Actual source code: ex15.c

petsc-3.6.4 2016-04-12
Report Typos and Errors
  1: #include <petscsnes.h>
  2: #include <petscdm.h>
  3: #include <petscdmda.h>
  4: #include <../src/snes/impls/vi/viimpl.h>

  6: static  char help[]=
  7: "This example is an implementation of the journal bearing problem from TAO package\n\
  8: (src/bound/examples/tutorials/jbearing.c). This example is based on \n\
  9: the problem DPJB from the MINPACK-2 test suite.  This pressure journal \n\
 10: bearing problem is an example of elliptic variational problem defined over \n\
 11: a two dimensional rectangle.  By discretizing the domain into triangular \n\
 12: elements, the pressure surrounding the journal bearing is defined as the \n\
 13: minimum of a quadratic function whose variables are bounded below by zero.\n";

 15: typedef struct {
 16:   /* problem parameters */
 17:   PetscReal ecc;               /* test problem parameter */
 18:   PetscReal b;                 /* A dimension of journal bearing */
 19:   PetscInt  nx,ny;             /* discretization in x, y directions */
 20:   DM        da;                /* distributed array data structure */
 21:   Mat       A;                 /* Quadratic Objective term */
 22:   Vec       B;                 /* Linear Objective term */
 23: } AppCtx;

 25: /* User-defined routines */
 26: static PetscReal p(PetscReal xi,PetscReal ecc);
 27: PetscErrorCode FormGradient(SNES,Vec,Vec,void*);
 28: PetscErrorCode FormHessian(SNES,Vec,Mat,Mat,void*);
 29: PetscErrorCode ComputeB(AppCtx*);

 33: int main(int argc, char **argv)
 34: {
 35:   PetscErrorCode      ierr;               /* used to check for functions returning nonzeros */
 36:   Vec                 x;                  /* variables vector */
 37:   Vec                 xl,xu;              /* lower and upper bound on variables */
 38:   PetscBool           flg;              /* A return variable when checking for user options */
 39:   SNESConvergedReason reason;
 40:   AppCtx              user;               /* user-defined work context */
 41:   SNES                snes;
 42:   Vec                 r;
 43:   PetscReal           zero=0.0,thnd=1000;


 46:   /* Initialize PETSC */
 47:   PetscInitialize(&argc, &argv,(char*)0,help);

 49: #if defined(PETSC_USE_COMPLEX)
 50:   SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"This example does not work for scalar type complex\n");
 51: #endif

 53:   /* Set the default values for the problem parameters */
 54:   user.nx = 50; user.ny = 50; user.ecc = 0.1; user.b = 10.0;

 56:   /* Check for any command line arguments that override defaults */
 57:   PetscOptionsGetReal(NULL,"-ecc",&user.ecc,&flg);
 58:   PetscOptionsGetReal(NULL,"-b",&user.b,&flg);

 60:   /*
 61:      A two dimensional distributed array will help define this problem,
 62:      which derives from an elliptic PDE on two dimensional domain.  From
 63:      the distributed array, Create the vectors.
 64:   */
 65:   DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,-50,-50,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,NULL,&user.da);
 66:   DMDAGetIerr(user.da,PETSC_IGNORE,&user.nx,&user.ny,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);

 68:   PetscPrintf(PETSC_COMM_WORLD,"\n---- Journal Bearing Problem -----\n");
 69:   PetscPrintf(PETSC_COMM_WORLD,"mx: %d,  my: %d,  ecc: %4.3f, b:%3.1f \n",
 70:               user.nx,user.ny,user.ecc,user.b);
 71:   /*
 72:      Extract global and local vectors from DA; the vector user.B is
 73:      used solely as work space for the evaluation of the function,
 74:      gradient, and Hessian.  Duplicate for remaining vectors that are
 75:      the same types.
 76:   */
 77:   DMCreateGlobalVector(user.da,&x); /* Solution */
 78:   VecDuplicate(x,&user.B); /* Linear objective */
 79:   VecDuplicate(x,&r);

 81:   /*  Create matrix user.A to store quadratic, Create a local ordering scheme. */
 82:   DMSetMatType(user.da,MATAIJ);
 83:   DMCreateMatrix(user.da,&user.A);

 85:   /* User defined function -- compute linear term of quadratic */
 86:   ComputeB(&user);

 88:   /* Create nonlinear solver context */
 89:   SNESCreate(PETSC_COMM_WORLD,&snes);

 91:   /*  Set function evaluation and Jacobian evaluation  routines */
 92:   SNESSetFunction(snes,r,FormGradient,&user);
 93:   SNESSetJacobian(snes,user.A,user.A,FormHessian,&user);

 95:   /* Set the initial solution guess */
 96:   VecSet(x, zero);

 98:   SNESSetFromOptions(snes);

100:   /* Set variable bounds */
101:   VecDuplicate(x,&xl);
102:   VecDuplicate(x,&xu);
103:   VecSet(xl,zero);
104:   VecSet(xu,thnd);
105:   SNESVISetVariableBounds(snes,xl,xu);

107:   /* Solve the application */
108:   SNESSolve(snes,NULL,x);

110:   SNESGetConvergedReason(snes,&reason);
111:   if (reason <= 0) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"The SNESVI solver did not converge, adjust some parameters, or check the function evaluation routines\n");

113:   /* Free memory */
114:   VecDestroy(&x);
115:   VecDestroy(&xl);
116:   VecDestroy(&xu);
117:   VecDestroy(&r);
118:   MatDestroy(&user.A);
119:   VecDestroy(&user.B);
120:   DMDestroy(&user.da);
121:   SNESDestroy(&snes);

123:   PetscFinalize();

125:   return 0;
126: }

128: static PetscReal p(PetscReal xi, PetscReal ecc)
129: {
130:   PetscReal t=1.0+ecc*PetscCosReal(xi);
131:   return(t*t*t);
132: }

136: PetscErrorCode ComputeB(AppCtx *user)
137: {
139:   PetscInt       i,j;
140:   PetscInt       nx,ny,xs,xm,ys,ym;
141:   PetscReal      two=2.0, pi=4.0*atan(1.0);
142:   PetscReal      hx,hy,ehxhy;
143:   PetscReal      temp;
144:   PetscReal      ecc=user->ecc;
145:   PetscReal      **b;

148:   nx    = user->nx;
149:   ny    = user->ny;
150:   hx    = two*pi/(nx+1.0);
151:   hy    = two*user->b/(ny+1.0);
152:   ehxhy = ecc*hx*hy;

154:   /* Get pointer to local vector data */
155:   DMDAVecGetArray(user->da,user->B, &b);
156:   DMDAGetCorners(user->da,&xs,&ys,NULL,&xm,&ym,NULL);

158:   /* Compute the linear term in the objective function */
159:   for (i=xs; i<xs+xm; i++) {
160:     temp=PetscSinReal((i+1)*hx);
161:     for (j=ys; j<ys+ym; j++) b[j][i] = -ehxhy*temp;
162:   }
163:   /* Restore vectors */
164:   DMDAVecRestoreArray(user->da,user->B,&b);
165:   PetscLogFlops(5*xm*ym+3*xm);
166:   return(0);
167: }

171: PetscErrorCode FormGradient(SNES snes, Vec X, Vec G,void *ctx)
172: {
173:   AppCtx         *user=(AppCtx*)ctx;
175:   PetscInt       i,j,k,kk;
176:   PetscInt       row[5],col[5];
177:   PetscInt       nx,ny,xs,xm,ys,ym;
178:   PetscReal      one=1.0, two=2.0, six=6.0,pi=4.0*atan(1.0);
179:   PetscReal      hx,hy,hxhy,hxhx,hyhy;
180:   PetscReal      xi,v[5];
181:   PetscReal      ecc=user->ecc, trule1,trule2,trule3,trule4,trule5,trule6;
182:   PetscReal      vmiddle, vup, vdown, vleft, vright;
183:   PetscReal      tt;
184:   PetscReal      **x,**g;
185:   PetscReal      zero=0.0;
186:   Vec            localX;

189:   nx   = user->nx;
190:   ny   = user->ny;
191:   hx   = two*pi/(nx+1.0);
192:   hy   = two*user->b/(ny+1.0);
193:   hxhy = hx*hy;
194:   hxhx = one/(hx*hx);
195:   hyhy = one/(hy*hy);

197:   VecSet(G, zero);

199:   /* Get local vector */
200:   DMGetLocalVector(user->da,&localX);
201:   /* Get ghoist points */
202:   DMGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX);
203:   DMGlobalToLocalEnd(user->da,X,INSERT_VALUES,localX);
204:   /* Get pointer to vector data */
205:   DMDAVecGetArrayRead(user->da,localX,&x);
206:   DMDAVecGetArray(user->da,G,&g);

208:   DMDAGetCorners(user->da,&xs,&ys,NULL,&xm,&ym,NULL);

210:   for (i=xs; i< xs+xm; i++) {
211:     xi     = (i+1)*hx;
212:     trule1 = hxhy*(p(xi,ecc) + p(xi+hx,ecc) + p(xi,ecc)) / six; /* L(i,j) */
213:     trule2 = hxhy*(p(xi,ecc) + p(xi-hx,ecc) + p(xi,ecc)) / six; /* U(i,j) */
214:     trule3 = hxhy*(p(xi,ecc) + p(xi+hx,ecc) + p(xi+hx,ecc)) / six; /* U(i+1,j) */
215:     trule4 = hxhy*(p(xi,ecc) + p(xi-hx,ecc) + p(xi-hx,ecc)) / six; /* L(i-1,j) */
216:     trule5 = trule1; /* L(i,j-1) */
217:     trule6 = trule2; /* U(i,j+1) */

219:     vdown   = -(trule5+trule2)*hyhy;
220:     vleft   = -hxhx*(trule2+trule4);
221:     vright  = -hxhx*(trule1+trule3);
222:     vup     = -hyhy*(trule1+trule6);
223:     vmiddle = (hxhx)*(trule1+trule2+trule3+trule4)+hyhy*(trule1+trule2+trule5+trule6);

225:     for (j=ys; j<ys+ym; j++) {

227:       v[0]=0; v[1]=0; v[2]=0; v[3]=0; v[4]=0;

229:       k=0;
230:       if (j > 0) {
231:         v[k]=vdown; row[k] = i; col[k] = j-1; k++;
232:       }

234:       if (i > 0) {
235:         v[k]= vleft; row[k] = i-1; col[k] = j; k++;
236:       }

238:       v[k]= vmiddle; row[k] = i; col[k] = j; k++;

240:       if (i+1 < nx) {
241:         v[k]= vright; row[k] = i+1; col[k] = j; k++;
242:       }

244:       if (j+1 < ny) {
245:         v[k]= vup; row[k] = i; col[k] = j+1; k++;
246:       }
247:       tt=0;
248:       for (kk=0; kk<k; kk++) tt+=v[kk]*x[col[kk]][row[kk]];
249:       g[j][i] = tt;

251:     }

253:   }

255:   /* Restore vectors */
256:   DMDAVecRestoreArrayRead(user->da,localX, &x);
257:   DMDAVecRestoreArray(user->da,G, &g);
258:   DMRestoreLocalVector(user->da,&localX);

260:   VecAXPY(G, one, user->B);

262:   PetscLogFlops((91 + 10*ym) * xm);
263:   return(0);
264: }



270: /*
271:    FormHessian computes the quadratic term in the quadratic objective function
272:    Notice that the objective function in this problem is quadratic (therefore a constant
273:    hessian).  If using a nonquadratic solver, then you might want to reconsider this function
274: */
275: PetscErrorCode FormHessian(SNES snes,Vec X,Mat H, Mat Hpre, void *ptr)
276: {
277:   AppCtx         *user=(AppCtx*)ptr;
279:   PetscInt       i,j,k;
280:   MatStencil     row,col[5];
281:   PetscInt       nx,ny,xs,xm,ys,ym;
282:   PetscReal      one=1.0, two=2.0, six=6.0,pi=4.0*atan(1.0);
283:   PetscReal      hx,hy,hxhy,hxhx,hyhy;
284:   PetscReal      xi,v[5];
285:   PetscReal      ecc=user->ecc, trule1,trule2,trule3,trule4,trule5,trule6;
286:   PetscReal      vmiddle, vup, vdown, vleft, vright;
287:   Mat            hes=H;
288:   PetscBool      assembled;
289:   PetscReal      **x;
290:   Vec            localX;

293:   nx   = user->nx;
294:   ny   = user->ny;
295:   hx   = two*pi/(nx+1.0);
296:   hy   = two*user->b/(ny+1.0);
297:   hxhy = hx*hy;
298:   hxhx = one/(hx*hx);
299:   hyhy = one/(hy*hy);

301:   MatAssembled(hes,&assembled);
302:   if (assembled) {MatZeroEntries(hes);}

304:   /* Get local vector */
305:   DMGetLocalVector(user->da,&localX);
306:   /* Get ghost points */
307:   DMGlobalToLocalBegin(user->da,X,INSERT_VALUES,localX);
308:   DMGlobalToLocalEnd(user->da,X,INSERT_VALUES,localX);

310:   /* Get pointers to vector data */
311:   DMDAVecGetArrayRead(user->da,localX, &x);

313:   DMDAGetCorners(user->da,&xs,&ys,NULL,&xm,&ym,NULL);

315:   for (i=xs; i< xs+xm; i++) {
316:     xi     = (i+1)*hx;
317:     trule1 = hxhy*(p(xi,ecc) + p(xi+hx,ecc) + p(xi,ecc)) / six; /* L(i,j) */
318:     trule2 = hxhy*(p(xi,ecc) + p(xi-hx,ecc) + p(xi,ecc)) / six; /* U(i,j) */
319:     trule3 = hxhy*(p(xi,ecc) + p(xi+hx,ecc) + p(xi+hx,ecc)) / six; /* U(i+1,j) */
320:     trule4 = hxhy*(p(xi,ecc) + p(xi-hx,ecc) + p(xi-hx,ecc)) / six; /* L(i-1,j) */
321:     trule5 = trule1; /* L(i,j-1) */
322:     trule6 = trule2; /* U(i,j+1) */

324:     vdown   = -(trule5+trule2)*hyhy;
325:     vleft   = -hxhx*(trule2+trule4);
326:     vright  = -hxhx*(trule1+trule3);
327:     vup     = -hyhy*(trule1+trule6);
328:     vmiddle = (hxhx)*(trule1+trule2+trule3+trule4)+hyhy*(trule1+trule2+trule5+trule6);

330:     v[0]=0; v[1]=0; v[2]=0; v[3]=0; v[4]=0;

332:     for (j=ys; j<ys+ym; j++) {
333:       k     =0;
334:       row.i = i; row.j = j;
335:       if (j > 0) {
336:         v[k]=vdown; col[k].i=i;col[k].j = j-1; k++;
337:       }

339:       if (i > 0) {
340:         v[k]= vleft; col[k].i= i-1; col[k].j = j;k++;
341:       }

343:       v[k]= vmiddle; col[k].i=i; col[k].j = j;k++;

345:       if (i+1 < nx) {
346:         v[k]= vright; col[k].i = i+1; col[k].j = j; k++;
347:       }

349:       if (j+1 < ny) {
350:         v[k]= vup; col[k].i = i; col[k].j = j+1; k++;
351:       }
352:       MatSetValuesStencil(hes,1,&row,k,col,v,INSERT_VALUES);
353:     }
354:   }

356:   MatAssemblyBegin(hes,MAT_FINAL_ASSEMBLY);
357:   DMDAVecRestoreArrayRead(user->da,localX,&x);
358:   MatAssemblyEnd(hes,MAT_FINAL_ASSEMBLY);
359:   DMRestoreLocalVector(user->da,&localX);

361:   /*
362:     Tell the matrix we will never add a new nonzero location to the
363:     matrix. If we do it will generate an error.
364:   */
365:   MatSetOption(hes,MAT_NEW_NONZERO_LOCATION_ERR,PETSC_TRUE);
366:   MatSetOption(hes,MAT_SYMMETRIC,PETSC_TRUE);

368:   PetscLogFlops(9*xm*ym+49*xm);
369:   return(0);
370: }