso: TaoGetTolerances(), TaoSetTolerances(), TaoSetConstraintTolerances()
850: @*/
851: PetscErrorCode TaoGetConstraintTolerances(Tao tao, PetscReal *catol, PetscReal *crtol)
852: {
855: if (catol) *catol = tao->catol;
856: if (crtol) *crtol = tao->crtol;
857: return(0);
858: }
862: /*@
863: TaoSetFunctionLowerBound - Sets a bound on the solution objective value.
864: When an approximate solution with an objective value below this number
865: has been found, the solver will terminate.
867: Logically Collective on Tao
869: Input Parameters:
870: + tao - the Tao solver context
871: - fmin - the tolerance
873: Options Database Keys:
874: . -tao_fmin <fmin> - sets the minimum function value
876: Level: intermediate
878: .seealso: TaoSetTolerances()
879: @*/
880: PetscErrorCode TaoSetFunctionLowerBound(Tao tao,PetscReal fmin)
881: {
884: tao->fmin = fmin;
885: tao->fmin_changed=PETSC_TRUE;
886: return(0);
887: }
891: /*@
892: TaoGetFunctionLowerBound - Gets the bound on the solution objective value.
893: When an approximate solution with an objective value below this number
894: has been found, the solver will terminate.
896: Not collective on Tao
898: Input Parameters:
899: . tao - the Tao solver context
901: OutputParameters:
902: . fmin - the minimum function value
904: Level: intermediate
906: .seealso: TaoSetFunctionLowerBound()
907: @*/
908: PetscErrorCode TaoGetFunctionLowerBound(Tao tao,PetscReal *fmin)
909: {
912: *fmin = tao->fmin;
913: return(0);
914: }
918: /*@
919: TaoSetMaximumFunctionEvaluations - Sets a maximum number of
920: function evaluations.
922: Logically Collective on Tao
924: Input Parameters:
925: + tao - the Tao solver context
926: - nfcn - the maximum number of function evaluations (>=0)
928: Options Database Keys:
929: . -tao_max_funcs <nfcn> - sets the maximum number of function evaluations
931: Level: intermediate
933: .seealso: TaoSetTolerances(), TaoSetMaximumIterations()
934: @*/
936: PetscErrorCode TaoSetMaximumFunctionEvaluations(Tao tao,PetscInt nfcn)
937: {
940: tao->max_funcs = PetscMax(0,nfcn);
941: tao->max_funcs_changed=PETSC_TRUE;
942: return(0);
943: }
947: /*@
948: TaoGetMaximumFunctionEvaluations - Sets a maximum number of
949: function evaluations.
951: Not Collective
953: Input Parameters:
954: . tao - the Tao solver context
956: Output Parameters:
957: . nfcn - the maximum number of function evaluations
959: Level: intermediate
961: .seealso: TaoSetMaximumFunctionEvaluations(), TaoGetMaximumIterations()
962: @*/
964: PetscErrorCode TaoGetMaximumFunctionEvaluations(Tao tao,PetscInt *nfcn)
965: {
968: *nfcn = tao->max_funcs;
969: return(0);
970: }
974: /*@
975: TaoGetCurrentFunctionEvaluations - Get current number of
976: function evaluations.
978: Not Collective
980: Input Parameters:
981: . tao - the Tao solver context
983: Output Parameters:
984: . nfuncs - the current number of function evaluations
986: Level: intermediate
988: .seealso: TaoSetMaximumFunctionEvaluations(), TaoGetMaximumFunctionEvaluations(), TaoGetMaximumIterations()
989: @*/
991: PetscErrorCode TaoGetCurrentFunctionEvaluations(Tao tao,PetscInt *nfuncs)
992: {
995: *nfuncs=PetscMax(tao->nfuncs,tao->nfuncgrads);
996: return(0);
997: }
1001: /*@
1002: TaoSetMaximumIterations - Sets a maximum number of iterates.
1004: Logically Collective on Tao
1006: Input Parameters:
1007: + tao - the Tao solver context
1008: - maxits - the maximum number of iterates (>=0)
1010: Options Database Keys:
1011: . -tao_max_it <its> - sets the maximum number of iterations
1013: Level: intermediate
1015: .seealso: TaoSetTolerances(), TaoSetMaximumFunctionEvaluations()
1016: @*/
1017: PetscErrorCode TaoSetMaximumIterations(Tao tao,PetscInt maxits)
1018: {
1021: tao->max_it = PetscMax(0,maxits);
1022: tao->max_it_changed=PETSC_TRUE;
1023: return(0);
1024: }
1028: /*@
1029: TaoGetMaximumIterations - Sets a maximum number of iterates.
1031: Not Collective
1033: Input Parameters:
1034: . tao - the Tao solver context
1036: Output Parameters:
1037: . maxits - the maximum number of iterates
1039: Level: intermediate
1041: .seealso: TaoSetMaximumIterations(), TaoGetMaximumFunctionEvaluations()
1042: @*/
1043: PetscErrorCode TaoGetMaximumIterations(Tao tao,PetscInt *maxits)
1044: {
1047: *maxits = tao->max_it;
1048: return(0);
1049: }
1053: /*@
1054: TaoSetInitialTrustRegionRadius - Sets the initial trust region radius.
1056: Logically collective on Tao
1058: Input Parameter:
1059: + tao - a TAO optimization solver
1060: - radius - the trust region radius
1062: Level: intermediate
1064: Options Database Key:
1065: . -tao_trust0 <t0> - sets initial trust region radius
1067: .seealso: TaoGetTrustRegionRadius(), TaoSetTrustRegionTolerance()
1068: @*/
1069: PetscErrorCode TaoSetInitialTrustRegionRadius(Tao tao, PetscReal radius)
1070: {
1073: tao->trust0 = PetscMax(0.0,radius);
1074: tao->trust0_changed=PETSC_TRUE;
1075: return(0);
1076: }
1080: /*@
1081: TaoGetInitialTrustRegionRadius - Sets the initial trust region radius.
1083: Not Collective
1085: Input Parameter:
1086: . tao - a TAO optimization solver
1088: Output Parameter:
1089: . radius - the trust region radius
1091: Level: intermediate
1093: .seealso: TaoSetInitialTrustRegionRadius(), TaoGetCurrentTrustRegionRadius()
1094: @*/
1095: PetscErrorCode TaoGetInitialTrustRegionRadius(Tao tao, PetscReal *radius)
1096: {
1099: *radius = tao->trust0;
1100: return(0);
1101: }
1105: /*@
1106: TaoGetCurrentTrustRegionRadius - Gets the current trust region radius.
1108: Not Collective
1110: Input Parameter:
1111: . tao - a TAO optimization solver
1113: Output Parameter:
1114: . radius - the trust region radius
1116: Level: intermediate
1118: .seealso: TaoSetInitialTrustRegionRadius(), TaoGetInitialTrustRegionRadius()
1119: @*/
1120: PetscErrorCode TaoGetCurrentTrustRegionRadius(Tao tao, PetscReal *radius)
1121: {
1124: *radius = tao->trust;
1125: return(0);
1126: }
1130: /*@
1131: TaoGetTolerances - gets the current values of tolerances
1133: Not Collective
1135: Input Parameters:
1136: . tao - the Tao context
1138: Output Parameters:
1139: + fatol - absolute convergence tolerance
1140: . frtol - relative convergence tolerance
1141: . gatol - stop if norm of gradient is less than this
1142: . grtol - stop if relative norm of gradient is less than this
1143: - gttol - stop if norm of gradient is reduced by a this factor
1145: Note: NULL can be used as an argument if not all tolerances values are needed
1147: .seealso TaoSetTolerances()
1149: Level: intermediate
1150: @*/
1151: PetscErrorCode TaoGetTolerances(Tao tao, PetscReal *fatol, PetscReal *frtol, PetscReal *gatol, PetscReal *grtol, PetscReal *gttol)
1152: {
1155: if (fatol) *fatol=tao->fatol;
1156: if (frtol) *frtol=tao->frtol;
1157: if (gatol) *gatol=tao->gatol;
1158: if (grtol) *grtol=tao->grtol;
1159: if (gttol) *gttol=tao->gttol;
1160: return(0);
1161: }
1165: /*@
1166: TaoGetKSP - Gets the linear solver used by the optimization solver.
1167: Application writers should use TaoGetKSP if they need direct access
1168: to the PETSc KSP object.
1170: Not Collective
1172: Input Parameters:
1173: . tao - the TAO solver
1175: Output Parameters:
1176: . ksp - the KSP linear solver used in the optimization solver
1178: Level: intermediate
1180: @*/
1181: PetscErrorCode TaoGetKSP(Tao tao, KSP *ksp)
1182: {
1184: *ksp = tao->ksp;
1185: return(0);
1186: }
1190: /*@
1191: TaoGetLinearSolveIterations - Gets the total number of linear iterations
1192: used by the TAO solver
1194: Not Collective
1196: Input Parameter:
1197: . tao - TAO context
1199: Output Parameter:
1200: . lits - number of linear iterations
1202: Notes:
1203: This counter is reset to zero for each successive call to TaoSolve()
1205: Level: intermediate
1207: .keywords: TAO
1209: .seealso: TaoGetKSP()
1210: @*/
1211: PetscErrorCode TaoGetLinearSolveIterations(Tao tao,PetscInt *lits)
1212: {
1216: *lits = tao->ksp_tot_its;
1217: return(0);
1218: }
1222: /*@
1223: TaoGetLineSearch - Gets the line search used by the optimization solver.
1224: Application writers should use TaoGetLineSearch if they need direct access
1225: to the TaoLineSearch object.
1227: Not Collective
1229: Input Parameters:
1230: . tao - the TAO solver
1232: Output Parameters:
1233: . ls - the line search used in the optimization solver
1235: Level: intermediate
1237: @*/
1238: PetscErrorCode TaoGetLineSearch(Tao tao, TaoLineSearch *ls)
1239: {
1241: *ls = tao->linesearch;
1242: return(0);
1243: }
1247: /*@
1248: TaoAddLineSearchCounts - Adds the number of function evaluations spent
1249: in the line search to the running total.
1251: Input Parameters:
1252: + tao - the TAO solver
1253: - ls - the line search used in the optimization solver
1255: Level: developer
1257: .seealso: TaoLineSearchApply()
1258: @*/
1259: PetscErrorCode TaoAddLineSearchCounts(Tao tao)
1260: {
1262: PetscBool flg;
1263: PetscInt nfeval,ngeval,nfgeval;
1267: if (tao->linesearch) {
1268: TaoLineSearchIsUsingTaoRoutines(tao->linesearch,&flg);
1269: if (!flg) {
1270: TaoLineSearchGetNumberFunctionEvaluations(tao->linesearch,&nfeval,&ngeval,&nfgeval);
1271: tao->nfuncs+=nfeval;
1272: tao->ngrads+=ngeval;
1273: tao->nfuncgrads+=nfgeval;
1274: }
1275: }
1276: return(0);
1277: }
1281: /*@
1282: TaoGetSolutionVector - Returns the vector with the current TAO solution
1284: Not Collective
1286: Input Parameter:
1287: . tao - the Tao context
1289: Output Parameter:
1290: . X - the current solution
1292: Level: intermediate
1294: Note: The returned vector will be the same object that was passed into TaoSetInitialVector()
1295: @*/
1296: PetscErrorCode TaoGetSolutionVector(Tao tao, Vec *X)
1297: {
1300: *X = tao->solution;
1301: return(0);
1302: }
1306: /*@
1307: TaoGetGradientVector - Returns the vector with the current TAO gradient
1309: Not Collective
1311: Input Parameter:
1312: . tao - the Tao context
1314: Output Parameter:
1315: . G - the current solution
1317: Level: intermediate
1318: @*/
1319: PetscErrorCode TaoGetGradientVector(Tao tao, Vec *G)
1320: {
1323: *G = tao->gradient;
1324: return(0);
1325: }
1329: /*@
1330: TaoResetStatistics - Initialize the statistics used by TAO for all of the solvers.
1331: These statistics include the iteration number, residual norms, and convergence status.
1332: This routine gets called before solving each optimization problem.
1334: Collective on Tao
1336: Input Parameters:
1337: . solver - the Tao context
1339: Level: developer
1341: .seealso: TaoCreate(), TaoSolve()
1342: @*/
1343: PetscErrorCode TaoResetStatistics(Tao tao)
1344: {
1347: tao->niter = 0;
1348: tao->nfuncs = 0;
1349: tao->nfuncgrads = 0;
1350: tao->ngrads = 0;
1351: tao->nhess = 0;
1352: tao->njac = 0;
1353: tao->nconstraints = 0;
1354: tao->ksp_its = 0;
1355: tao->ksp_tot_its = 0;
1356: tao->reason = TAO_CONTINUE_ITERATING;
1357: tao->residual = 0.0;
1358: tao->cnorm = 0.0;
1359: tao->step = 0.0;
1360: tao->lsflag = PETSC_FALSE;
1361: if (tao->hist_reset) tao->hist_len=0;
1362: return(0);
1363: }
1367: /*@C
1368: TaoSetConvergenceTest - Sets the function that is to be used to test
1369: for convergence o fthe iterative minimization solution. The new convergence
1370: testing routine will replace TAO's default convergence test.
1372: Logically Collective on Tao
1374: Input Parameters:
1375: + tao - the Tao object
1376: . conv - the routine to test for convergence
1377: - ctx - [optional] context for private data for the convergence routine
1378: (may be NULL)
1380: Calling sequence of conv:
1381: $ PetscErrorCode conv(Tao tao, void *ctx)
1383: + tao - the Tao object
1384: - ctx - [optional] convergence context
1386: Note: The new convergence testing routine should call TaoSetConvergedReason().
1388: Level: advanced
1390: .seealso: TaoSetConvergedReason(), TaoGetSolutionStatus(), TaoGetTolerances(), TaoSetMonitor
1392: @*/
1393: PetscErrorCode TaoSetConvergenceTest(Tao tao, PetscErrorCode (*conv)(Tao,void*), void *ctx)
1394: {
1397: (tao)->ops->convergencetest = conv;
1398: (tao)->cnvP = ctx;
1399: return(0);
1400: }
1404: /*@C
1405: TaoSetMonitor - Sets an ADDITIONAL function that is to be used at every
1406: iteration of the solver to display the iteration's
1407: progress.
1409: Logically Collective on Tao
1411: Input Parameters:
1412: + tao - the Tao solver context
1413: . mymonitor - monitoring routine
1414: - mctx - [optional] user-defined context for private data for the
1415: monitor routine (may be NULL)
1417: Calling sequence of mymonitor:
1418: $ int mymonitor(Tao tao,void *mctx)
1420: + tao - the Tao solver context
1421: - mctx - [optional] monitoring context
1424: Options Database Keys:
1425: + -tao_monitor - sets TaoDefaultMonitor()
1426: . -tao_smonitor - sets short monitor
1427: . -tao_cmonitor - same as smonitor plus constraint norm
1428: . -tao_view_solution - view solution at each iteration
1429: . -tao_view_gradient - view gradient at each iteration
1430: . -tao_view_separableobjective - view separable objective function at each iteration
1431: - -tao_cancelmonitors - cancels all monitors that have been hardwired into a code by calls to TaoSetMonitor(), but does not cancel those set via the options database.
1434: Notes:
1435: Several different monitoring routines may be set by calling
1436: TaoSetMonitor() multiple times; all will be called in the
1437: order in which they were set.
1439: Fortran Notes: Only one monitor function may be set
1441: Level: intermediate
1443: .seealso: TaoDefaultMonitor(), TaoCancelMonitors(), TaoSetDestroyRoutine()
1444: @*/
1445: PetscErrorCode TaoSetMonitor(Tao tao, PetscErrorCode (*func)(Tao, void*), void *ctx,PetscErrorCode (*dest)(void**))
1446: {
1448: PetscInt i;
1452: if (tao->numbermonitors >= MAXTAOMONITORS) SETERRQ1(PETSC_COMM_SELF,1,"Cannot attach another monitor -- max=",MAXTAOMONITORS);
1454: for (i=0; i<tao->numbermonitors;i++) {
1455: if (func == tao->monitor[i] && dest == tao->monitordestroy[i] && ctx == tao->monitorcontext[i]) {
1456: if (dest) {
1457: (*dest)(&ctx);
1458: }
1459: return(0);
1460: }
1461: }
1462: tao->monitor[tao->numbermonitors] = func;
1463: tao->monitorcontext[tao->numbermonitors] = ctx;
1464: tao->monitordestroy[tao->numbermonitors] = dest;
1465: ++tao->numbermonitors;
1466: return(0);
1467: }
1471: /*@
1472: TaoCancelMonitors - Clears all the monitor functions for a Tao object.
1474: Logically Collective on Tao
1476: Input Parameters:
1477: . tao - the Tao solver context
1479: Options Database:
1480: . -tao_cancelmonitors - cancels all monitors that have been hardwired
1481: into a code by calls to TaoSetMonitor(), but does not cancel those
1482: set via the options database
1484: Notes:
1485: There is no way to clear one specific monitor from a Tao object.
1487: Level: advanced
1489: .seealso: TaoDefaultMonitor(), TaoSetMonitor()
1490: @*/
1491: PetscErrorCode TaoCancelMonitors(Tao tao)
1492: {
1493: PetscInt i;
1498: for (i=0;i<tao->numbermonitors;i++) {
1499: if (tao->monitordestroy[i]) {
1500: (*tao->monitordestroy[i])(&tao->monitorcontext[i]);
1501: }
1502: }
1503: tao->numbermonitors=0;
1504: return(0);
1505: }
1509: /*@
1510: TaoDefaultMonitor - Default routine for monitoring progress of the
1511: Tao solvers (default). This monitor prints the function value and gradient
1512: norm at each iteration. It can be turned on from the command line using the
1513: -tao_monitor option
1515: Collective on Tao
1517: Input Parameters:
1518: + tao - the Tao context
1519: - ctx - PetscViewer context or NULL
1521: Options Database Keys:
1522: . -tao_monitor
1524: Level: advanced
1526: .seealso: TaoDefaultSMonitor(), TaoSetMonitor()
1527: @*/
1528: PetscErrorCode TaoDefaultMonitor(Tao tao, void *ctx)
1529: {
1531: PetscInt its;
1532: PetscReal fct,gnorm;
1533: PetscViewer viewer;
1536: if (ctx) {
1537: viewer = (PetscViewer)ctx;
1538: } else {
1539: viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);
1540: }
1541: its=tao->niter;
1542: fct=tao->fc;
1543: gnorm=tao->residual;
1544: ierr=PetscViewerASCIIPrintf(viewer,"iter = %3D,",its);
1545: ierr=PetscViewerASCIIPrintf(viewer," Function value: %g,",(double)fct);
1546: if (gnorm >= PETSC_INFINITY) {
1547: ierr=PetscViewerASCIIPrintf(viewer," Residual: Inf \n");
1548: } else {
1549: ierr=PetscViewerASCIIPrintf(viewer," Residual: %g \n",(double)gnorm);
1550: }
1551: return(0);
1552: }
1556: /*@
1557: TaoDefaultSMonitor - Default routine for monitoring progress of the
1558: solver. Same as TaoDefaultMonitor() except
1559: it prints fewer digits of the residual as the residual gets smaller.
1560: This is because the later digits are meaningless and are often
1561: different on different machines; by using this routine different
1562: machines will usually generate the same output. It can be turned on
1563: by using the -tao_smonitor option
1565: Collective on Tao
1567: Input Parameters:
1568: + tao - the Tao context
1569: - ctx - PetscViewer context or NULL
1571: Options Database Keys:
1572: . -tao_smonitor
1574: Level: advanced
1576: .seealso: TaoDefaultMonitor(), TaoSetMonitor()
1577: @*/
1578: PetscErrorCode TaoDefaultSMonitor(Tao tao, void *ctx)
1579: {
1581: PetscInt its;
1582: PetscReal fct,gnorm;
1583: PetscViewer viewer;
1586: if (ctx) {
1587: viewer = (PetscViewer)ctx;
1588: } else {
1589: viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);
1590: }
1591: its=tao->niter;
1592: fct=tao->fc;
1593: gnorm=tao->residual;
1594: ierr=PetscViewerASCIIPrintf(viewer,"iter = %3D,",its);
1595: ierr=PetscViewerASCIIPrintf(viewer," Function value %g,",(double)fct);
1596: if (gnorm >= PETSC_INFINITY/2) {
1597: ierr=PetscViewerASCIIPrintf(viewer," Residual: Inf \n");
1598: } else if (gnorm > 1.e-6) {
1599: ierr=PetscViewerASCIIPrintf(viewer," Residual: %g \n",(double)gnorm);
1600: } else if (gnorm > 1.e-11) {
1601: ierr=PetscViewerASCIIPrintf(viewer," Residual: < 1.0e-6 \n");
1602: } else {
1603: ierr=PetscViewerASCIIPrintf(viewer," Residual: < 1.0e-11 \n");
1604: }
1605: return(0);
1606: }
1610: /*@
1611: TaoDefaultCMonitor - same as TaoDefaultMonitor() except
1612: it prints the norm of the constraints function. It can be turned on
1613: from the command line using the -tao_cmonitor option
1615: Collective on Tao
1617: Input Parameters:
1618: + tao - the Tao context
1619: - ctx - PetscViewer context or NULL
1621: Options Database Keys:
1622: . -tao_cmonitor
1624: Level: advanced
1626: .seealso: TaoDefaultMonitor(), TaoSetMonitor()
1627: @*/
1628: PetscErrorCode TaoDefaultCMonitor(Tao tao, void *ctx)
1629: {
1631: PetscInt its;
1632: PetscReal fct,gnorm;
1633: PetscViewer viewer;
1636: if (ctx) {
1637: viewer = (PetscViewer)ctx;
1638: } else {
1639: viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);
1640: }
1641: its=tao->niter;
1642: fct=tao->fc;
1643: gnorm=tao->residual;
1644: ierr=PetscViewerASCIIPrintf(viewer,"iter = %D,",its);
1645: ierr=PetscViewerASCIIPrintf(viewer," Function value: %g,",(double)fct);
1646: ierr=PetscViewerASCIIPrintf(viewer," Residual: %g ",(double)gnorm);
1647: PetscViewerASCIIPrintf(viewer," Constraint: %g \n",(double)tao->cnorm);
1648: return(0);
1649: }
1653: /*@C
1654: TaoSolutionMonitor - Views the solution at each iteration
1655: It can be turned on from the command line using the
1656: -tao_view_solution option
1658: Collective on Tao
1660: Input Parameters:
1661: + tao - the Tao context
1662: - ctx - PetscViewer context or NULL
1664: Options Database Keys:
1665: . -tao_view_solution
1667: Level: advanced
1669: .seealso: TaoDefaultSMonitor(), TaoSetMonitor()
1670: @*/
1671: PetscErrorCode TaoSolutionMonitor(Tao tao, void *ctx)
1672: {
1674: PetscViewer viewer;
1677: if (ctx) {
1678: viewer = (PetscViewer)ctx;
1679: } else {
1680: viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);
1681: }
1682: VecView(tao->solution, viewer);
1683: return(0);
1684: }
1688: /*@C
1689: TaoGradientMonitor - Views the gradient at each iteration
1690: It can be turned on from the command line using the
1691: -tao_view_gradient option
1693: Collective on Tao
1695: Input Parameters:
1696: + tao - the Tao context
1697: - ctx - PetscViewer context or NULL
1699: Options Database Keys:
1700: . -tao_view_gradient
1702: Level: advanced
1704: .seealso: TaoDefaultSMonitor(), TaoSetMonitor()
1705: @*/
1706: PetscErrorCode TaoGradientMonitor(Tao tao, void *ctx)
1707: {
1709: PetscViewer viewer;
1712: if (ctx) {
1713: viewer = (PetscViewer)ctx;
1714: } else {
1715: viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);
1716: }
1717: VecView(tao->gradient, viewer);
1718: return(0);
1719: }
1723: /*@C
1724: TaoStepDirectionMonitor - Views the gradient at each iteration
1725: It can be turned on from the command line using the
1726: -tao_view_gradient option
1728: Collective on Tao
1730: Input Parameters:
1731: + tao - the Tao context
1732: - ctx - PetscViewer context or NULL
1734: Options Database Keys:
1735: . -tao_view_gradient
1737: Level: advanced
1739: .seealso: TaoDefaultSMonitor(), TaoSetMonitor()
1740: @*/
1741: PetscErrorCode TaoStepDirectionMonitor(Tao tao, void *ctx)
1742: {
1744: PetscViewer viewer;
1746: if (ctx) {
1747: viewer = (PetscViewer)ctx;
1748: } else {
1749: viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);
1750: }
1751: VecView(tao->stepdirection, viewer);
1752: return(0);
1753: }
1757: /*@C
1758: TaoDrawSolutionMonitor - Plots the solution at each iteration
1759: It can be turned on from the command line using the
1760: -tao_draw_solution option
1762: Collective on Tao
1764: Input Parameters:
1765: + tao - the Tao context
1766: - ctx - PetscViewer context or NULL
1768: Options Database Keys:
1769: . -tao_draw_solution
1771: Level: advanced
1773: .seealso: TaoSolutionMonitor(), TaoSetMonitor(), TaoDrawGradientMonitor
1774: @*/
1775: PetscErrorCode TaoDrawSolutionMonitor(Tao tao, void *ctx)
1776: {
1778: PetscViewer viewer = (PetscViewer) ctx;
1779: MPI_Comm comm;
1782: if (!viewer) {
1783: PetscObjectGetComm((PetscObject)tao,&comm);
1784: viewer = PETSC_VIEWER_DRAW_(comm);
1785: }
1786: VecView(tao->solution, viewer);
1787: return(0);
1788: }
1792: /*@C
1793: TaoDrawGradientMonitor - Plots the gradient at each iteration
1794: It can be turned on from the command line using the
1795: -tao_draw_gradient option
1797: Collective on Tao
1799: Input Parameters:
1800: + tao - the Tao context
1801: - ctx - PetscViewer context or NULL
1803: Options Database Keys:
1804: . -tao_draw_gradient
1806: Level: advanced
1808: .seealso: TaoGradientMonitor(), TaoSetMonitor(), TaoDrawSolutionMonitor
1809: @*/
1810: PetscErrorCode TaoDrawGradientMonitor(Tao tao, void *ctx)
1811: {
1813: PetscViewer viewer = (PetscViewer)ctx;
1814: MPI_Comm comm;
1817: if (!viewer) {
1818: PetscObjectGetComm((PetscObject)tao,&comm);
1819: viewer = PETSC_VIEWER_DRAW_(comm);
1820: }
1821: VecView(tao->gradient, viewer);
1822: return(0);
1823: }
1827: /*@C
1828: TaoDrawStepMonitor - Plots the step direction at each iteration
1829: It can be turned on from the command line using the
1830: -tao_draw_step option
1832: Collective on Tao
1834: Input Parameters:
1835: + tao - the Tao context
1836: - ctx - PetscViewer context or NULL
1838: Options Database Keys:
1839: . -tao_draw_step
1841: Level: advanced
1843: .seealso: TaoSetMonitor(), TaoDrawSolutionMonitor
1844: @*/
1845: PetscErrorCode TaoDrawStepMonitor(Tao tao, void *ctx)
1846: {
1848: PetscViewer viewer = (PetscViewer)(ctx);
1849: MPI_Comm comm;
1852: if (!viewer) {
1853: PetscObjectGetComm((PetscObject)tao,&comm);
1854: viewer = PETSC_VIEWER_DRAW_(comm);
1855: }
1856: VecView(tao->stepdirection, viewer);
1857: return(0);
1858: }
1862: /*@C
1863: TaoSeparableObjectiveMonitor - Views the separable objective function at each iteration
1864: It can be turned on from the command line using the
1865: -tao_view_separableobjective option
1867: Collective on Tao
1869: Input Parameters:
1870: + tao - the Tao context
1871: - ctx - PetscViewer context or NULL
1873: Options Database Keys:
1874: . -tao_view_separableobjective
1876: Level: advanced
1878: .seealso: TaoDefaultSMonitor(), TaoSetMonitor()
1879: @*/
1880: PetscErrorCode TaoSeparableObjectiveMonitor(Tao tao, void *ctx)
1881: {
1883: PetscViewer viewer;
1886: if (ctx) {
1887: viewer = (PetscViewer)ctx;
1888: } else {
1889: viewer = PETSC_VIEWER_STDOUT_(((PetscObject)tao)->comm);
1890: }
1891: VecView(tao->sep_objective,viewer);
1892: return(0);
1893: }
1897: /*@
1898: TaoDefaultConvergenceTest - Determines whether the solver should continue iterating
1899: or terminate.
1901: Collective on Tao
1903: Input Parameters:
1904: + tao - the Tao context
1905: - dummy - unused dummy context
1907: Output Parameter:
1908: . reason - for terminating
1910: Notes:
1911: This routine checks the residual in the optimality conditions, the
1912: relative residual in the optimity conditions, the number of function
1913: evaluations, and the function value to test convergence. Some
1914: solvers may use different convergence routines.
1916: Level: developer
1918: .seealso: TaoSetTolerances(),TaoGetConvergedReason(),TaoSetConvergedReason()
1919: @*/
1921: PetscErrorCode TaoDefaultConvergenceTest(Tao tao,void *dummy)
1922: {
1923: PetscInt niter=tao->niter, nfuncs=PetscMax(tao->nfuncs,tao->nfuncgrads);
1924: PetscInt max_funcs=tao->max_funcs;
1925: PetscReal gnorm=tao->residual, gnorm0=tao->gnorm0;
1926: PetscReal f=tao->fc, steptol=tao->steptol,trradius=tao->step;
1927: PetscReal gatol=tao->gatol,grtol=tao->grtol,gttol=tao->gttol;
1928: PetscReal fatol=tao->fatol,frtol=tao->frtol,catol=tao->catol,crtol=tao->crtol;
1929: PetscReal fmin=tao->fmin, cnorm=tao->cnorm, cnorm0=tao->cnorm0;
1930: PetscReal gnorm2;
1931: TaoConvergedReason reason=tao->reason;
1932: PetscErrorCode ierr;
1936: if (reason != TAO_CONTINUE_ITERATING) {
1937: return(0);
1938: }
1939: gnorm2=gnorm*gnorm;
1941: if (PetscIsInfOrNanReal(f)) {
1942: PetscInfo(tao,"Failed to converged, function value is Inf or NaN\n");
1943: reason = TAO_DIVERGED_NAN;
1944: } else if (f <= fmin && cnorm <=catol) {
1945: PetscInfo2(tao,"Converged due to function value %g < minimum function value %g\n", (double)f,(double)fmin);
1946: reason = TAO_CONVERGED_MINF;
1947: } else if (gnorm2 <= fatol && cnorm <=catol) {
1948: PetscInfo2(tao,"Converged due to estimated f(X) - f(X*) = %g < %g\n",(double)gnorm2,(double)fatol);
1949: reason = TAO_CONVERGED_FATOL;
1950: } else if (f != 0 && gnorm2 / PetscAbsReal(f)<= frtol && cnorm/PetscMax(cnorm0,1.0) <= crtol) {
1951: PetscInfo2(tao,"Converged due to estimated |f(X)-f(X*)|/f(X) = %g < %g\n",(double)(gnorm2/PetscAbsReal(f)),(double)frtol);
1952: reason = TAO_CONVERGED_FRTOL;
1953: } else if (gnorm<= gatol && cnorm <=catol) {
1954: PetscInfo2(tao,"Converged due to residual norm ||g(X)||=%g < %g\n",(double)gnorm,(double)gatol);
1955: reason = TAO_CONVERGED_GATOL;
1956: } else if ( f!=0 && PetscAbsReal(gnorm/f) <= grtol && cnorm <= crtol) {
1957: PetscInfo2(tao,"Converged due to residual ||g(X)||/|f(X)| =%g < %g\n",(double)(gnorm/f),(double)grtol);
1958: reason = TAO_CONVERGED_GRTOL;
1959: } else if (gnorm0 != 0 && gnorm/gnorm0 <= gttol && cnorm <= crtol) {
1960: PetscInfo2(tao,"Converged due to relative residual norm ||g(X)||/||g(X0)|| = %g < %g\n",(double)(gnorm/gnorm0),(double)gttol);
1961: reason = TAO_CONVERGED_GTTOL;
1962: } else if (nfuncs > max_funcs){
1963: PetscInfo2(tao,"Exceeded maximum number of function evaluations: %D > %D\n", nfuncs,max_funcs);
1964: reason = TAO_DIVERGED_MAXFCN;
1965: } else if ( tao->lsflag != 0 ){
1966: PetscInfo(tao,"Tao Line Search failure.\n");
1967: reason = TAO_DIVERGED_LS_FAILURE;
1968: } else if (trradius < steptol && niter > 0){
1969: PetscInfo2(tao,"Trust region/step size too small: %g < %g\n", (double)trradius,(double)steptol);
1970: reason = TAO_CONVERGED_STEPTOL;
1971: } else if (niter > tao->max_it) {
1972: PetscInfo2(tao,"Exceeded maximum number of iterations: %D > %D\n",niter,tao->max_it);
1973: reason = TAO_DIVERGED_MAXITS;
1974: } else {
1975: reason = TAO_CONTINUE_ITERATING;
1976: }
1977: tao->reason = reason;
1978: return(0);
1979: }
1983: /*@C
1984: TaoSetOptionsPrefix - Sets the prefix used for searching for all
1985: TAO options in the database.
1988: Logically Collective on Tao
1990: Input Parameters:
1991: + tao - the Tao context
1992: - prefix - the prefix string to prepend to all TAO option requests
1994: Notes:
1995: A hyphen (-) must NOT be given at the beginning of the prefix name.
1996: The first character of all runtime options is AUTOMATICALLY the hyphen.
1998: For example, to distinguish between the runtime options for two
1999: different TAO solvers, one could call
2000: .vb
2001: TaoSetOptionsPrefix(tao1,"sys1_")
2002: TaoSetOptionsPrefix(tao2,"sys2_")
2003: .ve
2005: This would enable use of different options for each system, such as
2006: .vb
2007: -sys1_tao_method blmvm -sys1_tao_gtol 1.e-3
2008: -sys2_tao_method lmvm -sys2_tao_gtol 1.e-4
2009: .ve
2012: Level: advanced
2014: .seealso: TaoAppendOptionsPrefix(), TaoGetOptionsPrefix()
2015: @*/
2017: PetscErrorCode TaoSetOptionsPrefix(Tao tao, const char p[])
2018: {
2022: PetscObjectSetOptionsPrefix((PetscObject)tao,p);
2023: if (tao->linesearch) {
2024: TaoLineSearchSetOptionsPrefix(tao->linesearch,p);
2025: }
2026: if (tao->ksp) {
2027: KSPSetOptionsPrefix(tao->ksp,p);
2028: }
2029: return(0);
2030: }
2034: /*@C
2035: TaoAppendOptionsPrefix - Appends to the prefix used for searching for all
2036: TAO options in the database.
2039: Logically Collective on Tao
2041: Input Parameters:
2042: + tao - the Tao solver context
2043: - prefix - the prefix string to prepend to all TAO option requests
2045: Notes:
2046: A hyphen (-) must NOT be given at the beginning of the prefix name.
2047: The first character of all runtime options is AUTOMATICALLY the hyphen.
2050: Level: advanced
2052: .seealso: TaoSetOptionsPrefix(), TaoGetOptionsPrefix()
2053: @*/
2054: PetscErrorCode TaoAppendOptionsPrefix(Tao tao, const char p[])
2055: {
2059: PetscObjectAppendOptionsPrefix((PetscObject)tao,p);
2060: if (tao->linesearch) {
2061: TaoLineSearchSetOptionsPrefix(tao->linesearch,p);
2062: }
2063: if (tao->ksp) {
2064: KSPSetOptionsPrefix(tao->ksp,p);
2065: }
2066: return(0);
2067: }
2071: /*@C
2072: TaoGetOptionsPrefix - Gets the prefix used for searching for all
2073: TAO options in the database
2075: Not Collective
2077: Input Parameters:
2078: . tao - the Tao context
2080: Output Parameters:
2081: . prefix - pointer to the prefix string used is returned
2083: Notes: On the fortran side, the user should pass in a string 'prefix' of
2084: sufficient length to hold the prefix.
2086: Level: advanced
2088: .seealso: TaoSetOptionsPrefix(), TaoAppendOptionsPrefix()
2089: @*/
2090: PetscErrorCode TaoGetOptionsPrefix(Tao tao, const char *p[])
2091: {
2092: return PetscObjectGetOptionsPrefix((PetscObject)tao,p);
2093: }
2097: /*@C
2098: TaoSetType - Sets the method for the unconstrained minimization solver.
2100: Collective on Tao
2102: Input Parameters:
2103: + solver - the Tao solver context
2104: - type - a known method
2106: Options Database Key:
2107: . -tao_type <type> - Sets the method; use -help for a list
2108: of available methods (for instance, "-tao_type lmvm" or "-tao_type tron")
2110: Available methods include:
2111: + nls - Newton's method with line search for unconstrained minimization
2112: . ntr - Newton's method with trust region for unconstrained minimization
2113: . ntl - Newton's method with trust region, line search for unconstrained minimization
2114: . lmvm - Limited memory variable metric method for unconstrained minimization
2115: . cg - Nonlinear conjugate gradient method for unconstrained minimization
2116: . nm - Nelder-Mead algorithm for derivate-free unconstrained minimization
2117: . tron - Newton Trust Region method for bound constrained minimization
2118: . gpcg - Newton Trust Region method for quadratic bound constrained minimization
2119: . blmvm - Limited memory variable metric method for bound constrained minimization
2120: - pounders - Model-based algorithm pounder extended for nonlinear least squares
2122: Level: intermediate
2124: .seealso: TaoCreate(), TaoGetType(), TaoType
2126: @*/
2127: PetscErrorCode TaoSetType(Tao tao, const TaoType type)
2128: {
2130: PetscErrorCode (*create_xxx)(Tao);
2131: PetscBool issame;
2136: PetscObjectTypeCompare((PetscObject)tao,type,&issame);
2137: if (issame) return(0);
2139: PetscFunctionListFind(TaoList, type, (void(**)(void))&create_xxx);
2140: if (!create_xxx) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_UNKNOWN_TYPE,"Unable to find requested Tao type %s",type);
2142: /* Destroy the existing solver information */
2143: if (tao->ops->destroy) {
2144: (*tao->ops->destroy)(tao);
2145: }
2146: KSPDestroy(&tao->ksp);
2147: TaoLineSearchDestroy(&tao->linesearch);
2148: VecDestroy(&tao->gradient);
2149: VecDestroy(&tao->stepdirection);
2151: tao->ops->setup = 0;
2152: tao->ops->solve = 0;
2153: tao->ops->view = 0;
2154: tao->ops->setfromoptions = 0;
2155: tao->ops->destroy = 0;
2157: tao->setupcalled = PETSC_FALSE;
2159: (*create_xxx)(tao);
2160: PetscObjectChangeTypeName((PetscObject)tao,type);
2161: return(0);
2162: }
2166: /*MC
2167: TaoRegister - Adds a method to the TAO package for unconstrained minimization.
2169: Synopsis:
2170: TaoRegister(char *name_solver,char *path,char *name_Create,int (*routine_Create)(Tao))
2172: Not collective
2174: Input Parameters:
2175: + sname - name of a new user-defined solver
2176: - func - routine to Create method context
2178: Notes:
2179: TaoRegister() may be called multiple times to add several user-defined solvers.
2181: Sample usage:
2182: .vb
2183: TaoRegister("my_solver",MySolverCreate);
2184: .ve
2186: Then, your solver can be chosen with the procedural interface via
2187: $ TaoSetType(tao,"my_solver")
2188: or at runtime via the option
2189: $ -tao_type my_solver
2191: Level: advanced
2193: .seealso: TaoRegisterAll(), TaoRegisterDestroy()
2194: M*/
2195: PetscErrorCode TaoRegister(const char sname[], PetscErrorCode (*func)(Tao))
2196: {
2200: PetscFunctionListAdd(&TaoList,sname, (void (*)(void))func);
2201: return(0);
2202: }
2206: /*@C
2207: TaoRegisterDestroy - Frees the list of minimization solvers that were
2208: registered by TaoRegisterDynamic().
2210: Not Collective
2212: Level: advanced
2214: .seealso: TaoRegisterAll(), TaoRegister()
2215: @*/
2216: PetscErrorCode TaoRegisterDestroy(void)
2217: {
2220: PetscFunctionListDestroy(&TaoList);
2221: TaoRegisterAllCalled = PETSC_FALSE;
2222: return(0);
2223: }
2227: /*@
2228: TaoGetIterationNumber - Gets the number of Tao iterations completed
2229: at this time.
2231: Not Collective
2233: Input Parameter:
2234: . tao - Tao context
2236: Output Parameter:
2237: . iter - iteration number
2239: Notes:
2240: For example, during the computation of iteration 2 this would return 1.
2243: Level: intermediate
2245: .keywords: Tao, nonlinear, get, iteration, number,
2247: .seealso: TaoGetLinearSolveIterations()
2248: @*/
2249: PetscErrorCode TaoGetIterationNumber(Tao tao,PetscInt *iter)
2250: {
2254: *iter = tao->niter;
2255: return(0);
2256: }
2260: /*@
2261: TaoSetIterationNumber - Sets the current iteration number.
2263: Not Collective
2265: Input Parameter:
2266: . tao - Tao context
2267: . iter - iteration number
2269: Level: developer
2271: .keywords: Tao, nonlinear, set, iteration, number,
2273: .seealso: TaoGetLinearSolveIterations()
2274: @*/
2275: PetscErrorCode TaoSetIterationNumber(Tao tao,PetscInt iter)
2276: {
2281: PetscObjectSAWsTakeAccess((PetscObject)tao);
2282: tao->niter = iter;
2283: PetscObjectSAWsGrantAccess((PetscObject)tao);
2284: return(0);
2285: }
2289: /*@
2290: TaoGetTotalIterationNumber - Gets the total number of Tao iterations
2291: completed. This number keeps accumulating if multiple solves
2292: are called with the Tao object.
2294: Not Collective
2296: Input Parameter:
2297: . tao - Tao context
2299: Output Parameter:
2300: . iter - iteration number
2302: Notes:
2303: The total iteration count is updated after each solve, if there is a current
2304: TaoSolve() in progress then those iterations are not yet counted.
2306: Level: intermediate
2308: .keywords: Tao, nonlinear, get, iteration, number,
2310: .seealso: TaoGetLinearSolveIterations()
2311: @*/
2312: PetscErrorCode TaoGetTotalIterationNumber(Tao tao,PetscInt *iter)
2313: {
2317: *iter = tao->ntotalits;
2318: return(0);
2319: }
2323: /*@
2324: TaoSetTotalIterationNumber - Sets the current total iteration number.
2326: Not Collective
2328: Input Parameter:
2329: . tao - Tao context
2330: . iter - iteration number
2332: Level: developer
2334: .keywords: Tao, nonlinear, set, iteration, number,
2336: .seealso: TaoGetLinearSolveIterations()
2337: @*/
2338: PetscErrorCode TaoSetTotalIterationNumber(Tao tao,PetscInt iter)
2339: {
2344: PetscObjectSAWsTakeAccess((PetscObject)tao);
2345: tao->ntotalits = iter;
2346: PetscObjectSAWsGrantAccess((PetscObject)tao);
2347: return(0);
2348: }
2352: /*@
2353: TaoSetConvergedReason - Sets the termination flag on a Tao object
2355: Logically Collective on Tao
2357: Input Parameters:
2358: + tao - the Tao context
2359: - reason - one of
2360: $ TAO_CONVERGED_ATOL (2),
2361: $ TAO_CONVERGED_RTOL (3),
2362: $ TAO_CONVERGED_STEPTOL (4),
2363: $ TAO_CONVERGED_MINF (5),
2364: $ TAO_CONVERGED_USER (6),
2365: $ TAO_DIVERGED_MAXITS (-2),
2366: $ TAO_DIVERGED_NAN (-4),
2367: $ TAO_DIVERGED_MAXFCN (-5),
2368: $ TAO_DIVERGED_LS_FAILURE (-6),
2369: $ TAO_DIVERGED_TR_REDUCTION (-7),
2370: $ TAO_DIVERGED_USER (-8),
2371: $ TAO_CONTINUE_ITERATING (0)
2373: Level: intermediate
2375: @*/
2376: PetscErrorCode TaoSetConvergedReason(Tao tao, TaoConvergedReason reason)
2377: {
2380: tao->reason = reason;
2381: return(0);
2382: }
2386: /*@
2387: TaoGetConvergedReason - Gets the reason the Tao iteration was stopped.
2389: Not Collective
2391: Input Parameter:
2392: . tao - the Tao solver context
2394: Output Parameter:
2395: . reason - one of
2396: $ TAO_CONVERGED_FATOL (1) f(X)-f(X*) <= fatol
2397: $ TAO_CONVERGED_FRTOL (2) |f(X) - f(X*)|/|f(X)| < frtol
2398: $ TAO_CONVERGED_GATOL (3) ||g(X)|| < gatol
2399: $ TAO_CONVERGED_GRTOL (4) ||g(X)|| / f(X) < grtol
2400: $ TAO_CONVERGED_GTTOL (5) ||g(X)|| / ||g(X0)|| < gttol
2401: $ TAO_CONVERGED_STEPTOL (6) step size small
2402: $ TAO_CONVERGED_MINF (7) F < F_min
2403: $ TAO_CONVERGED_USER (8) User defined
2404: $ TAO_DIVERGED_MAXITS (-2) its > maxits
2405: $ TAO_DIVERGED_NAN (-4) Numerical problems
2406: $ TAO_DIVERGED_MAXFCN (-5) fevals > max_funcsals
2407: $ TAO_DIVERGED_LS_FAILURE (-6) line search failure
2408: $ TAO_DIVERGED_TR_REDUCTION (-7) trust region failure
2409: $ TAO_DIVERGED_USER(-8) (user defined)
2410: $ TAO_CONTINUE_ITERATING (0)
2412: where
2413: + X - current solution
2414: . X0 - initial guess
2415: . f(X) - current function value
2416: . f(X*) - true solution (estimated)
2417: . g(X) - current gradient
2418: . its - current iterate number
2419: . maxits - maximum number of iterates
2420: . fevals - number of function evaluations
2421: - max_funcsals - maximum number of function evaluations
2423: Level: intermediate
2425: .seealso: TaoSetConvergenceTest(), TaoSetTolerances()
2427: @*/
2428: PetscErrorCode TaoGetConvergedReason(Tao tao, TaoConvergedReason *reason)
2429: {
2433: *reason = tao->reason;
2434: return(0);
2435: }
2439: /*@
2440: TaoGetSolutionStatus - Get the current iterate, objective value,
2441: residual, infeasibility, and termination
2443: Not Collective
2445: Input Parameters:
2446: . tao - the Tao context
2448: Output Parameters:
2449: + iterate - the current iterate number (>=0)
2450: . f - the current function value
2451: . gnorm - the square of the gradient norm, duality gap, or other measure indicating distance from optimality.
2452: . cnorm - the infeasibility of the current solution with regard to the constraints.
2453: . xdiff - the step length or trust region radius of the most recent iterate.
2454: - reason - The termination reason, which can equal TAO_CONTINUE_ITERATING
2456: Level: intermediate
2458: Note:
2459: TAO returns the values set by the solvers in the routine TaoMonitor().
2461: Note:
2462: If any of the output arguments are set to NULL, no corresponding value will be returned.
2464: .seealso: TaoMonitor(), TaoGetConvergedReason()
2465: @*/
2466: PetscErrorCode TaoGetSolutionStatus(Tao tao, PetscInt *its, PetscReal *f, PetscReal *gnorm, PetscReal *cnorm, PetscReal *xdiff, TaoConvergedReason *reason)
2467: {
2469: if (its) *its=tao->niter;
2470: if (f) *f=tao->fc;
2471: if (gnorm) *gnorm=tao->residual;
2472: if (cnorm) *cnorm=tao->cnorm;
2473: if (reason) *reason=tao->reason;
2474: if (xdiff) *xdiff=tao->step;
2475: return(0);
2476: }
2480: /*@C
2481: TaoGetType - Gets the current Tao algorithm.
2483: Not Collective
2485: Input Parameter:
2486: . tao - the Tao solver context
2488: Output Parameter:
2489: . type - Tao method
2491: Level: intermediate
2493: @*/
2494: PetscErrorCode TaoGetType(Tao tao, const TaoType *type)
2495: {
2499: *type=((PetscObject)tao)->type_name;
2500: return(0);
2501: }
2505: /*@C
2506: TaoMonitor - Monitor the solver and the current solution. This
2507: routine will record the iteration number and residual statistics,
2508: call any monitors specified by the user, and calls the convergence-check routine.
2510: Input Parameters:
2511: + tao - the Tao context
2512: . its - the current iterate number (>=0)
2513: . f - the current objective function value
2514: . res - the gradient norm, square root of the duality gap, or other measure indicating distince from optimality. This measure will be recorded and
2515: used for some termination tests.
2516: . cnorm - the infeasibility of the current solution with regard to the constraints.
2517: - steplength - multiple of the step direction added to the previous iterate.
2519: Output Parameters:
2520: . reason - The termination reason, which can equal TAO_CONTINUE_ITERATING
2522: Options Database Key:
2523: . -tao_monitor - Use the default monitor, which prints statistics to standard output
2525: .seealso TaoGetConvergedReason(), TaoDefaultMonitor(), TaoSetMonitor()
2527: Level: developer
2529: @*/
2530: PetscErrorCode TaoMonitor(Tao tao, PetscInt its, PetscReal f, PetscReal res, PetscReal cnorm, PetscReal steplength, TaoConvergedReason *reason)
2531: {
2533: PetscInt i;
2537: tao->fc = f;
2538: tao->residual = res;
2539: tao->cnorm = cnorm;
2540: tao->step = steplength;
2541: if (its == 0) {
2542: tao->cnorm0 = cnorm; tao->gnorm0 = res;
2543: }
2544: TaoLogConvergenceHistory(tao,f,res,cnorm,tao->ksp_its);
2545: if (PetscIsInfOrNanReal(f) || PetscIsInfOrNanReal(res)) SETERRQ(PETSC_COMM_SELF,1, "User provided compute function generated Inf or NaN");
2546: if (tao->ops->convergencetest) {
2547: (*tao->ops->convergencetest)(tao,tao->cnvP);
2548: }
2549: for (i=0;i<tao->numbermonitors;i++) {
2550: (*tao->monitor[i])(tao,tao->monitorcontext[i]);
2551: }
2552: *reason = tao->reason;
2553: return(0);
2554: }
2558: /*@
2559: TaoSetConvergenceHistory - Sets the array used to hold the convergence history.
2561: Logically Collective on Tao
2563: Input Parameters:
2564: + tao - the Tao solver context
2565: . obj - array to hold objective value history
2566: . resid - array to hold residual history
2567: . cnorm - array to hold constraint violation history
2568: . lits - integer array holds the number of linear iterations for each Tao iteration
2569: . na - size of obj, resid, and cnorm
2570: - reset - PetscTrue indicates each new minimization resets the history counter to zero,
2571: else it continues storing new values for new minimizations after the old ones
2573: Notes:
2574: If set, TAO will fill the given arrays with the indicated
2575: information at each iteration. If 'obj','resid','cnorm','lits' are
2576: *all* NULL then space (using size na, or 1000 if na is PETSC_DECIDE or
2577: PETSC_DEFAULT) is allocated for the history.
2578: If not all are NULL, then only the non-NULL information categories
2579: will be stored, the others will be ignored.
2581: Any convergence information after iteration number 'na' will not be stored.
2583: This routine is useful, e.g., when running a code for purposes
2584: of accurate performance monitoring, when no I/O should be done
2585: during the section of code that is being timed.
2587: Level: intermediate
2589: .seealso: TaoGetConvergenceHistory()
2591: @*/
2592: PetscErrorCode TaoSetConvergenceHistory(Tao tao, PetscReal *obj, PetscReal *resid, PetscReal *cnorm, PetscInt *lits, PetscInt na,PetscBool reset)
2593: {
2603: if (na == PETSC_DECIDE || na == PETSC_DEFAULT) na = 1000;
2604: if (!obj && !resid && !cnorm && !lits) {
2605: PetscCalloc1(na,&obj);
2606: PetscCalloc1(na,&resid);
2607: PetscCalloc1(na,&cnorm);
2608: PetscCalloc1(na,&lits);
2609: tao->hist_malloc=PETSC_TRUE;
2610: }
2612: tao->hist_obj = obj;
2613: tao->hist_resid = resid;
2614: tao->hist_cnorm = cnorm;
2615: tao->hist_lits = lits;
2616: tao->hist_max = na;
2617: tao->hist_reset = reset;
2618: tao->hist_len = 0;
2619: return(0);
2620: }
2624: /*@C
2625: TaoGetConvergenceHistory - Gets the arrays used to hold the convergence history.
2627: Collective on Tao
2629: Input Parameter:
2630: . tao - the Tao context
2632: Output Parameters:
2633: + obj - array used to hold objective value history
2634: . resid - array used to hold residual history
2635: . cnorm - array used to hold constraint violation history
2636: . lits - integer array used to hold linear solver iteration count
2637: - nhist - size of obj, resid, cnorm, and lits (will be less than or equal to na given in TaoSetHistory)
2639: Notes:
2640: This routine must be preceded by calls to TaoSetConvergenceHistory()
2641: and TaoSolve(), otherwise it returns useless information.
2643: The calling sequence for this routine in Fortran is
2644: $ call TaoGetConvergenceHistory(Tao tao, PetscInt nhist, PetscErrorCode ierr)
2646: This routine is useful, e.g., when running a code for purposes
2647: of accurate performance monitoring, when no I/O should be done
2648: during the section of code that is being timed.
2650: Level: advanced
2652: .seealso: TaoSetConvergenceHistory()
2654: @*/
2655: PetscErrorCode TaoGetConvergenceHistory(Tao tao, PetscReal **obj, PetscReal **resid, PetscReal **cnorm, PetscInt **lits, PetscInt *nhist)
2656: {
2659: if (obj) *obj = tao->hist_obj;
2660: if (cnorm) *cnorm = tao->hist_cnorm;
2661: if (resid) *resid = tao->hist_resid;
2662: if (nhist) *nhist = tao->hist_len;
2663: return(0);
2664: }
2668: /*@
2669: TaoSetApplicationContext - Sets the optional user-defined context for
2670: a solver.
2672: Logically Collective on Tao
2674: Input Parameters:
2675: + tao - the Tao context
2676: - usrP - optional user context
2678: Level: intermediate
2680: .seealso: TaoGetApplicationContext(), TaoSetApplicationContext()
2681: @*/
2682: PetscErrorCode TaoSetApplicationContext(Tao tao,void *usrP)
2683: {
2686: tao->user = usrP;
2687: return(0);
2688: }
2692: /*@
2693: TaoGetApplicationContext - Gets the user-defined context for a
2694: TAO solvers.
2696: Not Collective
2698: Input Parameter:
2699: . tao - Tao context
2701: Output Parameter:
2702: . usrP - user context
2704: Level: intermediate
2706: .seealso: TaoSetApplicationContext()
2707: @*/
2708: PetscErrorCode TaoGetApplicationContext(Tao tao,void *usrP)
2709: {
2712: *(void**)usrP = tao->user;
2713: return(0);
2714: }