Actual source code: ex40f90.F90
petsc-3.6.4 2016-04-12
1: !
2: ! Demonstrates use of DMDASNESSetFunctionLocal() from Fortran
3: !
4: ! Note: the access to the entries of the local arrays below use the Fortran
5: ! convention of starting at zero. However calls to MatSetValues() start at 0.
6: ! Also note that you will have to map the i,j,k coordinates to the local PETSc ordering
7: ! before calling MatSetValuesLocal(). Often you will find that using PETSc's default
8: ! code for computing the Jacobian works fine and you will not need to implement
9: ! your own FormJacobianLocal().
11: program ex40f90
12: implicit none
13: #include <petsc/finclude/petsc.h>
15: SNES snes
16: PetscErrorCode ierr
17: DM da
18: PetscInt ten,two,one
19: external FormFunctionLocal
22: call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
24: ten = 10
25: one = 1
26: two = 2
28: call DMDACreate2d(PETSC_COMM_WORLD, &
29: & DM_BOUNDARY_NONE,DM_BOUNDARY_NONE, &
30: & DMDA_STENCIL_BOX, &
31: & -ten,-ten,PETSC_DECIDE,PETSC_DECIDE,two,one, &
32: & PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr)
35: ! Create solver object and associate it with the unknowns (on the grid)
37: call SNESCreate(PETSC_COMM_WORLD,snes,ierr)
38: call SNESSetDM(snes,da,ierr)
40: call DMDASNESSetFunctionLocal(da,INSERT_VALUES,FormFunctionLocal, &
41: & PETSC_NULL_OBJECT,ierr)
42: call SNESSetFromOptions(snes,ierr)
44: ! Solve the nonlinear system
45: !
46: call SNESSolve(snes,PETSC_NULL_OBJECT,PETSC_NULL_OBJECT,ierr)
48: call SNESDestroy(snes,ierr)
49: call DMDestroy(da,ierr)
50: call PetscFinalize(ierr)
51: end
54: subroutine FormFunctionLocal(in,x,f,dummy,ierr)
55: implicit none
56: PetscInt i,j,k,dummy
57: DMDALocalInfo in(DMDA_LOCAL_INFO_SIZE)
58: PetscScalar x(in(DMDA_LOCAL_INFO_DOF), &
59: & XG_RANGE, &
60: & YG_RANGE)
61: PetscScalar f(in(DMDA_LOCAL_INFO_DOF), &
62: & X_RANGE, &
63: & Y_RANGE)
64: PetscErrorCode ierr
66: do i=in(DMDA_LOCAL_INFO_XS)+1,in(DMDA_LOCAL_INFO_XS)+in(DMDA_LOCAL_INFO_XM)
67: do j=in(DMDA_LOCAL_INFO_YS)+1,in(DMDA_LOCAL_INFO_YS)+in(DMDA_LOCAL_INFO_YM)
68: do k=1,in(DMDA_LOCAL_INFO_DOF)
69: f(k,i,j) = x(k,i,j)*x(k,i,j) - 2.0
70: enddo
71: enddo
72: enddo
74: return
75: end